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Relaxed Memory Consistency

sequential consistency (SC) 
• memory operations executed in program order within each thread 
• changes to the shared memory immediately visible to all threads 
• relatively simple to reason about but not realistic 

weak memory models (WMMs) 
• memory operations may be reordered 
• used in practice to fully exploit modern hardware
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Relaxed Memory Consistency

total store order (TSO) 
• writes executed in their order for each thread 
• reads may overtake writes 

partial store order (PSO) 
• writes to the same location executed in their order for each thread 
• writes to different locations may be reordered 
• reads may overtake writes
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Relaxed Memory Consistency

limitations of testing 
• generally ineffective for rare concurrency errors 
• cannot control additional nondeterminism introduced by WMMs 
• need to be complemented with symbolic analysis
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concurrency handling at formula level 
• encode threads separately 
• add φc  to capture thread interleaving 

  [Sinha, Wang – POPL 2011]

Symbolic Bug Finding: 
BMC
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concurrency handling at formula level 
• encode threads separately 
• add φc  to capture thread interleaving 

  [Sinha, Wang – POPL 2011] 

extension to WMMs is natural 
• change φc  to capture extra interactions due to weaker consistency 

  [Alglave, Kroening, Tautschnig – CAV 2013]

Symbolic Bug Finding: 
BMC

PSC/WMM IR
VC 

φt ∧ φc

TRUE 
FALSE + CEX



concurrency handling at code level 
• reduction to sequential programs analysis 
• implemented as source transformation 
• lazy sequentialization tailored to BMC for effective in bug-hunting 

[Inverso, Tomasco, Fischer, La Torre, Parlato – CAV 2014] 
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concurrency handling at code level 
• reduction to sequential programs analysis 
• implemented as source transformation 
• lazy sequentialization tailored to BMC for effective in bug-hunting 

[Inverso, Tomasco, Fischer, La Torre, Parlato – CAV 2014] 

how to extend to WMMs? 
how does it compare? 

PSEQ IR VC 
φ

TRUE 
FALSE + CEX

PSC

Symbolic Bug Finding: 
Lazy Sequentialization + BMC



how to extend to WMMs? 
• reduction to concurrent program analysis under SC 
• again, implemented as source transformation
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how to extend to WMMs? 
• reduction to concurrent program analysis under SC 
• again, implemented as source transformation 

• replace shared memory access with explicit function calls to SMA API: 
  read(v,t), write(v,val,t)
 lock(m,t), unlock(m,t), fence(t), … 
  example: x=y+3 is changed to  write(x,read(y)+3)
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how to extend to WMMs? 
• reduction to concurrent program analysis under SC 
• again, implemented as source transformation 

• replace shared memory access with explicit function calls to SMA API: 
  read(v,t), write(v,val,t)
 lock(m,t), unlock(m,t), fence(t), … 
  example: x=y+3 is changed to  write(x,read(y)+3) 

• plug in implementation for specific semantics 
  TSO-SMA - simple implementation 
  eTSO-SMA - efficient implementation 
  PSO-SMA - extension to PSO

PSEQ IR VC 
φ

TRUE 
FALSE + CEX

PSCPWMM

Extending Lazy Sequentialization 
to TSO and PSO



simple simulation of the store buffer 
• introduce one array for each thread 
• read(v,t) 

• look up buffer for pending writes 
• fetch from memory 

• write(v,val,t) 
• update store buffer 
• inject nondeterministic memory flush

TSO-SMA
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simple simulation of the store buffer 
• introduce one array for each thread 
• read(v,t) 

• look up buffer for pending writes 
• fetch from memory 

• write(v,val,t) 
• update store buffer 
• inject nondeterministic memory flush

TSO-SMA

formula size depends 
on store buffer size
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simple simulation of the store buffer 
• introduce one array for each thread 
• read(v,t) 

• look up buffer for pending writes 
• fetch from memory 

• write(v,val,t) 
• update store buffer 
• inject nondeterministic memory flush

TSO-SMA

formula size proportional to 
no. memory accesses 

no. of store buffers 
max no. of elems in the buffer 
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efficient simulation of the store buffer 
• introduce one list for each shared variable and thread 
• use global clock and timestamp memory writes 
• read(v,t) 

