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Abstract—In SMT bit-vectors and thus word-level reasoning
is common and widely used in industry. However, it took until
2019 that the hardware model checking competition started to use
word-level benchmarks. Reasoning on the word-level opens up
many possibilities for simplification and more powerful reasoning.
In SMT we do see advantages due to operating on the word-
level, even though, ultimately, bit-blasting and thus transforming
the word-level problem into SAT is still the dominant and most
important technique. For word-level model checking the situation
is different. As the hardware model checking competition in 2019
has shown bit-level solvers are far superior (after bit-blasting the
model through an SMT solver though). On the other hand word-
level model checking shines for problems with memory modeled
with arrays. In this tutorial we revisit the problem of word
level model checking, also from a theoretical perspective, give an
overview on classical and more recent approaches for word-level
model checking and then discuss challenges and future work.
The tutorial covered material from the following papers.
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World-Level Modelling

® Dbit-precise reasoning: bit-vector as basic modelling element

® thus in essence SMT theory QF BV of bit-vectors [SMTLIB]

= sorts: bit B={0,1} bit-vector Bjw] =B" 35

= constants: 659 decimal 00100011, binary 111 ST (unary)

= variables: declared as b[1] and x[32] bool b, x[32];

= comparison: =, #, <, < (signed and unsigned), ...

= Dit-wise operators: ~, —, A, V, &, ... shifting operators: shift, rotate ...

= arithmetic operators: +, —, %, /, ... string operators: slicing, append, extend, ...
® plus array theory QF_ABV to model memory main memory, caches, etc.

sorts: array B[r][29] = (B? — B") = B2 = B[r-29]

constants: ? zero, range initializers, lambdas, quantifiers, ...
variables: declared as c¢[64][1024] 8KB cache m([8][24] main memory
(declare—-fun ¢ () (Array (. BitVec 10) (. BitVec 64)))

(declare-fun m () (Array (. BitVec 64) (. BitVec 8)))

operators: read, write (update) select, store



Sequential Modelling = State Machines / Kripke Structures / Automata

® use “logic” (e.g., bit-vector formulas) to describe sequential semantics symbolically

= Kripke structure flavor think "SMV”
= |nitialization and (total) transition relation

= non-deterministic modelling thus inputs are part of the state
= still usually variable based: state space = possible variable assignments

= constraints (invariants / fairness) and properties (temporal logic)

® gutomata or circuit flavor think ”Verilog” or AIGER on the bit-level
= |nitialization and transition function partial initialization important in AIGER

= separate variables for inputs and states
= non-determinism modelled with inputs ~ “ - = «;” in SLAM, oracle / Choueka construction
= constraints, properties and explicit outputs for simple compositional semantics

= clear semantics close to actual HW / SW

= thus in summary we prefer the second “functional” view as in AIGER and BTOR
= also gives a faster and simpler to implement model checker [JussilaBiere’07]



AlIGER

= bit-level (propositional) functional model checking format

B bootstrapped first hardware model checking competition (HWMCC’07)

= witness / trace format, tool set for simulation / withess checking , splitting, unrolling ...
® simple and clean semantics, common denominator of model checkers [Biere’07]
® constraints, more general properties and synthesis support  [BiereHeljankoWieringa'11]
= now supported by many HW tools as (binary) exchange format (such as ABC)

®  AIG means And-Inverter Graph (formulas with AND and NOT only)

® used since 2007 in the hardware model checking competition (HWMCC)
[Cabodi et.al. : HWMCC’14] [BiereVanDijkHeljanko'17]

m collected and selected benchmark sets used in many papers

CAV'10 CAV’'14
CAV'07 FLOC™10 FMCAD12  FLOC'14 FMCAD'17 FMCAD’20
Berlin Edinburgh Cambridge Vienna Vienna Virtual
3 13 13 * 13 13 13 13 13 13 L )
CAV’08 FMCAD’11 FMCAD'13  FMCAD'15 FMCAD’19

