
Ermenegildo Tomasco University of Southampton, UK

Truc Lam Nguyen University of Southampton, UK

Omar Inverso Gran Sasso Science Institute, Italy

Bernd Fischer Stellenbosch University, South Africa

Salvatore La Torre Università di Salerno, Italy

Gennaro Parlato University of Southampton, UK

Lazy Sequentialization
for TSO and PSO

via Shared Memory Abstractions

FMCAD 2016, Mountain View, CA, USA

Relaxed Memory Consistency

sequential consistency (SC)
• memory operations executed in program order within each thread
• changes to the shared memory immediately visible to all threads
• relatively simple to reason about but not realistic

weak memory models (WMMs)
• memory operations may be reordered
• used in practice to fully exploit modern hardware

SHARED MEMORY

t1 tN…

Relaxed Memory Consistency

total store order (TSO)
• writes executed in their order for each thread
• reads may overtake writes

partial store order (PSO)
• writes to the same location executed in their order for each thread
• writes to different locations may be reordered
• reads may overtake writes

SHARED MEMORY

t1

STORE
BUFFER

tT

STORE
BUFFER

…

Relaxed Memory Consistency

limitations of testing
• generally ineffective for rare concurrency errors
• cannot control additional nondeterminism introduced by WMMs
• need to be complemented with symbolic analysis

SHARED MEMORY

t1

STORE
BUFFER

tT

STORE
BUFFER

…

concurrency handling at formula level
• encode threads separately
• add φc to capture thread interleaving

 [Sinha, Wang – POPL 2011]

Symbolic Bug Finding:
BMC

PSC/WMM IR
VC

φt ∧ φc

TRUE
FALSE + CEX

concurrency handling at formula level
• encode threads separately
• add φc to capture thread interleaving

 [Sinha, Wang – POPL 2011]

extension to WMMs is natural
• change φc to capture extra interactions due to weaker consistency

 [Alglave, Kroening, Tautschnig – CAV 2013]

Symbolic Bug Finding:
BMC

PSC/WMM IR
VC

φt ∧ φc

TRUE
FALSE + CEX

concurrency handling at code level
• reduction to sequential programs analysis
• implemented as source transformation
• lazy sequentialization tailored to BMC for effective in bug-hunting

[Inverso, Tomasco, Fischer, La Torre, Parlato – CAV 2014]

PSEQ IR VC
φ

TRUE
FALSE + CEX

PSC

Symbolic Bug Finding:
Lazy Sequentialization + BMC

concurrency handling at code level
• reduction to sequential programs analysis
• implemented as source transformation
• lazy sequentialization tailored to BMC for effective in bug-hunting

[Inverso, Tomasco, Fischer, La Torre, Parlato – CAV 2014]

how to extend to WMMs?
how does it compare?

PSEQ IR VC
φ

TRUE
FALSE + CEX

PSC

Symbolic Bug Finding:
Lazy Sequentialization + BMC

how to extend to WMMs?
• reduction to concurrent program analysis under SC
• again, implemented as source transformation

PSEQ IR VC
φ

TRUE
FALSE + CEX

PSCPWMM

Extending Lazy Sequentialization
to TSO and PSO

how to extend to WMMs?
• reduction to concurrent program analysis under SC
• again, implemented as source transformation

• replace shared memory access with explicit function calls to SMA API:
 read(v,t), write(v,val,t)
 lock(m,t), unlock(m,t), fence(t), …
 example: x=y+3 is changed to write(x,read(y)+3)

PSEQ IR VC
φ

TRUE
FALSE + CEX

PSCPWMM

Extending Lazy Sequentialization
to TSO and PSO

how to extend to WMMs?
• reduction to concurrent program analysis under SC
• again, implemented as source transformation

• replace shared memory access with explicit function calls to SMA API:
 read(v,t), write(v,val,t)
 lock(m,t), unlock(m,t), fence(t), …
 example: x=y+3 is changed to write(x,read(y)+3)

• plug in implementation for specific semantics
 TSO-SMA - simple implementation
 eTSO-SMA - efficient implementation
 PSO-SMA - extension to PSO

