

Verifying Bit-vector Invertibility Conditions in Coq

Burak Ekici¹ Arjun Viswanathan² Yoni Zohar³ Clark Barrett³ Cesare Tinelli²

¹ University of Innsbruck

² University of Iowa

³ Stanford University

Invertibility Equivalence:

$$\forall s, t : BV_n. \underbrace{IC[s, t]}_{\text{Invertibility }} \iff \exists x : BV_n. \ \ell[x, s, t]$$

- The CVC4 SMT-solver uses invertibility equivalences to solve quantified bit-vector formulas
- Proofs of these equivalences for arbitrary bit-widths certify the solver's results

Examples

Results

$\ell[x]$	=	\neq	$<_u$	$>_u$	\leq_u	\geq_u
$-x \bowtie t$	√ √	√	√	√	√	√
$\sim x\bowtie t$	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$x \& s \bowtie t$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$x \mid s \bowtie t$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$x <\!\!< s \bowtie t$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$s <\!\!< x \bowtie t$	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$x >\!\!> s \bowtie t$	V	\checkmark	\checkmark	X	\checkmark	\checkmark
$s >\!\!> x \bowtie t$	√ √	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$x \gg_a s \bowtie t$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$s \gg_a x \bowtie t$	V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$x + s \bowtie t$	V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

- √ Verified in Coq
- √ Verified in SMT
- √ Verified in Coq and SMT
- × Verified in neither Coq nor SMT

Contributions

Previous Work

[Niemetz et al., CAV 2018]

- generated 162 invertibility equivalences
- proved them using SMT-solvers for bitwidths up to 65

[Niemetz et al., CADE 2019]

- encoded the equivalences in theories supported by SMT-solvers
- verified equivalences for parametric widths
- succeeded on ≈75% of the equivalences

This work

- 1. formalized a representative subset of the 162 invertibility equivalences in Coq
- 2. extended a Coq bit-vector library to support these equivalences
- 3. proved 18 of them for arbitrary bit-width

Bit-vector Library

Basic Signature

Arithmetic: $+, -, \cdot$ Shift: \ll, \gg

Bit-wise logical: &, |, \sim Concatenation: \circ

Comparison: $=, \neq, <_u, >_u, <_s, >_s$

Extended Signature

Comparison: \leq_u, \geq_u

Shift: \gg_a

Shifts redefined: \leq , \geq , \geq a

Bitvector Representations

Divector Representations							
	SMTLib[CAV 18]	Encoding[CADE 19]	Coq Library(Our work)				
Bit-vector Representation:	Bit-vector of width n One sort for each n	Translated to NIA and UF	Bit-vector of width n List of Booleans over 2 layers				
Expressivity:	n cannot be symbolic	Allows quantification over n	Bit-vectors dependent on n				
Verification:	Automatic proofs using SMT solvers	Automatic proofs using SMT solvers	Manual proofs in Coq				
Results	Verified all equivalences for n = 1 to 65	Verified ≈75% of equivalences	Verified 18 equivalences				