Princeton Austin Portland Austin San Jose



AIGER
4-bit adder A

http://fmv.jku.at/aiger

toggle flip-flop
with enable & reset


http://fmv.jku.at/aiger

B BTOR 1.0 [BrummayerBierelLonsing’09]

word-level generalization of the initial AIGER format from 2007 (ASCII version)
supports bit-vectors and arrays (again quantifier-free formulas only)

sequential functional extensions as in AIGER

m BTOR 2.0 [NiemetzPreinerWolfBiere’18]

resumed word-level motivated by open flows (Yosys) and open cores (RISC-V)
incorporated new AIGER 1.9 features from 2011
witness format

new tools:
withess checker / simulator

bounded model checker

new bit-blaster on top of Boolector’s bit-blaster  [Preiner2019]
still lacking:  fuzzer, delta debugger, bit-blasting of arrays
initialization of arrays still tricky
used in HWMCC’19 and HWMCC’20



BTOR Model Example
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sort bitvec 1
sort bitvec 3
Zero 2 )
state 2 cnt pcnt=0
init 2 4 3
input 2 1n
add 2 4 6 s cnt’ = cnt + in
next 2 4 7/
ones 2

eq 1 4 9 > bad . (cnt ==17)
bad 10
constd 2 3
ulte 1 6 12 in<3

constraint 13

J

Y A\

Witness Example

sat
b0

#0

@0

0 011
@1

0 010
@2

0 010
@3
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in@1
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BTOR2 Model Format [NiemetzPreinerWolfBiere’'18]

(num)
(uint)
(string)
(symbol)
(comment)
(nid)

(sid)
(const)
(constd)
(consth)
(input)
(state)
(bitvec)
(array)
(node)

(line)
(btor)

positive unsigned integer (greater than zero)

unsigned integer (including zero)

sequence of whitespace and printable characters without "\ n’

sequence of printable characters without "\ n’

' (string)

(num)

(num)

‘const’ (sid) [0-1]+

‘constd’ (sid) [-’]{uint)

‘consth’ (sid) [0-9a-fA-F]+

(’input’ | ‘'one’ | 'ones’ | 'zero’) (sid) | (const) | (constd) | (consth)

'state’ (sid)

‘bitvec’ (num)

array’ (sid) (sid)

(sid) 'sort’ ( (array) | (bitvec) )

| (nid) ((input) | (state))

| (nid) (opidx) (sid) (nid) (uint) [(uint)]

| {nid) (op) (sid) (nid) [{nid) [(nid)]

| (nid) (’init’ ] next ) (sid) (nid) (nid)

| (nid) (°

| (
(
((

nid

nid) ’justice’ (num) ( (nid) )+

comment) | (node) [ (symbol) ] [ (comment) ]
line)’\n" )+

https://github.com/Boolector/btor2tools


https://github.com/Boolector/btor2tools

BTOR2 Witness Format

<
<
<
<
<
<
<
<
<
<
<

binary-string)
bv-assignment)
array-assignment)
assignment)
model)

state part)
input part)
frame)

prop)

header)
witness)

[NiemetzPreinerWolfBiere’18]

[0-1]+

(binary-string)

[ (binary-string) ']’ (binary-string)

(uint) ((bv-assignment) | (array-assignment) ) [(symbol)]
( (comment)’\n’ | (assignment)’\n’ )+

'# (uint) \n’ (model)

'@’ (uint) "\n’ (model)

[ (state part) ] (input part)

("o | ' ){uint)

sat\n’ ( (prop) )+ "\n

( (comment)’\n’ )+ | (header) ( (frame) )+’

https://github.com/Boolector/btor2tools


https://github.com/Boolector/btor2tools

Another Example Modelling a C program

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>

static bool read_bool () {
int ch = getc (stdin);
if (ch == ’"0’") return false;
if (ch == ’"1") return true;

}

exit (0);

int main () {

bool turn; // input
unsigned a = 0, b = 0; // states
for (;;) A

turn = read_bool ();
assert (!(a == 3 && b == 3));
if (turn) a = a + 1;
else b =Db + 1;

4

0O J oy U dx» W DN

N T e e el e e
O W W-JOoy Ul WN K O W

sort bitvec 1
sort bitvec 32
input 1 turn
state 2 a
state 2 b

zero 2

init 2 4 ©

10
ite -3 5 11
next 2 4 12
next 2 5 13
constd 2 3

eq 1l 4 16

eq 1l 5 16

and 1 17 18
bad 19

2

2 49
add 2 5 9

2 3 4

2

sat
b0
#0
@0
0 1
@1
0 O
@z
0 0
@3
0 0
@4
0 1
@5
01
@6
0 0

turn@O

turn@l

turn@?

turn@3

turn@4

turn@b

turn@e



Application Specific Sequential Word-Level Formats

= Hardware description languages (HDL): (System)-Verilog, System-C, VHDL, ...