PSEQ IR VC
φ

TRUE
FALSE + CEX

PSCPWMM

Extending Lazy Sequentialization
to TSO and PSO

simple simulation of the store buffer
• introduce one array for each thread
• read(v,t)

• look up buffer for pending writes
• fetch from memory

• write(v,val,t)
• update store buffer
• inject nondeterministic memory flush

TSO-SMA

SHARED MEMORY

t1

STORE
BUFFER

tT

STORE
BUFFER

…

simple simulation of the store buffer
• introduce one array for each thread
• read(v,t)

• look up buffer for pending writes
• fetch from memory

• write(v,val,t)
• update store buffer
• inject nondeterministic memory flush

TSO-SMA

formula size depends
on store buffer size

SHARED MEMORY

t1

STORE
BUFFER

tT

STORE
BUFFER

…

simple simulation of the store buffer
• introduce one array for each thread
• read(v,t)

• look up buffer for pending writes
• fetch from memory

• write(v,val,t)
• update store buffer
• inject nondeterministic memory flush

TSO-SMA

formula size proportional to
no. memory accesses

no. of store buffers
max no. of elems in the buffer

SHARED MEMORY

t1

STORE
BUFFER

tT

STORE
BUFFER

…

formula size depends
on store buffer size

efficient simulation of the store buffer
• introduce one list for each shared variable and thread
• use global clock and timestamp memory writes
• read(v,t)

• buffer look up, return value from latest pending write
• return value from latest expired write

• write(v,val,t)
• guess timestamp, enforce non-decreasing order
• update buffer

eTSO-SMA

l1,1 l1,V

SHARED MEMORY

…t1 tT

…l1,1 l1,V
l1,1 l1,V…lT,1 lT,V

efficient simulation of the store buffer
• introduce one list for each shared variable and thread
• use global clock and timestamp memory writes
• read(v,t)

• buffer look up, return value from latest pending write
• return value from latest expired write

• write(v,val,t)
• guess timestamp, enforce non-decreasing order
• update buffer

l1,1 l1,V

eTSO-SMA

SHARED MEMORY

…t1 tT

constant size

constant size

…l1,1 l1,V
l1,1 l1,V…lT,1 lT,V

• store pairs (value,timestamp)
• clock determines expired nodes
• expired nodes not removed

special nodes

• sentinel node
 has max timestamp
 does not correspond to any actual write

• head
 only node to contain an expired write
 followed by a non-expired write

Variable Write Lists (T-CDLL)

Variable Write Lists (T-CDLL)

sentinelhead

• store pairs (value,timestamp)
• clock determines expired nodes
• expired nodes not removed

special nodes

• sentinel node
 has max timestamp
 does not correspond to any actual write

• head
 only node to contain an expired write
 followed by a non-expired write

expired nodes

Variable Write Lists (T-CDLL)

sentinelhead

actual variable write list

• store pairs (value,timestamp)
• clock determines expired nodes
• expired nodes not removed

special nodes

• sentinel node
 has max timestamp
 does not correspond to any actual write

• head
 only node to contain an expired write
 followed by a non-expired write

Auxiliary Data Structures
parameters

T max no. of threads
V max no. of tracked locations (or write lists)
N max no. of nodes for each variable write list
K max timestamp

variables
 int clock;

• variable write lists
 int value[V][N+1],

 tstamp[V][N+1],

 prev[V][N+1],

 next[V][N+1];

• last values and timestamps
 int last_value[V][T],

 last_tstamp[V][T];

• max timestamp so far
 int max_tstamp[T];

eTSO-SMA: read operation
int clock_update() {

int tmp = *;

assume(clock <= tmp && tmp <= K);

clock = tmp;

}

int read(int v, int t) {
clock_update();

if (last_tstamp[v][t] > clock)

return last_value[v][t];

int node = *;

assume(node < N &&

 tstamp[v][node] <= clock &&

 tstamp[v][next[v][node]] > clock);

return value[v][node];

