
R E S E A R C H P O S T E R P R E S E N T A T IO N D E S IG N © 2 0 1 9

www.PosterPresentations.com

We explore a new metric on programs, designed to capture program
similarity beyond input/output behavior: PrograMet. In addition to taking
hints from the syntactic structure of the program, PrograMet fully embraces
execution traces as a valuable (albeit expensive) source of information. We
evaluate PrograMet on prepared program samples including dead code
introduced by unsatisfiable or tautological branching conditions. PrograMet
desirably exhibits small distances from the original program when dead code
is removed, while preserving large distances between that original program
and similar code samples where both sides of the branch are reachable.

Abstract

Motivation

Results

Conclusion and Future Directions
• PrograMet introduces initial steps towards balancing static and

dynamic notions of similarity
• Results are promising and suggest that PrograMet can

distinguish between two versions of code where a mutated if-
condition leads to vastly different behavior.

As a whole, the primary goal of future effort is focused on
coupling the static and dynamic components of program
similarity.
• Currently, PrograMet treats static and dynamic similarity

independently and then aggregates it.
• On approach is to overlay trace information over the control

flow graph structure capturing properties such as reachability.

Acknowledgements
I’d like to thank Suman Jana and Andrew Blumberg for their mentorship
and insightful conversations.

How similar are two programs? This is a simple, yet open- ended
question. A useful metric of similarity has powerful consequences
from identifying code duplication to detecting malicious code and
vulnerabilities. These tasks share an inherent challenge as small
changes to the syntax of a program can lead to drastic differences in
behavior. To make matters worse, often good enough programs
suffice, and interpretability may be prioritized over behavior in
practice. Thus, capturing similarity in a meaningful way between
programs is intrinsically difficult as it requires the careful balancing
of differences in how programs are written versus in how they
behave.

Columbia University
Justin Wong

PrograMet: Designing a Program Similarity Metric

Key Example

Consider the case of dead code, for example IF1_dead above:
• With no execution, IF1_dead seems extremely similar to the

original IF1.
• Only using dynamic analysis, IF1_dead is identical to IF1_clean.
• Our goal is to design a metric that captures the intuition that

IF1_dead is similar but not identical to IF1_clean.

Approach
Overview:
• We aim to combine static and dynamic approaches to construct

PrograMet.
• We realize the static portion of the metric as the graph edit distance

between control flow graphs.
• Meanwhile, the dynamic part (at present) tests all input values within a

given domain and considers their “output similarity” and “trace
similarity”.

• The resulting metric results from the weighted sum of the static and
dynamic contributions:

where P and Q are programs. SM is the static metric; OS the output
similarity; and TS the trace similarity

Static Similarity (SM):
Currently we use graph edit distance of the control flow graph to

quantify static differences in the programs

Embedding the full PrograMet metric using MDS:
• PrograMet separate different programs: IF1, IF2, and IF3.
• Further, the mutated ”dead” versions are mapped similar to but not

identical to the corresponding ”clean” versions.

Dynamic Similarity:

As demonstrated in the figure, we compare execute the program
and compare their traces and outputs to determine their similarity.
• Output Similarity (OS): OS evaluates output similarity by

simply taking the canonical difference of the resulting value.
• Trace Similarity (TS): TS is summing the variable value

differences for each recorded trace state.

