
Version Space Learning for Verification on Temporal Differentials

Mark Santolucito
Ennan Zhai, Ruzica Piskac

Yale University

Motivation

Misconfiguration examples

Solution Attempt #1

Solution Attempt #2

 Software or service failure are very expensive.
 Software misconfiguration problems are the most common root-cause (31%),

e.g., Amazon EC2 outage Apr 2011.

 general_log = /var/log/mysql/mysql.log

Problem Type: Value type error

Description: The parameter “general_log” should be an integer, rather than
path (string). In MySQL, there is another parameter “general_log_file” used
to point the log path.

Impact: MySQL log cannot be correctly written.

 extension = mysql.so
 … ...
 extension = recode.so

Problem Type: Ordering error

Description: When using PHP in Apache, the extension “mysql.so”
depends on “recode.so”. Thus, the order between them matters. The user
configured the order in a wrong way.

Impact: Apache cannot start due to segment fault

“recode.so” must be put before
“mysql.so”

Error Type Relations Passing
Tests

False Positives

Missing Entry X in same
files as Y

5/5 1, 0, 0, 0, 4

Type Error X : Int 5/5 0, 0, 0, 0, 0

Keyword
Ordering

X before Y 5/5 0, 2, 1, 0, 6

Value
Relations

X > Y, X=Y 4/5 0, 0, 0, 1, 0

 ConfigC is an instance of version space
learning. But it only builds the specific
boundary (Necessary set) – the strongest
conditions for a correct file.

 We extend ConfigC to also
build the general boundary –
the set of weakest condition
for a correct file.

 Instead of building a concrete
relation set from the learning
files, we build an SMT formula
in the theory of sets.

File F
A=1
B=2
C=3

Relations (F) =
{ A<B, B<C, A<C,
 (A,B), (B,C), (A,C),
 A:Int, B:Int, C:Int, …}

 This is guaranteed to detect
all incorrect files, but also
generates many false
positives – errors that are
not true errors.

Greatest Boundary = Breaking : {Relations}
Specific Boundary = Necessary : {Relations}

Status(F) = Pass r Relations (F), r Breaking⇒∀ ∈ ∉
Status(F) = Err r Relations (F), r Breaking⇒ ∃ ∈ ∈

 The formula can be extended
with extra observations - for
example using temporal
structures in the learning set.

Status(F1) = Pass Status(F2) = Err ∧ ⇒
∃r Relations (F1) `setDif` Relations (F2), r Necessary ∈ ∈ ⋁
∃r Relations (F2) `setDif` Relations (F1), r Breaking∈ ∈

Proposed Application

 Travis Continuous Integration[2] service for testing

 ~30% of large projects on Github use TravisCI
 15-20% of failed TravisCI builds are due to ”errors”
 Since the start of 2014, approximately 88,000 hours of

server time was used on TravisCI projects that resulted
in an error status.

 Because commits are incremental, set diferences are
small, which lets the SMT solver run relatively quickly.

 Relations (F1) `setDif` Relations (F2) << Relations (F2)

[1] M. Santolucito, E. Zhai, and R. Piskac, “Probabilistic automated language learning for configuration files,” in CAV, 2016,
pp. 80–87.

[2] Z. A. Beller M, Gousios G, “Oops, my tests broke the build: An analysis of travis ci builds with github,” PREPRINT, 2016.
[Online]. Available: https://doi.org/10.7287/peerj.preprints.1984v1

This work was funded in part by NSF grant #1302327

 In our previous work, ConfigC[1] can learn a language model from a
learning set of configuration files by building a set of necessary
relations over a learning set of correct files.

	Slide 1