}

eTSO-SMA: read operation
int clock_update() {

int tmp = *;

assume(clock <= tmp && tmp <= K);

clock = tmp;

}

int read(int v, int t) {
clock_update();

if (last_tstamp[v][t] > clock)

return last_value[v][t];

int node = *;

assume(node < N &&

 tstamp[v][node] <= clock &&

 tstamp[v][next[v][node]] > clock);

return value[v][node];

}

clock follows
non-decreasing order

eTSO-SMA: read operation
int clock_update() {

int tmp = *;

assume(clock <= tmp && tmp <= K);

clock = tmp;

}

int read(int v, int t) {
clock_update();

if (last_tstamp[v][t] > clock)

return last_value[v][t];

int node = *;

assume(node < N &&

 tstamp[v][node] <= clock &&

 tstamp[v][next[v][node]] > clock);

return value[v][node];

}

clock follows
non-decreasing order

if the last write by t on v has not expired,
return the corresponding value

eTSO-SMA: read operation
int clock_update() {

int tmp = *;

assume(clock <= tmp && tmp <= K);

clock = tmp;

}

int read(int v, int t) {
clock_update();

if (last_tstamp[v][t] > clock)

return last_value[v][t];

int node = *;

assume(node < N &&

 tstamp[v][node] <= clock &&

 tstamp[v][next[v][node]] > clock);

return value[v][node];

} return the value from the latest expired write,
which is guaranteed to exist and

correspond to the value of v in the memory

clock follows
non-decreasing order

if the last write by t on v has not expired,
return the corresponding value

eTSO-SMA: read operation
int clock_update() {

int tmp = *;

assume(clock <= tmp && tmp <= K);

clock = tmp;

}

int read(int v, int t) {
clock_update();

if (last_tstamp[v][t] > clock)

return last_value[v][t];

int node = *;

assume(node < N &&

 tstamp[v][node] <= clock &&

 tstamp[v][next[v][node]] > clock);

return value[v][node];

} return the value from the latest expired write,
which is guaranteed to exist and

correspond to the value of v in the memory

clock follows
non-decreasing order

if the last write by t on v has not expired,
return the corresponding value

representation
of the memory

no longer needed

eTSO-SMA: write operation
int write(int v, int t) {

clock_update();
int node = next[v][N];
assume(tstamp[v][next[v][node]] <= clock);
next[v][N] = next[v][node];
prev[v][next[v][N]] = N;

int succ = *;
assume(succ <= N && tstamp[v][succ] > clock);
int pred = prev[v][succ];

int ts = *;
assume(ts >= clock && ts >= max_tstamp[t]);
assume(ts >= tstamp[v][pred] && ts < tstamp[v][succ]);

value[v][node] = val;
tstamp[v][t] = ts;
…
last_tstamp[v][t] = ts;
last_value[v][t] = val;
max_tstamp[t] = ts;

}

select expired node with min
timestamp for the new write

eTSO-SMA: write operation
int write(int v, int t) {

clock_update();
int node = next[v][N];
assume(tstamp[v][next[v][node]] <= clock);
next[v][N] = next[v][node];
prev[v][next[v][N]] = N;

int succ = *;
assume(succ <= N && tstamp[v][succ] > clock);
int pred = prev[v][succ];

int ts = *;
assume(ts >= clock && ts >= max_tstamp[t]);
assume(ts >= tstamp[v][pred] && ts < tstamp[v][succ]);

value[v][node] = val;
tstamp[v][t] = ts;
…
last_tstamp[v][t] = ts;
last_value[v][t] = val;
max_tstamp[t] = ts;

}

position the new node by
nondeterministically selecting its

successor among the non-expired nodes

select expired node with min
timestamp for the new write

eTSO-SMA: write operation
int write(int v, int t) {

clock_update();
int node = next[v][N];
assume(tstamp[v][next[v][node]] <= clock);
next[v][N] = next[v][node];
prev[v][next[v][N]] = N;

int succ = *;
assume(succ <= N && tstamp[v][succ] > clock);
int pred = prev[v][succ];

int ts = *;
assume(ts >= clock && ts >= max_tstamp[t]);
assume(ts >= tstamp[v][pred] && ts < tstamp[v][succ]);

value[v][node] = val;
tstamp[v][t] = ts;
…
last_tstamp[v][t] = ts;
last_value[v][t] = val;
max_tstamp[t] = ts;

