Tutorial on Word-Level Model Checking

Armin Biere

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

FMCAD 2020
September 21, 2020
Online

@ Formal Methods in Computer-Aided Design 2020

Tutorial on World-Level Model Checking

Armin Biere

Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
armin.biere @jku.at

Abstract—In SMT bit-vectors and thus word-level reasoning
is common and widely used in industry. However, it took until
2019 that the hardware model checking competition started to use
word-level benchmarks. Reasoning on the word-level opens up
many possibilities for simplification and more powerful reasoning.
In SMT we do see advantages due to operating on the word-
level, even though, ultimately, bit-blasting and thus transforming
the word-level problem into SAT is still the dominant and most
important technique. For word-level model checking the situation
is different. As the hardware model checking competition in 2019
has shown bit-level solvers are far superior (after bit-blasting the
model through an SMT solver though). On the other hand word-
level model checking shines for problems with memory modeled
with arrays. In this tutorial we revisit the problem of word
level model checking, also from a theoretical perspective, give an
overview on classical and more recent approaches for word-level
model checking and then discuss challenges and future work.
The tutorial covered material from the following papers.

REFERENCES

[1] Z.S. Andraus, M. H. Liffiton, and K. A. Sakallah, “Refinement strategies
for verification methods based on datapath abstraction,” in Proc. ASP-
DAC’06. 1EEE, 2006, pp. 19-24.

[2] ——, “Reveal: A formal verification tool for Verilog designs,” in
Proc. LPAR’08, ser. LNCS, vol. 5330. Springer, 2008, pp. 343-352.

[3] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo
Theories Library (SMT-LIB),” www . SMT-LIB.org, 2016.

[4] A. Biere, “The AIGER And-Inverter Graph (AIG) format version
20071012,” FMV Reports Series, JKU Linz, Tech. Rep., 2007.

[5] A. Biere, K. Heljanko, and S. Wieringa, “AIGER 1.9 and beyond,” FMV
Reports Series, JKU Linz, Tech. Rep., 2011.

[6] A. Biere and M. Preiner, “Hardware model checking competition 2019,”
http://fmv.jku.at/hwmecc19.

[7]1 A. Biere, T. van Dijk, and K. Heljanko, “Hardware model checking
competition 2017,” in Proc. FMCAD’17. 1EEE, 2017, p. 9.

[8] P. Bjesse, “A practical approach to word level model checking of
industrial netlists,” in Proc. CAV’08, ser. LNCS, vol. 5123. Springer,
2008, pp. 446-458.

[91 ——, “Word-level sequential memory abstraction for model checking,”
in Proc. FMCAD’08. 1EEE, 2008, pp. 1-9.

, “Word level bitwidth reduction for unbounded hardware model

checking,” Formal Methods Syst. Des., vol. 35, no. 1, pp. 56-72, 2009.

R. Brummayer, A. Biere, and F. Lonsing, “BTOR: Bit-precise modelling

of word-level problems for model checking,” in Proc. SMT’08. ACM,

2008, pp. 33-38.

G. Cabodi, C. Loiacono, M. Palena, P. Pasini, D. Patti, S. Quer,

D. Vendraminetto, A. Biere, and K. Heljanko, “Hardware model check-

ing competition 2014: An analysis and comparison of solvers and

benchmarks,” JSAT, vol. 9, pp. 135-172, 2014 (published 2016).

R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,

S. Mover, M. Roveri, and S. Tonetta, “The nuXmv symbolic model

checker,” in Proc. CAV’14, ser. LNCS, vol. 8559. Springer, 2014, pp.

334-342.

L. De Moura, S. Owre, and N. Shankar, “The SAL language manual,”

Computer Science Laboratory, SRI Intl., Tech. Rep. CSL-01-01, 2003.

S. M. German, “A theory of abstraction for arrays,” in Proc. FMCAD’11.

FMCAD Inc., 2011, pp. 176-185.

A. Goel and K. A. Sakallah, “Empirical evaluation of IC3-based model

checking techniques on verilog RTL designs,” in Proc. DATE’19. 1EEE,

2019, pp. 618-621.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[40]

, “Model checking of Verilog RTL using IC3 with syntax-guided
abstraction,” in Proc. NFM’19, ser. LNCS, vol. 11460. Springer, 2019,
pp. 166-185.

