
A Consistency Checker for
Memory Subsystem Traces

Matthew Naylor, Simon Moore, Alan Mujumdar

Email: matthew.naylor@cl.cam.ac.uk

Verify that the memory subsystem in a
shared-memory multiprocessor implements a
well-defined consistency model.

This is a prerequisite for the correct execution of
concurrent programs on such architectures.

Problem

Our approach

Black-box specification-based testing:

1. Feed auto-generated requests to mem subsystem

2. Record a trace of all requests and responses

3. Check that trace satisfies consistency model

Attractions of black-box approach

Generic: can be applied to a wide range of
implementations and coherence protocols.

Easy to apply: no modifications are required
to the design under test.

Drawback of black-box approach

Checking traces is an NP-complete problem
[Gibbons and Korach, 1994].

Corollary: larger traces involving more cores are
more likely to contain bugs yet less likely to be
checkable in reasonable time.

State of the art

TSOtool [Manovit, 2006] is a conformance checker
for the TSO consistency model.

It can handle large traces, on the order of millions of
memory operations and hundreds of cores.

Achieved through powerful inference rules and
careful algorithm design.

BUT...

Many modern memory subsystem implementations
are more relaxed than TSO.

And TSOtool is a “proprietary product of Sun
Microsystems”.

Example: Limitations of TSO

Thread 0 Thread 1

*data := 1 *flag == 1

*flag := 1 *data == 0

Forbidden under TSO, but observable if:

■ L1 cache is non-blocking, e.g. Rocket Chip,
where first load is a miss & second is a hit.

■ Or, coherence protocol is lazy, e.g. BERI,
where second load is a stale hit.

Our main contributions

■ Generalisation of TSOtool’s algorithm to support
a wider range of consistency models.

■ An open-source checker for memory subsystem
traces called Axe.

■ Experiences of applying Axe to open-source
SoCs BERI and Rocket Chip.

Part II: Axe Consistency Checker

What is Axe?

Does trace satisfy SC, TSO, PSO,
WMO or POW model? If not, emit
smallest subset of trace that fails.

Output
Timestamps

Thread id

0: M[0] := 1
0: sync
0: { M[1] == 0; M[1] := 1 }
1: M[1] == 1 @ 100 : 110
1: M[0] == 0 @ 115 :

Input: a memory subsystem trace

Atomic RMW

Barrier
Store

Load Axe

SPARC models

Shared
Memory

Thread 0

Switch

Reorder

Thread n Reorder

■ SC prohibits reordering.
■ TSO can reorder S → L, simulating store buffer.
■ WMO can additionally reorder S → S, L → L, and

L → S (provided addresses differ).

Non-deterministic

... ...

Algorithm demo

Thread 0 Thread 1 Thread 2

M[0] := 1 M[0] == 1 M[0] := 2

M[0] == 2 M[0] := 3

Add thread-local edges

Thread 0 Thread 1 Thread 2

M[0] := 1 M[0] == 1 M[0] := 2

M[0] == 2 M[0] := 3

Add reads-from edges

Thread 0 Thread 1 Thread 2

M[0] := 1 M[0] == 1 M[0] := 2

M[0] == 2 M[0] := 3

Delete a root, add reads-before edges

Thread 0 Thread 1 Thread 2

M[0] := 1 M[0] == 1 M[0] := 2

M[0] == 2 M[0] := 3

Violation: cycle detected!