}

position the new node by
nondeterministically selecting its

successor among the non-expired nodes

guess suitable timestamp,
must respect non-
decreasing order

select expired node with min
timestamp for the new write

eTSO-SMA: write operation
int write(int v, int t) {

clock_update();
int node = next[v][N];
assume(tstamp[v][next[v][node]] <= clock);
next[v][N] = next[v][node];
prev[v][next[v][N]] = N;

int succ = *;
assume(succ <= N && tstamp[v][succ] > clock);
int pred = prev[v][succ];

int ts = *;
assume(ts >= clock && ts >= max_tstamp[t]);
assume(ts >= tstamp[v][pred] && ts < tstamp[v][succ]);

value[v][node] = val;
tstamp[v][t] = ts;
…
last_tstamp[v][t] = ts;
last_value[v][t] = val;
max_tstamp[t] = ts;

}

position the new node by
nondeterministically selecting its

successor among the non-expired nodes

guess suitable timestamp,
must respect non-
decreasing order

update variable write list
and auxiliary variables

select expired node with min
timestamp for the new write

extension to PSO
int write(int v, int t) {

clock_update();
int node = next[v][N];
assume(tstamp[v][next[v][node]] <= clock);
next[v][N] = next[v][node];
prev[v][next[v][N]] = N;

int succ = *;
assume(succ <= N && tstamp[v][succ] > clock);
int pred = prev[v][succ];

int ts = *;
assume(ts >= clock && ts >= max_tstamp[t]);
assume(ts >= tstamp[v][pred] && ts < tstamp[v][succ]);

value[v][node] = val;
tstamp[v][t] = ts;
…
last_tstamp[v][t] = ts;
last_value[v][t] = val;
max_tstamp[t] = ts;

}

write to different variables may be
reordered, guessed timestamps no
longer need to be the maximum over all
variables, but the maximum for the
relevant variable:
 ts >= last_tstamp[t][v]

extension to PSO
int write(int v, int t) {

clock_update();
int node = next[v][N];
assume(tstamp[v][next[v][node]] <= clock);
next[v][N] = next[v][node];
prev[v][next[v][N]] = N;

int succ = *;
assume(succ <= N && tstamp[v][succ] > clock);
int pred = prev[v][succ];

int ts = *;
assume(ts >= clock && ts >= max_tstamp[t]);
assume(ts >= tstamp[v][pred] && ts < tstamp[v][succ]);

value[v][node] = val;
tstamp[v][t] = ts;
…
last_tstamp[v][t] = ts;
last_value[v][t] = val;
max_tstamp[t] = ts;

}

write to different variables may be
reordered, guessed timestamps no
longer need to be the maximum over all
variables, but the maximum for the
relevant variable:
 ts >= last_tstamp[t][v]

guessed timestamps may be
smaller than the max timestamp:

 max_tstamp[t] =
max(max_tstamp[t],ts)

Experimental Evaluation: common benchmarks

timeout = 600s

transformation overhead shows on small programs

Experimental Evaluation: common benchmarks

timeout = 600s

competitive on twisted interleavings

Experimental Evaluation: common benchmarks

timeout = 600s

slower

Experimental Evaluation: common benchmarks

timeout = 600s

faster than Nidhugg

Experimental Evaluation: Safestack

maxclock=K=1 forces SC analysis,
TSO puts 3x-4x overhead on lazy schema (SC times not shown in table)

Experimental Evaluation: Safestack

quicker to spot the bug under PSO
as it requires a smaller number of thread interactions;

performance comparable when no bugs are found

Experimental Evaluation: Safestack

increase maxlock to covers more reorderings,
more resource demanding..

Thank You

users.ecs.soton.ac.uk/gp4/cseq