——, “AVR: abstractly verifying reachability,” in Proc. TACAS 20, ser.
LNCS, vol. 12078. Springer, 2020, pp. 413-422.

Y. Ho, A. Mishchenko, and R. K. Brayton, “Property directed reacha-
bility with word-level abstraction,” in Proc. FMCAD’17. 1EEE, 2017,
pp. 132-139.

K. Hoder, N. Bjgrner, and L. M. de Moura, “uZ- an efficient engine for
fixed points with constraints,” in Proc. CAV’11, ser. LNCS, vol. 6806.
Springer, 2011, pp. 457-462.

A. Irfan, A. Cimatti, A. Griggio, M. Roveri, and R. Sebastiani, “Ver-
ilog2SMV: A tool for word-level verification,” in Proc. DATE’16. 1EEE,
2016, pp. 1156-1159.

H. Jain, D. Kroening, N. Sharygina, and E. M. Clarke, “Word-level
predicate-abstraction and refinement techniques for verifying RTL Ver-
ilog,” IEEE TCAD, vol. 27, no. 2, pp. 366-379, 2008.

T. Jussila and A. Biere, “Compressing BMC encodings with QBF,”
ENTCS, vol. 174, no. 3, pp. 45-56, 2007.

A. Kolbl, R. Jacoby, H. Jain, and C. Pixley, “Solver technology for
system-level to RTL equivalence checking,” in Proc. DATE’09. IEEE,
2009, pp. 196-201.

G. Kovasznai, A. Frohlich, and A. Biere, “Complexity of fixed-size bit-
vector logics,” Theory Comp. Sys., vol. 59, no. 2, pp. 323-376, 2016.
G. Kovasznai, H. Veith, A. Frohlich, and A. Biere, “On the complexity
of symbolic verification and decision problems in bit-vector logic,” in
MFCS’14, ser. LNCS, vol. 8635. Springer, 2014, pp. 481-492.

D. Kroening, “Computing over-approximations with bounded model
checking,” ENTCS, vol. 144, no. 1, pp. 79-92, 2006.

D. Kroening and S. A. Seshia, “Formal verification at higher levels of
abstraction,” in Proc. ICCAD’07. IEEE Comp. Soc., 2007, pp. 572-578.
S. Lee and K. A. Sakallah, “Unbounded scalable verification based on
approximate property-directed reachability and datapath abstraction,” in
Proc. CAV’14, ser. LNCS, vol. 8559. Springer, 2014, pp. 849-865.

J. Long, S. Ray, B. Sterin, A. Mishchenko, and R. K. Brayton, “Enhanc-
ing ABC for stabilization verification of System Verilog/VHDL models,”
in Proc. DIFTS’11, ser. CEUR Work. Proc., vol. 832, 2011.

P. Manolios, S. K. Srinivasan, and D. Vroon, “Automatic memory
reductions for RTL model verification,” in Proc. ICCAD’06. ACM,
2006, pp. 786-793.

R. Mukherjee, P. Schrammel, D. Kroening, and T. Melham, “Un-
bounded safety verification for hardware using software analyzers,” in
Proc. DATE’16. 1EEE, 2016, pp. 1152-1155.

R. Mukherjee, M. Tautschnig, and D. Kroening, “v2c - A Verilog to C
translator,” in Proc. TACAS’16, ser. LNCS, vol. 9636. Springer, 2016,
pp. 580-586.

A. Niemetz, M. Preiner, C. Wolf, and A. Biere, “Btor2 , BtorMC and
Boolector 3.0,” in Proc. CAV’18, ser. LNCS, vol. 10981. Springer,
2018, pp. 587-595.

M. Sagiv, “Harnessing SMT solvers for verifying low level programs,”
2020, invited talk, SMT°20.

N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, 1997.

T. Welp and A. Kuehlmann, “QF BV model checking with property
directed reachability,” in Proc. DATE’13, 2013, pp. 791-796.