= “what you check is what you get”
= usually have (very) complex semantics and undefined behaviour

= Yosys, Reveal, Enhanced ABC, commercial model checkers

m Software languages: C, Java, JVM, GraalVM, LLVM, assembler, ...
= “what you check is what you get”

= usually have complex semantics and undefined behaviour

= “Competition on Software Verification” SV-Comp

® application specific languages problematic
= hard to reuse solver / checker technology

= QF BV is pretty successful in both HW and SW applications
= encode “undefinedness” precisely is better
= same should apply to model checking

= but: “v2c — A Verilog to C translator ”
[MukherjeeTautschnigKroening’16] [MukherjeeSchrammelKroeningMelham’16]



Other Generic Word-Level Model Checking Formats
m UCLID [BryantLahiriSeshia]
= early SMT solving (UF, lambdas, memory) targetting processor verification

= pounded model checking in essence (manual inductive verification)
= SAL from SRI [DeMouraOwreShankar'03]  Yices [Duherte’14]

= focus was orignally on infinite systems

= gofar not-much interest in bit-precise reasoning
® constrained horn clauses uZ [HoderBjornerDeMoura’11]

= basically extends an SMT solver (Z3) with (second order) least fix-points
= active community: workshops, competition, ...

= gofar not-much interest in bit-precise reasoning
= VMT nuXmv [CAV’14]  Verilog2SMV [DATE’16] from FBK IRST in Trento

= SMTLIB with annotations to mark initialization and transition predicates
= puilt around (nu)SMV using MathSAT as word-level engine
= actively supports bit-vectors
= related "Model Checking Competition” (MCC) has Petri nets models (in PNML)

m “classical” protocol modelling languages: Promela (SPIN), Murphi, ...



Bit-Blasting Explodes

show commutativity of bit-vector addition for bit-width 1 million:

set-logic QF_BV)
declare—-fun x () (_ BitVec 1000000))
declare—-fun y () (_ BitVec 1000000))

(
(
(
(assert (distinct (bvadd x y) (bvadd y x)))

size of SMT2 file: 138 bytes

bit-blasting with our SMT solver Boolector
= rewriting turned off

= except structural hashing

= produces AIGER circuits of file size 103 MB

Tseitin transformation leads to CNF in DIMACS format of size

1 GB



Complexity Classification Results for Bit-Vector Logics

our results from [KovasznaiFrohlichBiere-SMT’12] paper extended version in our TOCS'16 article

quantifiers
no
uninterpreted functions uninterpreted functions
no yes no yes

NP NP PSPACE NEXPTIME

QF BV1 | QF _UFBV1 BV1 UFBV1

encoding unary obvious Ackermann [TACAS’10] [FMCAD’10]

NEXPTIME | NEXPTIME AEXP(poly) 2NEXPTIME

QF BV2 | QF_ UFBV2 BV2 UFBV2

binary [SMT’12] [SMT12] [JonasStrejcek-1PL18] [SMT’12]

QF = “quantifier free”

BV1 = “unary encoded bit-vectors”

UF = “uninterpreted functions”

BV = “bit-vector logic”
BV2 = “binary encoded bit-vectors”




Complexity Classification Results for Arrays and Word-Level Model Checking

= AIGER problems are PSPACE complete
= since “symbolicl reachability” is PSPACE complete [Savitch’70]

® now assume (for instance) sequential BTOR 2.0 as input
= without arrays but sequential problems (model checking)

unary encoding (or bit-width as fixed parameter): PSPACE complete
binary encoding: EXSPACE complete [KovasznaiVeithFrohlichBiere’ MFCS14]

= with arrays and sequential problems (model checking)

unary encoding:  ? EXPSPACE complete?

binary encoding:  ? 2EXPSPACE complete?

