
TOWARDS SCALABLE SOC SECURITY VALIDATION
Sujit Kumar Muduli

Department of Computer Science and Engineering, IIT Kanpur

Introduction

❑Confidentiality
⮚secret information should not flow to

untrusted region

❑ Integrity
⮚no information flow from untrusted

region to secure location

Integrity is a dual of confidentiality

ROM

RAM

MMU

Microcontroller

AES engine

Other
Peripherals

Host Interface

Access
Control
Block

CKey
1

2

[Subramanyan, P., Arora, D., DATE’14])

confidentiality

Problem Statement

Prior Art

seed inputs

Coverage
Tracking

Engine
(Test Harness)

Filter

Mutation

new seed input
(improves coverage)

select

Test inputs

(Coverage guided Fuzzing)

Technical Challenges

❑ Specification Language

❑ Mutation Algorithm
⮚ Need new algorithms to generate inputs that trigger 2-safety violations

❑ Test harness
⮚ Modify test harness engine to work with two system instances

❑ Coverage tracking
⮚ Mechanism to find new seed inputs

⮚ Ensures fuzzer does not revisit inputs

⮚ Need new coverage metrics to explore product state space

Proposed System Architecture

Hardware modeling
⮚ Verilog implementation

Intermediate representation

⮚ Instrument Verilog model to collect simulation metric

Fuzzer

⮚ A variant of AFL to be used along with Hyperproperties

security violation

Security
Specification

Whitebox
FUZZER

System
Model

Instrumented
RTL

RTL Simulator

Coverage info

Test input

Trace Analyzer

Conclusion

⮚ Existing solutions for SoC security validation are not effective

⮚ Fuzzing has the potential to be scalable.

⮚ It has been successful in finding many software vulnerabilities.

⮚ HYPERFUZZING leverages power of fuzzing to find security violations in SoCs.

Confidentiality and integrity are 2-safety properties

➢Properties refuted by observing two finite traces

➢A trace is sequence of execution states, 𝑡 = 𝑠0𝑠1…𝑠𝑛

➢2-safety property is from the class of Hyperproperties

...

Proving confidentiality and integrity

show system leaks no secret information

or
show execution traces are indistinguishable to untrusted entity

≠𝑜𝑏𝑠𝑙

...
𝒓 =𝑙 𝑎

...
𝒓 =𝑙 𝑏

(Not secure)

𝑆𝑖𝑚 (𝐼, 𝐶𝐾𝑒𝑦1)

𝑆𝑖𝑚 (𝐼, 𝐶𝐾𝑒𝑦2)
Indistinguishability Test

Instance 1

ROM

MMU

𝝁𝑪

Host
Interface

Access
control

𝑰

𝑪𝑲𝒆𝒚𝟐

AES Engine

RAM

Instance 2

ROM

MMU

𝝁𝑪

Host
Interface

Access
control

𝑰

𝑪𝑲𝒆𝒚𝟏

AES Engine

RAM

Goal :
• automated technique for finding 2-safety hyperproperty violations
• language for specifying security properties

References

1. Godefroid, Patrice, Michael Y. Levin, and David Molnar. "SAGE: whitebox fuzzing
for security testing." Communications of the ACM 55.3 (2012): 40-44.

2. Bounimova, Ella, Patrice Godefroid, and David Molnar. "Billions and billions of
constraints: Whitebox fuzz testing in production." Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, 2013.

3. Clarkson, Michael R., and Fred B. Schneider. "Hyperproperties." Journal of
Computer Security 18.6 (2010): 1157-1210.

4. Barthe, Gilles, Pedro R. D'Argenio, and Tamara Rezk. "Secure information flow
by self-composition." Proceedings. 17th IEEE Computer Security Foundations
Workshop, 2004.. IEEE, 2004.

5. Terauchi, Tachio, and Alex Aiken. "Secure information flow as a safety problem."
International Static Analysis Symposium. Springer, Berlin, Heidelberg, 2005.

FUZZING
American

Fuzzy Lop (afl)

❑Fuzzing is used for finding software vulnerabilities
❑AFL uses genetic algorithm to discover new test inputs [Zal14]

can’t be used for 2-safety violation SoCs
scalable

VERIFICATION

Information
Flow Tracking
(GLIFT, HDL LIFT)

❑Hardware design is converted to a GLIFT logic for verification [HOI+11]
❑SecVerilog, Caiosson and Sapper uses information flow type systems at

HDL

GLIFT : much overhead

HDL LIFT : doesn’t guarantee no violations in runtime

Model
Checking

❑Barthe, et al. "Secure information flow by self-composition.“
❑Terauchi, T., & Aiken, A. "Secure information flow as a safety problem.“
❑Sousa, M., & Dillig, I."Cartesian hoare logic for verifying k-safety properties."
❑Subramanyan, P., et al."Verifying information flow using symbolic execution.“

computationally expensive ➔ not scalable

SPECIFICATION

Non-
interference

HyperLTL
HyperCTL*

Observational
Determinism

❑Goguen, J. A., & Meseguer, J. Security policies and security models.
❑Zdancewic, S., et al. Observational determinism for concurrent

program.
❑HyperLTL and HyperCTL* are extension of LTL and CTL* [CFK+14]

http://lcamtuf.coredump.cx/afl/
https://ieeexplore.ieee.org/document/5948366
https://link.springer.com/chapter/10.1007/978-3-642-54792-8_15

