
How testable is
Business Software?

Peter Schrammel

What is this talk about?
Desire for software that has fewer bugs

• Focus on non-safety-critical software
• Great techniques developed by formal methods, programming

languages and software engineering communities
• Make developers’ lives easier

Typical challenges in automated verification hampering adoption:
• State space explosion, scalability, ...

But there are other issues too...

Business-Critical Software
Sizeable software stack:

• Critical to perform daily operations
• Defects impact revenue, customer satisfation, ...

Pressures:
• Faster, cheaper, …
• Detect defects early (“shift left”)

Testing:
• Slow tests unsuitable for CI/CD
• Fast unit tests that can run early in the development cycle

business
critical

unit tests

integration
tests

system
tests

How unit-testable is the code base?

Not unit-testable

Not valuable to unit-test

Unit-testable

What to expect from this talk?

How to map out testability of a code base

Similar issues apply to automated verification

Testability deficiencies are a signifcant issue

Support for overcoming these issues has high impact

design
for testability

(Binder 1994)

What is a unit test?
public class ProductTest {

 @Test

 public void testSend() {

 // Arrange the inputs and mocks

 Product product = new Product();

 product.addExpiryDate();

 // Act: call the method under test (MUT)

 boolean isExpired = product.isExpired();

 // Assert on the effects

 assertTrue(isExpired);

 }

}

Desirable properties:
• Runs fast (a few ms)
• Has no side effects

on other tests

What is a unit test?
@Test
public void testPropertyMappingGlobalOverride() throws Exception {
 String propertyPrefix = AbstractMappingMetadataExtracter.PROPERTY_PREFIX_METADATA +
 DummyMappingMetadataExtracter.EXTRACTER_NAME +
 AbstractMappingMetadataExtracter.PROPERTY_COMPONENT_EXTRACT;

 ApplicationContext ctx = MiscContextTestSuite.getMinimalContext();
 Properties globalProperties = (Properties) ctx.getBean("global-properties");
 globalProperties.setProperty(
 propertyPrefix + "namespace.prefix.my",
 DummyMappingMetadataExtracter.NAMESPACE_MY);
 globalProperties.setProperty(
 propertyPrefix + DummyMappingMetadataExtracter.PROP_A,
 " my:a1, my:a2, my:c ");

 extracter.setApplicationContext(ctx);

 extracter.register();
 // Only mapped 'a'
 destination.clear();
 extracter.extract(reader, destination);

 assertEquals(
 DummyMappingMetadataExtracter.VALUE_A,
 destination.get(DummyMappingMetadataExtracter.QNAME_C));
}

https://github.com/Alfresco/alfresco-repository

Not all code is equally critical
Goal: have tests for critical code

Critical code vs non-critical code
• Cyclomatic complexity (McCabe 1976) often used as a proxy

Unit-testable vs non-unit-testable code
• Testability analysis

Covered vs not-covered code
• Unit vs integration vs system test
• Test suite adequacy: coverage, mutation score

this talk

What does testability mean?
“If modularity is controlled so that the function of a module is
independent of the source of its input, the destination of its
output, and the past history of use of the module, the difficulty
of testing the modules and structures assembled from the
modules is greatly reduced.” Nate Edwards, 1975

What does testability mean?
“If modularity is controlled so that the function of a module is
independent of the source of its input, the destination of its
output, and the past history of use of the module, the difficulty
of testing the modules and structures assembled from the
modules is greatly reduced.” Nate Edwards, 1975
“The concept of [...] testability of software is defined by applying
the concepts of observability and controllability to software. It is
shown that a [...] testable program does not exhibit any
input-output inconsistencies and supports small test sets in
which test outputs are easily understood. Metrics that can be
used to assess the level of effort required in order to modify a
program so that it is [...] testable [...].” Roy Freedman, 1991

What does testability mean?
“Testability has two key facets: controllability and observability. To
test a component, you must be able to control its input (and
internal state) and observe its output. If you cannot control the
input, you cannot be sure what has caused a given output. If you
cannot observe the output of a component under test, you cannot
be sure how a given input has been processed.”