Thread 0 Thread 1 Thread 2

M[0] := 1 M[0] == 1 M[0] := 2

M[0] == 2 M[0] := 3

Backtrack, delete a root, add reads-before edges

Thread 0 Thread 1 Thread 2

M[0] := 1 M[0] == 1 M[0] := 2

M[0] == 2 M[0] := 3

Delete a root

Thread 0 Thread 1 Thread 2

M[0] := 1 M[0] == 1 M[0] := 2

M[0] == 2 M[0] := 3

Delete root, add reads-before edges

Thread 0 Thread 1 Thread 2

M[0] := 1 M[0] == 1 M[0] := 2

M[0] == 2 M[0] := 3

Delete root

Thread 0 Thread 1 Thread 2

M[0] := 1 M[0] == 1 M[0] := 2

M[0] == 2 M[0] := 3

Delete root

Thread 0 Thread 1 Thread 2

M[0] := 1 M[0] == 1 M[0] := 2

M[0] == 2 M[0] := 3

Empty graph -- trace is valid!

Lesson

■ Easy to encounter backtracking behaviour
during topological sort.

■ Routine backtracking is catastrophic for checking
even small traces.

■ In response, TSOtool uses inference rules.

TSOtool’s inference rules

M[x] := v

M[x] := w M[x] == v

M[x] := v M[x] := w

M[x] == w

Rule 1

Rule 2

Thread 0 Thread 1 Thread 2

M[0] := 1 M[0] == 1 M[0] := 2

M[0] == 2 M[0] := 3

Apply Rule 2

Picking a root is now deterministic

Efficient graph representation

■ During checking, adding an edge to the graph is
a very common operation.

■ Problem: need to quickly determine whether any
added edge introduces a cycle.

■ Sounds like maintenance of an O(N3) transitive
closure, disastrous for large N.

SC graph representation

■ Under SC, operations on the same thread are
totally ordered.

■ For each node, we need only maintain the
nearest successor on each thread.

■ Complexity: O(N*T)

TSO graph representation

■ Under TSO, loads on the same thread are totally
ordered. Likewise for stores.

■ For each node, we need only maintain the
nearest load & store successor on each thread.

■ Complexity: O(2*N*T)

WMO graph representation

■ Under WMO, loads from same address on same
thread are totally ordered. Likewise for stores.

■ For each node, maintain the nearest load & store
successor on each thread for each address.

■ Complexity: O(2*N*T*A)

■ Still much better than O(N3): T and A are small.

Axe performance evaluation (WMO)

Averaged over a range of traces (576 in total):

Checking time grows linearly with trace size.

Trace shrinking

Problem: It’s hard to determine why a large
trace is invalid just by staring at it.

Solution: A trace shrinking procedure.

Given a trace that violates a model, it searches
for the smallest subset of the trace that still
violates the model.

Part III: Applications

Trace generation

BERI or
Rocket

I$ D$

L2 Bus

...
BERI or
Rocket

I$ D$

We replaced the core with a
random traffic generator that
logs all requests & responses,
yielding a random trace.

Rocket Chip coherence bug

0: M[2] := 46 @ 497:
1: M[2] == 46 @ 280:513
1: M[2] := 61 @ 729:
1: M[2] == 46 @ 854:979

260-element counterexample, after shrinking:

Identified as “race condition” by Rocket Chip devs.

Only write of 46 in trace Write of 61 dropped

Rocket Chip atomics bug

1: M[3] := 31
0: { M[3] == 31; M[3] := 178 }
0: { M[3] == 178; M[3] := 198 }
1: { M[3] == 178; M[3] := 59 }

After shrinking:

Bug occurs when a store-conditional is issued
before a load-reserve response is received.

Not
atomic

BERI barrier bug

1: M[39028] := 76
1: M[39028] := 79 # Set data
1: sync
1: M[2761] := 83 # Set flag
0: M[2761] == 83 # See flag
0: sync
0: M[39028] == 76 # See stale data

After shrinking:

This bug only observable after generating
cancelled loads and stores in traffic generator.

Summary & conclusions

■ We have generalised a state-of-the-art checker to
a wider range of consistency models through our
open-source tool Axe.

■ This enabled us to test BERI & Rocket Chip,
uncovering several serious bugs, concisely
reported using our trace shrinking procedure.

■ Time complexity now dependent on number of
distinct addresses in trace, but still performs well.