——, “Property directed invariant refinement for program verification,”
in Proc. DATE’14. Europ. Design and Automation Ass., 2014, pp. 1-6.
, “Property directed reachability for QF_BV with mixed type atomic
reasoning units,” in Proc. ASP-DAC’14. 1EEE, 2014, pp. 738-743.
C. Wolf, “Yosys,” https://github.com/YosysHQ/yosys.

World-Level Modelling

® Dbit-precise reasoning: bit-vector as basic modelling element

® thus in essence SMT theory QF BV of bit-vectors [SMTLIB]

= sorts: bit B={0,1} bit-vector Bjw] =B" 35

= constants: 659 decimal 00100011, binary 111 ST (unary)

= variables: declared as b[1] and x[32] bool b, x[32];

= comparison: =, #, <, < (signed and unsigned), ...

= Dit-wise operators: ~, —, A, V, &, ... shifting operators: shift, rotate ...

= arithmetic operators: +, —, %, /, ... string operators: slicing, append, extend, ...
® plus array theory QF_ABV to model memory main memory, caches, etc.

sorts: array B[r][29] = (B? — B") = B2 = B[r-29]

constants: ? zero, range initializers, lambdas, quantifiers, ...
variables: declared as c¢[64][1024] 8KB cache m([8][24] main memory
(declare—-fun ¢ () (Array (. BitVec 10) (. BitVec 64)))

(declare-fun m () (Array (. BitVec 64) (. BitVec 8)))

operators: read, write (update) select, store

Sequential Modelling = State Machines / Kripke Structures / Automata

® use “logic” (e.g., bit-vector formulas) to describe sequential semantics symbolically

= Kripke structure flavor think "SMV”
= |nitialization and (total) transition relation

= non-deterministic modelling thus inputs are part of the state
= still usually variable based: state space = possible variable assignments

= constraints (invariants / fairness) and properties (temporal logic)

® gutomata or circuit flavor think ”Verilog” or AIGER on the bit-level
= |nitialization and transition function partial initialization important in AIGER

= separate variables for inputs and states
= non-determinism modelled with inputs ~ “ - = «;” in SLAM, oracle / Choueka construction
= constraints, properties and explicit outputs for simple compositional semantics

= clear semantics close to actual HW / SW

= thus in summary we prefer the second “functional” view as in AIGER and BTOR
= also gives a faster and simpler to implement model checker [JussilaBiere’07]

AlIGER

= bit-level (propositional) functional model checking format

B bootstrapped first hardware model checking competition (HWMCC’07)

= witness / trace format, tool set for simulation / withess checking , splitting, unrolling ...
® simple and clean semantics, common denominator of model checkers [Biere’07]
® constraints, more general properties and synthesis support [BiereHeljankoWieringa'11]
= now supported by many HW tools as (binary) exchange format (such as ABC)

® AIG means And-Inverter Graph (formulas with AND and NOT only)

® used since 2007 in the hardware model checking competition (HWMCC)
[Cabodi et.al. : HWMCC’14] [BiereVanDijkHeljanko'17]

m collected and selected benchmark sets used in many papers

CAV'10 CAV’'14
CAV'07 FLOC™10 FMCAD12 FLOC'14 FMCAD'17 FMCAD’20
Berlin Edinburgh Cambridge Vienna Vienna Virtual
3 13 13 * 13 13 13 13 13 13 L)
CAV’08 FMCAD’11 FMCAD'13 FMCAD'15 FMCAD’19

Princeton Austin Portland Austin San Jose

AIGER
4-bit adder A

http://fmv.jku.at/aiger

toggle flip-flop
with enable & reset

http://fmv.jku.at/aiger

B BTOR 1.0 [BrummayerBierelLonsing’09]

word-level generalization of the initial AIGER format from 2007 (ASCII version)
supports bit-vectors and arrays (again quantifier-free formulas only)

sequential functional extensions as in AIGER

m BTOR 2.0 [NiemetzPreinerWolfBiere’18]

resumed word-level motivated by open flows (Yosys) and open cores (RISC-V)
incorporated new AIGER 1.9 features from 2011
witness format

new tools:
withess checker / simulator

bounded model checker

new bit-blaster on top of Boolector’s bit-blaster [Preiner2019]
still lacking: fuzzer, delta debugger, bit-blasting of arrays
initialization of arrays still tricky
used in HWMCC’19 and HWMCC’20

