

Toward Liveness Verification of Quasi-Periodic Distributed Systems Using a Timeless Model

M. Dabaghchian*, Z. Rakamarić *maryam@cs.utah.edu

- Bounded message transmission delay

A process

- Gets activated
- Reads messages from all its receiving buffers
- Performs a local computation
- Publishes messages

 P_1

۷			-	
	Their combi	nation		
capabil	ity of liveness p	roperties o	hecking is work in p	progress.

Eliminate processes with no

impact on the environment

Count the number of process

activations, where required

Adding fairness and

	•
Conc	noisin

Synchronization

	Real-time System	Calendar Model	Timeless Model
Synchronization	Local clocks with bounded drifts	Global clock	Buffers' length

References

- Paul Caspi. 2000. The quasi-synchronous approach to distributed control systems. Technical Report. Verimag, Crysis Project
- R. Larrieu and N. Shankar. 2014. A framework for high-assurance quasi- synchronous systems. In Proceedings of the 12th International Conference on Formal Methods and Models for Codesign. 72–83. https://doi.org/10.1109/MEMCOD.2014. 6961845
- Guillaume Baudart, Timothy Bourke, and Marc Pouzet. 2016. Soundness of the Quasisynchronous Abstraction. In Proceedings of the 16th International ConferenceonFormalMethodsinComputer-AidedDesign.9–16. https://doi.org/10.1109/ FMCAD.2016.7886655