® benefits of complexity characterizations
= gives hints what solvers (SAT,SMT, AIGER) can be used as oracles

= and how many times they have to be called

= sometimes gives restricted classes PSPACE sub-class of QF BV2



Why do we want to do word-level model checking?

= use word-level “structure” for rewriting / simplification
= allows (shallow) arithmetic reasoning as in the complexity example

= word-level local search [NiemetzPreinerBiere'16/17] [NiemetzPreiner20]

= make full use of functional representation
global substitution pass instead of congruence closure

CNF preprocessing lacks some benefits of circuit representations
bit-level circuit intermediate formats (thus bit-level rewriting)

BDD / SAT / SMT / cut sweeping to eliminate equivalent expressions

® data and memory abstraction
= bit-blasting of arithmetic expensive 3, has 8000 AlG nodes, x4 has 32000

= protocols only “move data around”.  bit-precise reasoning redundant
= properties often argue about some “reads” and “writes” only

" bit-blasting memory is often impossible m3[8][232]  mea[8][204]

® sequential and non-sequential rewriting and abstraction techniques



Eager Data Abstraction

®m  1-bit abstractions

= verify sorting using only “compare & swap” on 0/1 input  zero-one principle [Knuth'73]

data independence of protocols [Wolper'gs]

®= small domain encoding part of Ackermann’s reduction

if you only compare n variables then interpret them on the domain 0,...,n—1
reduce those variables to bit-width [logn]

eager translation to SAT possible  [PnueliRodehShtrichmanSiegel’99]

plain bit-vectors [Johannsen’01/02], model checking [HojatiBrayton'95] [Bjesse'08]

need to “slice” bit-vectors in HW to have compatible widths  next state functions too

can use different domain size for each “cluster” of compared variables

® abstract uninterpreted functions (UF) through Ackermann eagerly  transformation

extends to memories / arrays (exponentially) eliminate read & write as in UCLID

works for plain bit-vectors (thus BMC) but then lazy SMT (QF_AUFBYV) is better
[BurchDill'96] [VelevBryantJain'97] [ManoliosSrinivasanVroon’06] [GanaiGuptaAshar'04/05]

model checking requires to change properties [Bjesse'08/09] [German'11]



Lazy Data Abstraction

® akin to “lazy SMT” or CEGAR / Localization

® for instance replace expensive operations (multiplication) with UF
= abstraction refinement loop using SMT [AndrausLiffitonSakkalah’06/08]

= conservative: if abstracted model passes property then original passes it too
= spurious counter example: refine “mult(x,y)” 10 “(x=07?0:mult(x,y))”

= refinement can make use of cores or MUS

® combine with IC3/ PDR [LeeSakallah’14] [GoelSakallah’19/20]
= predicate abstraction existing predicates, new predicates?

= syntax guided abstraction equality between existing expressions, new expressions?

= how to interpolation into the mix is still unclear
bit-vectors [Griggio’16] [BackemanRummerZeljic’18] [OkudonoKing’20] arrays ?

® also still needs to be combined with successful bit-level techniques
= sweeping / temporal decomposision / retiming

= |ocal search / simulation



HWMCC’19 Results on Bit-Vectors (BV)  without arrays
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Challenges

benchmarks: Yosys, open cores, RISC-V already helped a lot, but need more!
apply HW word-level model checkers to SW (from SV-COMP) or vice versa

symbolic execution of both SW and HW
= modelling (slices of) programs linearly in a word-level model

= “Selfie” by Christoph Kirsch has a BTOR2 model of RISC-U

smart contracts
= Dit-precise semantics lends itself to word-level models

= as discussed in invited SMT°20 talk by Mooly Sagiv

certificates:
= UNSAT proofs in SAT very useful "biggest math proof ever” by Marijn Heule

= certificates for (passing properties) in AIGER  with Zhenggi Yu and Keijo Heljanko
= certificates for UNSAT proofs in QF_BV [CVC4 team]

= combine to provide word-level certificates

make word-level model checkers faster than bit-level checkers = HWMCC’20?