BTOR Model Example

O J o O b w DD

e e e e
S W N PO

sort bitvec 1
sort bitvec 3
Zero 2)
state 2 cnt pcnt=0
init 2 4 3
input 2 1n
add 2 4 6 s cnt’ = cnt + in
next 2 4 7/
ones 2

eq 1 4 9 > bad . (cnt ==17)
bad 10
constd 2 3
ulte 1 6 12 in<3

constraint 13

J

Y A\

Witness Example

sat
b0

#0

@0

0 011
@1

0 010
@2

0 010
@3

0 000

1in@o0

in@1

1n@2

in@3

BTOR2 Model Format [NiemetzPreinerWolfBiere’'18]

(num)
(uint)
(string)
(symbol)
(comment)
(nid)

(sid)
(const)
(constd)
(consth)
(input)
(state)
(bitvec)
(array)
(node)

(line)
(btor)

positive unsigned integer (greater than zero)

unsigned integer (including zero)

sequence of whitespace and printable characters without "\ n’

sequence of printable characters without "\ n’

' (string)

(num)

(num)

‘const’ (sid) [0-1]+

‘constd’ (sid) [-’]{uint)

‘consth’ (sid) [0-9a-fA-F]+

(’input’ | ‘'one’ | 'ones’ | 'zero’) (sid) | (const) | (constd) | (consth)

'state’ (sid)

‘bitvec’ (num)

array’ (sid) (sid)

(sid) 'sort’ ((array) | (bitvec))

| (nid) ((input) | (state))

| (nid) (opidx) (sid) (nid) (uint) [(uint)]

| {nid) (op) (sid) (nid) [{nid) [(nid)]

| (nid) (’init’] next) (sid) (nid) (nid)

| (nid) (°

| (
(
((

nid

nid) ’justice’ (num) ((nid))+

comment) | (node) [(symbol)] [(comment)]
line)’\n")+

https://github.com/Boolector/btor2tools

https://github.com/Boolector/btor2tools

BTOR2 Witness Format

<
<
<
<
<
<
<
<
<
<
<

binary-string)
bv-assignment)
array-assignment)
assignment)
model)

state part)
input part)
frame)

prop)

header)
witness)

[NiemetzPreinerWolfBiere’18]

[0-1]+

(binary-string)

[(binary-string) ']’ (binary-string)

(uint) ((bv-assignment) | (array-assignment)) [(symbol)]
((comment)’\n’ | (assignment)’\n’)+

'# (uint) \n’ (model)

'@’ (uint) "\n’ (model)

[(state part)] (input part)

("o | '){uint)

sat\n’ ((prop))+ "\n

((comment)’\n’)+ | (header) ((frame))+’

https://github.com/Boolector/btor2tools

https://github.com/Boolector/btor2tools

Another Example Modelling a C program

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>

static bool read_bool () {
int ch = getc (stdin);
if (ch == ’"0’") return false;
if (ch == ’"1") return true;

}

exit (0);

int main () {

bool turn; // input
unsigned a = 0, b = 0; // states
for (;;) A

turn = read_bool ();
assert (!(a == 3 && b == 3));
if (turn) a = a + 1;
else b =Db + 1;

4

0O J oy U dx» W DN

N T e e el e e
O W W-JOoy Ul WN K O W

sort bitvec 1
sort bitvec 32
input 1 turn
state 2 a
state 2 b

zero 2

init 2 4 ©

10
ite -3 5 11
next 2 4 12
next 2 5 13
constd 2 3

eq 1l 4 16

eq 1l 5 16

and 1 17 18
bad 19

2

2 49
add 2 5 9

2 3 4

2

sat
b0
#0
@0
0 1
@1
0 O
@z
0 0
@3
0 0
@4
0 1
@5
01
@6
0 0

turn@O

turn@l

turn@?

turn@3

turn@4

turn@b

turn@e

Application Specific Sequential Word-Level Formats

= Hardware description languages (HDL): (System)-Verilog, System-C, VHDL, ...