• buffer look up, return value from latest pending write 
• return value from latest expired write 

• write(v,val,t) 
• guess timestamp, enforce non-decreasing order 
• update buffer 

eTSO-SMA

l1,1 l1,V
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efficient simulation of the store buffer 
• introduce one list for each shared variable and thread 
• use global clock and timestamp memory writes 
• read(v,t) 

• buffer look up, return value from latest pending write 
• return value from latest expired write 

• write(v,val,t) 
• guess timestamp, enforce non-decreasing order 
• update buffer 

l1,1 l1,V

eTSO-SMA
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constant size

…l1,1 l1,V
l1,1 l1,V…lT,1 lT,V



• store pairs (value,timestamp) 
• clock determines expired nodes 
• expired nodes not removed 

   
special nodes 

• sentinel node 
  has max timestamp 
  does not correspond to any actual write 

• head 
  only node to contain an expired write 
  followed by a non-expired write

Variable Write Lists (T-CDLL)



Variable Write Lists (T-CDLL)

sentinelhead

• store pairs (value,timestamp) 
• clock determines expired nodes 
• expired nodes not removed 

   
special nodes 

• sentinel node 
  has max timestamp 
  does not correspond to any actual write 

• head 
  only node to contain an expired write 
  followed by a non-expired write



expired nodes

Variable Write Lists (T-CDLL)

sentinelhead

actual variable write list 

• store pairs (value,timestamp) 
• clock determines expired nodes 
• expired nodes not removed 

   
special nodes 

• sentinel node 
  has max timestamp 
  does not correspond to any actual write 

• head 
  only node to contain an expired write 
  followed by a non-expired write



Auxiliary Data Structures
parameters 

T max no. of threads
V max no. of tracked locations (or write lists)
N max no. of nodes for each variable write list 
K max timestamp

variables 
   int clock;

• variable write lists 
 int value[V][N+1],

   tstamp[V][N+1],

   prev[V][N+1],

   next[V][N+1];

• last values and timestamps 
 int last_value[V][T],

   last_tstamp[V][T];

• max timestamp so far 
 int max_tstamp[T];



eTSO-SMA: read operation
int clock_update() {

int tmp = *;

assume(clock <= tmp && tmp <= K); 

clock = tmp;

}

int read(int v, int t) {
clock_update();

if (last_tstamp[v][t] > clock)

return last_value[v][t];

int node = *;

assume(node < N && 

       tstamp[v][node] <= clock &&

       tstamp[v][next[v][node]] > clock);

return value[v][node];

}
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clock follows 
non-decreasing order



eTSO-SMA: read operation
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non-decreasing order

if the last write by t on v has not expired, 
return the corresponding value



eTSO-SMA: read operation
int clock_update() {

int tmp = *;

assume(clock <= tmp && tmp <= K); 

clock = tmp;

}

int read(int v, int t) {
clock_update();

if (last_tstamp[v][t] > clock)

return last_value[v][t];

int node = *;

assume(node < N && 

       tstamp[v][node] <= clock &&

       tstamp[v][next[v][node]] > clock);

return value[v][node];

} return the value from the latest expired write, 
which is guaranteed to exist and 

correspond to the value of v in the memory

clock follows 
non-decreasing order

if the last write by t on v has not expired, 
return the corresponding value



eTSO-SMA: read operation
int clock_update() {

int tmp = *;

assume(clock <= tmp && tmp <= K); 

clock = tmp;

}

int read(int v, int t) {
clock_update();

if (last_tstamp[v][t] > clock)

return last_value[v][t];

int node = *;

assume(node < N && 

       tstamp[v][node] <= clock &&

       tstamp[v][next[v][node]] > clock);

return value[v][node];

} return the value from the latest expired write, 
which is guaranteed to exist and 

correspond to the value of v in the memory

clock follows 
non-decreasing order

if the last write by t on v has not expired, 
return the corresponding value

representation 
of the memory 

no longer needed



eTSO-SMA: write operation
int write(int v, int t) {

clock_update();
int node = next[v][N];
assume(tstamp[v][next[v][node]] <= clock);
next[v][N] = next[v][node];
prev[v][next[v][N]] = N;

int succ = *;
assume(succ <= N && tstamp[v][succ] > clock);
int pred = prev[v][succ];

int ts = *;
assume(ts >= clock && ts >= max_tstamp[t]);
assume(ts >= tstamp[v][pred] && ts < tstamp[v][succ]);

value[v][node] = val;
tstamp[v][t] = ts;
…
last_tstamp[v][t] = ts;
last_value[v][t] = val;
max_tstamp[t] = ts;

