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Introduction

❑Confidentiality
⮚secret information should not flow to 

untrusted region

❑ Integrity
⮚no information flow from untrusted 

region to secure location

Integrity is a dual of confidentiality
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Technical Challenges

❑ Specification Language

❑ Mutation Algorithm
⮚ Need new algorithms to generate inputs that trigger 2-safety violations

❑ Test harness
⮚ Modify test harness engine to work with two system instances

❑ Coverage tracking
⮚ Mechanism to find new seed inputs

⮚ Ensures fuzzer does not revisit inputs

⮚ Need new coverage metrics to explore product state space

Proposed System Architecture

Hardware modeling
⮚ Verilog implementation

Intermediate representation

⮚ Instrument Verilog model to collect simulation metric

Fuzzer

⮚ A variant of AFL to be used along with Hyperproperties

security violation
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Conclusion

⮚ Existing solutions for SoC security validation are not effective

⮚ Fuzzing has the potential to be scalable.

⮚ It has been successful in finding many software vulnerabilities.

⮚ HYPERFUZZING leverages power of fuzzing to find security violations in SoCs.

Confidentiality and integrity are 2-safety properties

➢Properties refuted by observing two finite traces

➢A trace is sequence of execution states, 𝑡 = 𝑠0𝑠1…𝑠𝑛

➢2-safety property is from the class of Hyperproperties

...

Proving confidentiality and integrity

show system leaks no secret information

or
show execution traces are indistinguishable to untrusted entity

≠𝑜𝑏𝑠𝑙

...
𝒓 =𝑙 𝑎

...
𝒓 =𝑙 𝑏

(Not secure)

𝑆𝑖𝑚 (𝐼, 𝐶𝐾𝑒𝑦1)

𝑆𝑖𝑚 (𝐼, 𝐶𝐾𝑒𝑦2)
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Goal : 
• automated technique for finding 2-safety hyperproperty violations
• language for specifying security properties
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FUZZING
American 

Fuzzy Lop (afl)

❑Fuzzing is used for finding software vulnerabilities
❑AFL uses genetic algorithm to discover new test inputs [Zal14]

can’t be used for 2-safety violation SoCs
scalable

VERIFICATION

Information 
Flow Tracking 
(GLIFT, HDL LIFT)

❑Hardware design is converted to a GLIFT logic for verification [HOI+11]
❑SecVerilog, Caiosson and Sapper uses information flow type systems at 

HDL

GLIFT      : much overhead

HDL LIFT : doesn’t guarantee no violations in  runtime

Model 
Checking

❑Barthe, et al. "Secure information flow by self-composition.“
❑Terauchi, T., & Aiken, A. "Secure information flow as a safety problem.“
❑Sousa, M., & Dillig, I."Cartesian hoare logic for verifying k-safety properties."
❑Subramanyan, P., et al."Verifying information flow using symbolic execution.“

computationally expensive ➔ not scalable

SPECIFICATION

Non-
interference

HyperLTL
HyperCTL*

Observational 
Determinism

❑Goguen, J. A., & Meseguer, J. Security policies and security models.
❑Zdancewic, S., et al. Observational determinism for concurrent 

program. 
❑HyperLTL and HyperCTL* are extension of LTL and CTL* [CFK+14]

http://lcamtuf.coredump.cx/afl/
https://ieeexplore.ieee.org/document/5948366
https://link.springer.com/chapter/10.1007/978-3-642-54792-8_15