= “what you check is what you get”
= usually have (very) complex semantics and undefined behaviour

= Yosys, Reveal, Enhanced ABC, commercial model checkers

m Software languages: C, Java, JVM, GraalVM, LLVM, assembler, ...
= “what you check is what you get”

= usually have complex semantics and undefined behaviour

= “Competition on Software Verification” SV-Comp

® application specific languages problematic
= hard to reuse solver / checker technology

= QF BV is pretty successful in both HW and SW applications
= encode “undefinedness” precisely is better
= same should apply to model checking

= but: “v2c — A Verilog to C translator ”
[MukherjeeTautschnigKroening’16] [MukherjeeSchrammelKroeningMelham’16]

Other Generic Word-Level Model Checking Formats
m UCLID [BryantLahiriSeshia]
= early SMT solving (UF, lambdas, memory) targetting processor verification

= pounded model checking in essence (manual inductive verification)
= SAL from SRI [DeMouraOwreShankar'03] Yices [Duherte’14]

= focus was orignally on infinite systems

= gofar not-much interest in bit-precise reasoning
® constrained horn clauses uZ [HoderBjornerDeMoura’11]

= basically extends an SMT solver (Z3) with (second order) least fix-points
= active community: workshops, competition, ...

= gofar not-much interest in bit-precise reasoning
= VMT nuXmv [CAV’14] Verilog2SMV [DATE’16] from FBK IRST in Trento

= SMTLIB with annotations to mark initialization and transition predicates
= puilt around (nu)SMV using MathSAT as word-level engine
= actively supports bit-vectors
= related "Model Checking Competition” (MCC) has Petri nets models (in PNML)

m “classical” protocol modelling languages: Promela (SPIN), Murphi, ...

Bit-Blasting Explodes

show commutativity of bit-vector addition for bit-width 1 million:

set-logic QF_BV)
declare—-fun x () (_ BitVec 1000000))
declare—-fun y () (_ BitVec 1000000))

(
(
(
(assert (distinct (bvadd x y) (bvadd y x)))

size of SMT2 file: 138 bytes

bit-blasting with our SMT solver Boolector
= rewriting turned off

= except structural hashing

= produces AIGER circuits of file size 103 MB

Tseitin transformation leads to CNF in DIMACS format of size

1 GB

Complexity Classification Results for Bit-Vector Logics

our results from [KovasznaiFrohlichBiere-SMT’12] paper extended version in our TOCS'16 article

quantifiers
no
uninterpreted functions uninterpreted functions
no yes no yes

NP NP PSPACE NEXPTIME

QF BV1 | QF _UFBV1 BV1 UFBV1

encoding unary obvious Ackermann [TACAS’10] [FMCAD’10]

NEXPTIME | NEXPTIME AEXP(poly) 2NEXPTIME

QF BV2 | QF_ UFBV2 BV2 UFBV2

binary [SMT’12] [SMT12] [JonasStrejcek-1PL18] [SMT’12]

QF = “quantifier free”

BV1 = “unary encoded bit-vectors”

UF = “uninterpreted functions”

BV = “bit-vector logic”
BV2 = “binary encoded bit-vectors”

Complexity Classification Results for Arrays and Word-Level Model Checking

= AIGER problems are PSPACE complete
= since “symbolicl reachability” is PSPACE complete [Savitch’70]

® now assume (for instance) sequential BTOR 2.0 as input
= without arrays but sequential problems (model checking)

unary encoding (or bit-width as fixed parameter): PSPACE complete
binary encoding: EXSPACE complete [KovasznaiVeithFrohlichBiere’ MFCS14]

= with arrays and sequential problems (model checking)

unary encoding: ? EXPSPACE complete?

binary encoding: ? 2EXPSPACE complete?

® benefits of complexity characterizations
= gives hints what solvers (SAT,SMT, AIGER) can be used as oracles

= and how many times they have to be called

= sometimes gives restricted classes PSPACE sub-class of QF BV2

Why do we want to do word-level model checking?