Robert V. Binder, 1994

What does testability mean?
Controllability

• Control system: “Can steer into any desired state”
• Software:

• Ability to arrange inputs of MUT to exercise a code path
• Ability to control the effects of dependent components (mockability)

• Why not controllable? Non-determinism, unreachable code

Observability
• Control system: “State can be determined from the outputs”
• Software:

• Ability to assert on relevant effects of the MUT
• Why not observable? Lack of accessibility and mockability

Mockability
Ability to inject objects that must be mocked in order to control and observe
their interactions
public class Product {

 private LocalDateTime expiryDate;

 public void addExpiryDate() {

 this.expiryDate = LocalDateTime.now()

 .plus(30, DAYS);

 }

 public boolean isExpired() {

 return this.expiryDate

 .isBefore(LocalDateTime.now());

 }

}

public class ProductTest {

 @Test public void testSend() {

 // Arrange

 Product product = new Product();

 product.addExpiryDate();

 // Act & Assert

 assertTrue(product.isExpired());

 }

}

Mockability
Ability to inject objects that must be mocked in order to control and observe
their interactions
public class Product {

 private LocalDateTime expiryDate;

 public void addExpiryDate() {

 this.expiryDate = LocalDateTime.now()

 .plus(30, DAYS);

 }

 public boolean isExpired() {

 return this.expiryDate

 .isBefore(LocalDateTime.now());

 }

}

public class appTest {

 @Test public void testSend() {

 // Arrange

 Product product = new Product();

 product.addExpiryDate();

 Thread.sleep(31*24*3600);

 // Act & Assert

 assertTrue(product.isExpired());

 }

}

Mockability
Ability to inject objects that must be mocked in order to control and observe
their interactions
public class Product {

 private LocalDateTime expiryDate;

 private Clock clock = Clock.systemUTC();

 public void addExpiryDate() {

 this.expiryDate = LocalDateTime. now(clock)

 .plus(30, DAYS);

 }

 public boolean isExpired() {

 return this.expiryDate

 .isBefore(LocalDateTime. now(clock));

 }

 void setClock(Clock clock) { this.clock = clock;
}

}

public class ProductTest {

 @Test public void testExpired() {

 // Arrange

 Product product = new Product();

 product.setClock(Clock.fixed(Instant.EPOCH));

 product.addExpiryDate();

 product.setClock(Clock.fixed(

 Instant.EPOCH.plus(31, DAYS)));

 // Act & Assert

 assertTrue(product.isExpired());

 }

}

Dependency injection

Mockability
Ability to inject objects that must be mocked in order to control and observe
their interactions

public class App {

 private static final logger = ...;

 private Client client;

 public App() {

 this.client = new Client();

 }

 public void send(Message m) {

 try {

 client.call(m);

 } catch (Exception e) {

 logger.error("send failed", e);

 }

 }

}

public class AppTest {

 @Test public void testSend() {

 // Arrange

 App app = new App();

 Message message = new Message("hello");

 // Act

 app.send(message);

 // Assert

 ???

 }

}

Mockability
Ability to inject objects that must be mocked in order to control and observe
their interactions

public class App {

 private static final logger = ...;

 private Client client;

 public App(Client client) {

 this.client = client;

 }

 public void send(Message m) {

 try {

 client.call(m);

 } catch (Exception e) {

 logger.error("send failed", e);

 }

 }

}

public class AppTest {

 @Test public void testSend() {

 // Arrange

 Client client = new Client();

 App app = new App(client);

 Message message = new Message("hello");

 // Act

 app.send(message);

 // Assert

 assert(client...) ???

 }

}

Dependency
injection

Mockability
Ability to inject objects that must be mocked in order to control and observe
their interactions

public class App {

 private static final logger = ...;

 private Client client;

 public App(Client client) {

 this.client = client;

 }

 public void send(Message m) {

 try {

 client.call(m);

 } catch (Exception e) {

 logger.error("send failed", e);

 }

 }

}

public class AppTest {

 @Test public void testSend() {

 // Arrange

 Client client = mock(Client.class);

 App app = new app(client);

 Message message = new Message("hello");

 // Act

 app.send(message);

 // Assert

 verify(client).send(message);

 }

}

Mockability
Ability to inject objects that must be mocked in order to control and observe
their interactions

public class App {

 private static final logger = ...;

 private Client client;

 public App(Client client) {

 this.client = client;

 }

 public void send(Message m) {

 try {

 client.call(m);

 } catch (Exception e) {

 logger.error("send failed", e);

 }

 }

}

public class appTest {

 @Test public void testSendFailed() {

 // Arrange

 Client client = mock(Client.class);

 when(client.send(any())).thenThrow(new Exception());

