
-  Use cases for SMT solvers include verification à
need to be able to trust output

-  SMT solvers are complex and no complex software
is bug free

-  Increase confidence in answer by providing an
independently checkable proof:"
"
"
"
"
"
Proof describes reasoning, proof checker makes
sure that reasoning is consistent with proof rules

-  Most of the preprocessing module of a solver can
be expressed as a set of rewrite rules:

-  Use a domain-specific language for rewrite rules

-  Implement a compiler that:

-  Generates code to perform the rewrite
including code to produce a proof

-  Generates proof rule for the proof checker

-  Supports reasoning about rewrite rules

-  Design goals: intuitive but expressive enough for
most rewrite rules

-  Syntax based on SMT-LIB syntax for familiarity

-  Rules consist of a source template, a target

template and a condition (optional)

-  Source template: pattern that SMT solver is

searching for

-  Condition: evaluated at runtime by SMT solver

-  Expression is replaced to match target template if

source template matches and condition is fulfilled

Proofs for Preprocessing in SMT Solvers!
Andres Nötzli, Stanford University

noetzli@stanford.edu!

Rewrite rule

Logical Framework with Side Conditions (LFSC) proof rule

(declare wor !
 (! s1 sort !
 (! s2 sort !
 (! i (term s1) !
 (! oa (term (Array s1 s2)) !
 (! a (term (Array s1 s2)) !
 (! u (th_holds (= _ oa !
 (apply _ _ (apply _ _ (apply _ _ (write s1 s2) a) i) !
 (apply _ _ (apply _ _ (read s1 s2) a) i)))) !
 (th_holds (= _ oa a))))))))))	

if (node[0] == node[2][0] && node[1] == node[2][1] && !
 node.getKind() == kind::STORE && !
 node[2].getKind() == kind::SELECT) { !

return RewriteResponse(REWRITE_DONE, node[0]); !
} !

C++ code performing the rewrite

Verification of rewrite rule

Name: writeOverRead!
(store #a #i (select #a #i)) => #a !

SMT solver
 Proof

Proof rules

Proof checker

SMT query

Source expression
 Target expression

Condition

Example!

Background!

Motivation!
-  Preprocessing simplifies formulas

-  All SMT solvers rely on preprocessing for good

performance (and sometimes correctness)

-  SMT solvers produce proofs for core procedures

but not preprocessing steps

-  Manual implementation is tedious and error-prone:

-  Hundreds of rules

-  Solver has to produce proof for each rule

-  Proof checker has to be able to check all rules

Reasoning About Rewrite Rules!
-  High-level description simplifies reasoning

-  Verify correctness of single rewrite

-  Automatically: Use SMT solver without
processing

-  Semi-automatically: Generate parts of proof for a
proof assistant

-  Reason about sets of rewrite rules, e.g. find rewrite
loops

The Domain-Specific Language!Idea!

Implementation!
-  Currently targeting CVC4, which uses the LFSC

meta-logic for proofs and proof rules

-  Challenges:

-  Code that performs the rewrites needs to be
efficient à optimize across multiple rewrite rules

-  Proofs need to be simple to produce and
efficient to check