}

select expired node with min 
timestamp for the new write



eTSO-SMA: write operation
int write(int v, int t) {
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nondeterministically selecting its 

successor among the non-expired nodes

select expired node with min 
timestamp for the new write



eTSO-SMA: write operation
int write(int v, int t) {

clock_update();
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eTSO-SMA: write operation
int write(int v, int t) {

clock_update();
int node = next[v][N];
assume(tstamp[v][next[v][node]] <= clock);
next[v][N] = next[v][node];
prev[v][next[v][N]] = N;

int succ = *;
assume(succ <= N && tstamp[v][succ] > clock);
int pred = prev[v][succ];

int ts = *;
assume(ts >= clock && ts >= max_tstamp[t]);
assume(ts >= tstamp[v][pred] && ts < tstamp[v][succ]);

value[v][node] = val;
tstamp[v][t] = ts;
…
last_tstamp[v][t] = ts;
last_value[v][t] = val;
max_tstamp[t] = ts;

}

position the new node by 
nondeterministically selecting its 

successor among the non-expired nodes

guess suitable timestamp, 
must respect non-
decreasing order

update variable write list 
and auxiliary variables

select expired node with min 
timestamp for the new write



extension to PSO
int write(int v, int t) {

clock_update();
int node = next[v][N];
assume(tstamp[v][next[v][node]] <= clock);
next[v][N] = next[v][node];
prev[v][next[v][N]] = N;

int succ = *;
assume(succ <= N && tstamp[v][succ] > clock);
int pred = prev[v][succ];

int ts = *;
assume(ts >= clock && ts >= max_tstamp[t]);
assume(ts >= tstamp[v][pred] && ts < tstamp[v][succ]);

value[v][node] = val;
tstamp[v][t] = ts;
…
last_tstamp[v][t] = ts;
last_value[v][t] = val;
max_tstamp[t] = ts;

}

write to different variables may be 
reordered, guessed timestamps no 
longer need to be the maximum over all 
variables, but the maximum for the 
relevant variable: 
    ts >= last_tstamp[t][v]



extension to PSO
int write(int v, int t) {

clock_update();
int node = next[v][N];
assume(tstamp[v][next[v][node]] <= clock);
next[v][N] = next[v][node];
prev[v][next[v][N]] = N;

int succ = *;
assume(succ <= N && tstamp[v][succ] > clock);
int pred = prev[v][succ];

int ts = *;
assume(ts >= clock && ts >= max_tstamp[t]);
assume(ts >= tstamp[v][pred] && ts < tstamp[v][succ]);

value[v][node] = val;
tstamp[v][t] = ts;
…
last_tstamp[v][t] = ts;
last_value[v][t] = val;
max_tstamp[t] = ts;

}

write to different variables may be 
reordered, guessed timestamps no 
longer need to be the maximum over all 
variables, but the maximum for the 
relevant variable: 
    ts >= last_tstamp[t][v]

guessed timestamps may be 
smaller than the max timestamp: 

     max_tstamp[t] = 
max(max_tstamp[t],ts) 



Experimental Evaluation: common benchmarks

timeout = 600s 

transformation overhead shows on small programs



Experimental Evaluation: common benchmarks

timeout = 600s 

competitive on twisted interleavings 



Experimental Evaluation: common benchmarks

timeout = 600s 

slower



Experimental Evaluation: common benchmarks

timeout = 600s 

faster than Nidhugg



Experimental Evaluation: Safestack

maxclock=K=1 forces SC analysis, 
TSO puts 3x-4x overhead on lazy schema (SC times not shown in table)



Experimental Evaluation: Safestack

quicker to spot the bug under PSO 
as it requires a smaller number of thread interactions; 

performance comparable when no bugs are found 



Experimental Evaluation: Safestack

increase maxlock to covers more reorderings, 
more resource demanding.. 



Thank You 

users.ecs.soton.ac.uk/gp4/cseq