 App app = new App(client);

 Message message = new Message("hello");

 // Act

 app.send(message);

 // Assert

 assertThrows(Exception. class, () -> app.send(message));

 verify(client).send(message);

 }

}

Class under test Test class

Arrange

AssertMUT

Testability
controllability observability

fields

return value / exception

MUT inputscontroller methods

write field

call dependency

arguments

Test class

Arrange

Assert

Class under test

MUT

fields

return value / exception

MUT inputscontroller methods

write field

call dependency

observer methods

MUT outputs

arguments

Testability
controllability observability

Test class

Arrange

Assert

Class under test

MUT

fields

arguments

return value / exception

MUT inputs

Mock inputs

controller methods

write field

call dependency

observer methods

MUT outputs

Testability
controllability observability

Test class

Arrange

Assert

Class under test

MUT

fields

arguments

return value / exception

MUT inputs

Mock outputs

Mock inputs

controller methods

write field

call dependency

observer methods

MUT outputs

Testability
controllability observability

Test class

Arrange

Assert

Class under test

MUT

fields

arguments

observer methods

return value / exception

MUT inputs

Mock outputs

MUT outputs

Mock inputs

controller methods

write field

call dependency

Testability
controllability observability

Testability Metrics
Try to find correlations between

• software quality metrics (coupling, number of fields, complexity of
methods, etc)

• and difficulty / effort to write tests (e.g. Terragni et al 2020)
• Give quantitative predictions

Our goal:
• Give precise diagnostic information
• Explain for each method where and what the problem is
• Assist in fixing it, potentially fix it automatically
• Our test generation tool will perform better

How unit-testable is business software?
Static analysis:

• On the byte code (.class files)
• Under-approximate “not valuable to unit-test” and “not unit-testable”

Analysis of Java software packages:
• 40 repositories with 442 modules
• 8.2 MLOC Java, 98k classes (with dependencies much more)

Various areas:
• Business workflows, data processing, distributed computing, data storage

Test class

Arrange

Assert

Class under test

MUT

fields

arguments

observer methods

return value / exception

MUT inputs

Mock outputs

MUT outputs

Mock inputs

controller methods

write field

call dependency

Testability
controllability observability

Mockability Analysis
We under-approximate the set of non-mockable methods.

A method is non-mockable if
• It must be mocked (because it is non-deterministic), or
• It has a call to a non-mockable static method, or
• It has a call to a non-mockable instance method on an

object that is non-injectable
An object is non-injectable if

• It cannot be supplied through inputs

How unit-testable is business software?
On average:

21% not unit-testable

6% not valuable to unit-test

73% unit-testable

Very high variability

on module level (0-100%)

How unit-testable is business software?

Diagnostic Information
public class MailServiceImpl implements MailService {
 ...
 public void testConnection() {
 JavaMailSender javaMailSender = getMailSender();
 if (javaMailSender instanceof JavaMailSenderImpl) {
 JavaMailSenderImpl mailSender = (JavaMailSenderImpl) javaMailSender;
 try {
 mailSender.testConnection();
 } catch (MessagingException e) {
 throw new EmailException("无法连接到邮箱服务器，请检查邮箱配置.[" +
 e.getMessage() + "]", e);
 }
 }
 }
 private JavaMailSender getMailSender() {
 ...
 }
}

https://github.com/halo-dev/halo

Diagnostic Information
public class MailServiceImpl implements MailService {
 ...
 public void testConnection() {
 JavaMailSender javaMailSender = getMailSender();
 if (javaMailSender instanceof JavaMailSenderImpl) {
 JavaMailSenderImpl mailSender = (JavaMailSenderImpl) javaMailSender;
 try {
 mailSender.testConnection();
 } catch (MessagingException e) {
 throw new EmailException("无法连接到邮箱服务器，请检查邮箱配置.[" +
 e.getMessage() + "]", e);
 }
 }
 }
 private JavaMailSender getMailSender() {
 ...
 }
}

INFO T012 MailServiceImpl.testConnection:()V
INFO There are calls to methods that should be mocked because they perform
INFO file system operations, but we cannot mock them.
INFO Methods that cannot be mocked:
INFO org.springframework.mail.javamail.JavaMailSenderImpl.testConnection:()V
INFO org.springframework.mail.javamail.JavaMailSenderImpl.connectTransport:()Lja…
...
INFO java.io.FileDescriptor.<init>:()V

https://github.com/halo-dev/halo

Assumptions and Limitations
Allow dirty tricks?

