VET | Nov [
TES | TAM
EN [TVM (M

~

Modular Verification

Goal: Infer procedure summaries that are...

» sufficient for verification

 efficiently computable

 sufficiently abstract and relevant to reason about the whole program

ChaHenges

How should procedures be explored and in what environments (if any)
should a procedure call be considered?

 How do we ensure procedure relevance and scalability?

How would mutual recursion be handled?

_ J

Call Graph and Bounded Environments\

Exploring Procedures and Environments

» Consider each procedure in an environment to learn over- and under-
approximate summaries

* Environments represent possible counterexample paths

» Choose a finite path through the call graph:
* Final call is the target procedure to consider
* The rest of the procedures in the path make up the environment

Scalability: Use Bounded Environments

* Longer call paths lead to larger queries and poor scalability

* Achieve scalablility by approximating the environments

* A b-bounded environment captures at most the body of b procedures
above the target procedure in the call graph path

void main() { bool even(x) {
assert not(even(f() - 1)); assume (x >= 0);
} if (x==0) return true;
else return odd(x - 1);
int £() { }
return h(g());
} bool odd(x) {
assume (x >= 1); ‘ @
int g() { if (x == 1) return true;

return 2*havoc() + 1;

}

return even(x - 1);

-

Example Program Call

bool h(x) {
return x + 1;

}

Example Program

04

*

Full Environment (lighter)
and Target Procedure

2-Bounded Environment
(lighter) and Target Procedure

Mutual Recursion

* Handle recursion by performing explicit induction

* Handle mutual recursion by performing induction under assumptions

* Choice of assumptions: assume the negation of the (bounded)
environment of procedures above the target

* Learn implications among procedure summaries — we call these
Environment-Call (EC) lemmas

@ assume: odd.out & (1 + odd.in) mod 2 =0

prove: even.out & even.inmod2 =0

Call-Graph-Guided Verification

Lauren Pick (Ipick@princeton.edu)
Princeton Universilty

\

Learning Procedure Summaries

Update Target’s Under-Approximate Summary

K Perform SMT check for under-approximation of procedure body \
and over-/under-approximation of environment
 |If satisfiable, learn potential counterexample behaviors in target

Under-approximate Environment

Under-Approximate Procedure Under-Approximate Procedure

J

« Perform SMT check for over-approximation of procedure body and\
over-/under-approximation of environment

 |If unsatisfiable
 find interpolant I that separates the target and environment
» learn interpolant as over-approximation

 With induction to handle recursion

 With assumptions to handle mutual recursion

Under-approximate Environment

Experimental Results

600

Clover Spacer Eldarica Holce PCSat Ultimate — A o @ @ %

Unihorn =, R o o o B

CHC-Comp 81 93 94 92 81 76 = A I
= A 00s o :

Mutual. 24 12 0 0 0 0 S o a2 s P, o

Recursion = A S @

Montgomery 16 6 14 14 3 13 % T
s2n 6 5 0 2 N/A 6 O N SO

Combination 2 0 0 0 0 0 / I
Arrays 35 20 N/A N/A N/A N/A Competing tool runtime (s)

ASPACER O ELDARICA[|HOICE O PCSAT O ULTIMATE UNTHORN

Comparison of runtimes on the
second set of benchmarks

Number of examples in each set of benchmarks (shown on
left) solved by each tool (shown on top)

Clover: our prototype implementation

Evaluated on three sets of benchmarks:

1.101 CHC-Comp 2019 benchmarks

2. Benchmarks containing mutual recursion, programs based on
Montgomery encoding and s2n, and combinations of these

3. Benchmarks containing unbounded arrays

Compared against other tools [1,2,3,4,5]

Results demonstrate Clover is very effective for the latter two benchmark

sets while remaining competitive with other tools on the first

¥ (This material is based upon work supported in part by the National Science Foundation
: 1 (Graduate Research Fellowship Program under Grant No. #DGE-1656466 and NSF Grant
i L VD) & ff No. 1525936. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the

’“f“(x National Science Foundation.

_ _/

References

[1] A. Champion, N. Kobayashi, and R. Sato, “Hoice: An ICE-based non-linear horn clause solver,” in
APLAS, ser. Lecture Notes in Computer Science, vol. 11275. Springer, 2018, pp. 146—156.

[2] D. Dietsch, M. Heizmann, J. Hoenicke, A. Nutz, and A. Podelski, “Ultimate TreeAutomizer,” in
HCVS/PERR, ser. EPTCS, vol. 296, 2019, pp. 42-47.

[3] H. Hojjat and P. Ru mmer, “The ELDARICA horn solver,” in FMCAD. |IEEE, 2018, pp. 1-7.

[4] A.Komuravelli, A.Gurfinkel, and S.Chaki,"SMT-based model checking for recursive programs,”
Formal Methods in System Design, vol. 48, no. 3, pp. 175-205, 2016.

[5] Y. Satake, T. Kashifuku, and H. Unno, “PCSat: Predicate constraint satisfaction,” 2019,
https://chc-comp.github.io/2019/chc-comp19.pdf.