= use word-level “structure” for rewriting / simplification
= allows (shallow) arithmetic reasoning as in the complexity example

= word-level local search [NiemetzPreinerBiere'16/17] [NiemetzPreiner20]

= make full use of functional representation
global substitution pass instead of congruence closure

CNF preprocessing lacks some benefits of circuit representations
bit-level circuit intermediate formats (thus bit-level rewriting)

BDD / SAT / SMT / cut sweeping to eliminate equivalent expressions

® data and memory abstraction
= bit-blasting of arithmetic expensive 3, has 8000 AlG nodes, x4 has 32000

= protocols only “move data around”. bit-precise reasoning redundant
= properties often argue about some “reads” and “writes” only

" bit-blasting memory is often impossible m3[8][232] mea[8][204]

® sequential and non-sequential rewriting and abstraction techniques

Eager Data Abstraction

®m 1-bit abstractions

= verify sorting using only “compare & swap” on 0/1 input zero-one principle [Knuth'73]

data independence of protocols [Wolper'gs]

®= small domain encoding part of Ackermann’s reduction

if you only compare n variables then interpret them on the domain 0,...,n—1
reduce those variables to bit-width [logn]

eager translation to SAT possible [PnueliRodehShtrichmanSiegel’99]

plain bit-vectors [Johannsen’01/02], model checking [HojatiBrayton'95] [Bjesse'08]

need to “slice” bit-vectors in HW to have compatible widths next state functions too

can use different domain size for each “cluster” of compared variables

® abstract uninterpreted functions (UF) through Ackermann eagerly transformation

extends to memories / arrays (exponentially) eliminate read & write as in UCLID

works for plain bit-vectors (thus BMC) but then lazy SMT (QF_AUFBYV) is better
[BurchDill'96] [VelevBryantJain'97] [ManoliosSrinivasanVroon’06] [GanaiGuptaAshar'04/05]

model checking requires to change properties [Bjesse'08/09] [German'11]

Lazy Data Abstraction

® akin to “lazy SMT” or CEGAR / Localization

® for instance replace expensive operations (multiplication) with UF
= abstraction refinement loop using SMT [AndrausLiffitonSakkalah’06/08]

= conservative: if abstracted model passes property then original passes it too
= spurious counter example: refine “mult(x,y)” 10 “(x=07?0:mult(x,y))”

= refinement can make use of cores or MUS

® combine with IC3/ PDR [LeeSakallah’14] [GoelSakallah’19/20]
= predicate abstraction existing predicates, new predicates?

= syntax guided abstraction equality between existing expressions, new expressions?

= how to interpolation into the mix is still unclear
bit-vectors [Griggio’16] [BackemanRummerZeljic’18] [OkudonoKing’20] arrays ?

® also still needs to be combined with successful bit-level techniques
= sweeping / temporal decomposision / retiming

= |ocal search / simulation

HWMCC’19 Results on Bit-Vectors (BV) without arrays

O © e\
L() } © G \>J s._e——v ©
N _5©0© o0 ¥ \>4
sl o abcsuperprove
A avr
8 — + cosa2
) X btormc

conps—btormc-thp
v btormc-master
conps—btormc—-no-thp

/\
5 - A AD—A A AL
H »/:t‘ Z—X
~+ | | +——+
i | | I I
|
- ' A4 DL ¢
o , § §) »
S o
—i s¢X
o _]
Lo
i PN i <7
g — T 3
1
O — .

0 1000 2000 3000

Challenges

benchmarks: Yosys, open cores, RISC-V already helped a lot, but need more!
apply HW word-level model checkers to SW (from SV-COMP) or vice versa

symbolic execution of both SW and HW
= modelling (slices of) programs linearly in a word-level model

= “Selfie” by Christoph Kirsch has a BTOR2 model of RISC-U

smart contracts
= Dit-precise semantics lends itself to word-level models

= as discussed in invited SMT°20 talk by Mooly Sagiv

certificates:
= UNSAT proofs in SAT very useful "biggest math proof ever” by Marijn Heule

= certificates for (passing properties) in AIGER with Zhenggi Yu and Keijo Heljanko
= certificates for UNSAT proofs in QF_BV [CVC4 team]

= combine to provide word-level certificates

make word-level model checkers faster than bit-level checkers = HWMCC’20?