• Reflection
• Byte code manipulations

When is something still a unit test?

What should be mocked?
• Files?, network, threads, time, random

Non-deterministic tests with determinstic verdict?

What are the implications of testability
on test efficiency?
Lack of unit-testability

• Tendency to have a higher proportion of system and
integration tests

• Slow CI
• Test selection
• Nightly test runs
• Later defect detection
• No shift-left possible

unit
tests

integration
tests

system
tests

What are the implications of testability
on coverage metrics?
Focus on critical code coverage:

• Projects have 5-40% trivial code
• Easy to increase coverage by 10% without any added value
• 80% coverage is bad if the remaining 20% are critical

Focus on badly unit-testable, critical code:
• Areas of risk in the code base that need attention

What’s the role of design for testability?
Common workarounds for lack of testability

• Lack of controllability:
• Use of bytecode rewriting (e.g. Powermock)
• Integration test (e.g. with database, emulation of external client)

→ Slow CI
• Lack of observability:

• Use of reflection
• Ad-hoc weakening of encapsulation
• Assertions on log file content

→ Further reduction of code quality

What should actually be done?
• Consider requirements on the testing interface when designing

functional interface

design
for testability

(Binder 1994)

What are the implications of testability
on verification tools?
Verification harnesses are very similar to unit tests

• Automated test generation essentially produces harness
automatically

• Lack of testability is also an impediment for automated
software verification

• Code designed for testability expected easier to handle
“Verifiability” analysis

• Could estimate upper bounds on what a verification tool can
be expected to achieve

• Point out limitations when dealing with real world projects

impossible

known tool
limitations

tool
expected
to deliver
results

What can we do to improve testability?

Not unit-testable

Not valuable to unit-test

Unit-testable

What can we do to improve testability?

refactoring

36% 66%

Control
non-determinism
by improving
injectability

Improve
observability of
relevant effects

Take-aways
Business software is business-critical.
Unit-testing is important to move fast.

Test coverage metrics have to take into account criticality.

Testability depends on controllability and observability.

Lack of testability affects automated software verification and test
generation tools

Automated refactoring/advice to improve testability of business
software?

References
Kalman, R. E., “On the General Theory of Control Systems”. Proceedings of the First International Congress on Automatic Control, Butterworth, London,
1960, pp. 481-493.

Edwards, N. P., “The effect of certain modular design principles on software testability”. ACM SIGPLAN Notices, 10(6):401--410, April 1975.

McCabe, T., “A Complexity Measure”, IEEE Trans. Software Eng. 2 (4): 308-320, 1976.

Freedman, R.S., “Testability of Software Components”, IEEE Transactions on Software Engineering, Vol. 17(6), 1991.

Binder, R. V., “Design for testability in object-oriented systems”. Communications of the ACM, Sept 1994.

Binder, R. V., “Testing Object-Oriented Systems: Models, Patterns, and Tools.: Addison Wesley, 1999.

Jungmayr, S., “Testability measurement and software dependencies”, In Proceedings of the 12th International Workshop on Software Measurement,
October 7-9, 2002, Magdeburg, Germany, pp. 179-202.

Bruntink, M., Deursen, A.V., “An empirical study into class testability”, Journal of Systems and Software, 2006.

Zhao, L., “A new approach for software testability analysis”. ICSE, 2006.

Khan, R. A., Mustafa, K., “Metric Based Testability Model for Object-Oriented Design (MTMOOD)”. ACM SIGSOFT Software Engineering Notes, volume
34, number 2, March 2009.

V. Chowdhary, “Practicing Testability in the Real World”, International Conference on Software Testing, Verification and Validation, IEEE Computer
Society Press, 2009.

Kout, A., Toure, F., Badri, M., “An empirical analysis of a testability model for object-oriented programs”, ACM SIGSOFT Software Engineering Notes,
August 2011.

Garousi, V., Felderer, M., Kılıçaslan, F. N., “A Survey on Testability”, Information and Software Technology, Vol. 108, pp. 35-64, April 2019.

Terragni, V., Toure, F., Pezze, M., “Measuring Software Testability Modulo Test Quality”. ICPC, 2020.

Further resources and results: https://bit.ly/2ZUNMOY

https://bit.ly/2ZUNMOY

