
Testing Composable
Specifications

Ken McMillan

Microsoft Research

Case study

• TileLink is a protocol for implementing a coherent
memory in a system-on-chip (SoC).

• Goal: a formal, modular specification of TileLink
• Specify the protocol

• Prove that it implements correct memory semantics

• Rigorously test component implementations

• Allow rapid configuration of SoC designs

TileLink system

• Hierarchy of memory system components for SoC
using a common interface protocol.

CORE

CORE

CORE L2$

NET

DIR

DIR

MEM

MEM

L2$

DIR MEM

TL TL TL TL

Hierarchy implements weakly consistent memory model.

Modular verification

• General approach:
• Write generic formal specifications of components

• Verify components locally against specifications

• Infer that systems of such components are correct

• Composable specifications:
• Correctness of components implies correctness of

system.

• With a composable specification, we can assemble
arbitrary configurations of components.

Some composable specifications are better than others, however…

Good composability

• Assume/guarantee specifications
• A conjunction of temporal properties of interfaces

• Assume/guarantee relationships

A B

𝑝

𝑞

A: “𝐺 (𝐻𝑞 ⇒ 𝑝)”

B: “𝐺 (𝐻𝑝 ⇒ 𝑞)”

A∥B: “𝐺(𝑝 ∧ 𝑞)” composable!

This proof is checkable in P-time

We want our specifications to be composable “by construction”.

Memory semantics

Memory operations:

op(loc,kind,addr,data)

CPU
read
write

atomic

Happens-before relation on operations:

happens-before(𝑜𝑝1, 𝑜𝑝2) ⇔ loc(𝑜𝑝1) = loc(𝑜𝑝2) ∧ time(𝑜𝑝1) < time(𝑜𝑝2)

Weak consistency:

A set of operations is weakly consistent if there exists an ordering 𝜋 s.t:
• 𝜋 respects happens-before
• 𝜋 is consistent

Consistency:

A sequence of ops is consistency if every read sees value of most recent write.

∧ (addr(𝑜𝑝1) = addr(𝑜𝑝2) ∨ atomic(𝑜𝑝1) ∨ atomic(𝑜𝑝2))

Problem

• How do you write a “good” composable
specification for a system if its key property refers to
all events in the system?

How do we witness the serialization 𝜋?

How do local operations fit into the global serialization?

Solution

• Add a “reference object”.
• Constructs the witness for 𝜋.
• Verifies consistency 𝜋 as it is constructed

These operations allow us to define the semantics of the system interfaces.

ref.

create

commit
create : op × loc → stamp

commit : stamp → unit

eval : stamp → valueeval
mem

commit(stamp): assumes happens-before(X,op(stamp)) ⇒ committed(X)

value = eval(stamp):

guarantees value = result(𝜋,op(stamp))

assumes committed(stamp)

TileLink system

• Hierarchy of memory system components for SoC
using a common interface protocol.

CORE

CORE

CORE L2$

NET

DIR

DIR

MEM

MEM

L2$

DIR MEM

TL TL TL TL

TileLink interface protocol

• Protocol messages implement
• Coherent requests (MESI)
• Invalidation
• Ordered, non-coherent operations

• Interface has two roles:
• Client ≈ processor
• Manager ≈ memory

Acquire Grants Finish Probe Release

client

manager

Typical transaction flow at interface

Writing a “good” composable spec

• Specification has two parts:
• Temporal properties of interface

• Assume/guarantee relationships between properties

• Interface properties of two types:
• Interface protocol properties

• Semantic properties, relative to reference object

Semantic interface properties

• Manager-side properties
• M[1]: Data in cached Grant must match ref.mem.

• M[2]: If uncached resp. then committed(stamp)

• M[3]: If uncached resp. then data = eval(stamp)

• Client-side properties
• C[1]: Data in cached Release must match ref.mem.

• C[2]: If uncached req. then happens-before(X,stamp)
implies requested(X).

• C[3]: If uncached resp. then data = eval(stamp)

These properties refer to the reference object to define
ordering and data values at the interface.

Commitment properties

• Client-side commitments:
• SC[1]: Read may be committed on client side only if interface

has shared or exclusive permissions.
• SC[2]: Write may be committed on client side only if interface

has exclusive permissions.

• Manager-side properties
• SM[1]: Read may be committed on manager side only if

interface has shared or invalid permissions.
• SM[2]: Write may be committed on manager side only if

interface has invalid permissions.

The coherence state determines what commitments are
allowed on either side of the interface. This is the
function of coherence.

Note: “client side” means any component left of the interface.

Assume/guarantee relationships
• An L2 cache has TileLink interfaces on processor side and memory side.

reference object

…𝑐𝑜𝑚𝑝𝑃… 𝑐𝑜𝑚𝑝

𝑹𝑨𝑷

𝑴𝒎 𝑪𝒄𝐶𝑚 𝑀𝑐

𝑆𝐶𝑚

𝑺𝑴𝒎 𝑆𝑀𝑐

𝑺𝑪𝒄

Assume/guarantee relationships
• An L2 cache has TileLink interfaces on processor side and memory side.

reference object

…𝑐𝑜𝑚𝑝𝑃… 𝑐𝑜𝑚𝑝

𝑹𝑨𝑷

𝑴𝒎 𝑪𝒄𝐶𝑚 𝑀𝑐

𝑆𝐶𝑚

𝑺𝑴𝒎 𝑆𝑀𝑐

𝑺𝑪𝒄

P,R: 𝐶𝑚
− , 𝑀𝑐

− → 𝐶𝑐 , 𝑀𝑚

P,R: 𝑆𝐶𝑚, 𝐶𝑚
− , 𝑀𝑐

− → 𝑆𝐶𝑐
P,R: 𝑆𝑀𝑐 , 𝐶𝑚

− , 𝑀𝑐
− → 𝑆𝑀𝑚

P,R: 𝐶𝑚
− , 𝑀𝑐

−, 𝑆𝑀𝑐
−, 𝑆𝐶𝑚

− → 𝑅𝐴𝑃

𝐺 𝑅𝐴𝑝

Checking this proof is a
purely syntactic operation

Formal proofs

• We can now formally verify components in isolation
against their assume/guarantee specifications:
• Reording buffer
• Hierarchical cache
• Processor, memory, etc.

• These are simple abstract component models, intended
to show that the specification has the intended
implementations.
• Show key property that protocol is insensitive to message re-

ordering.
• In the process, specification was corrected.

Because our assume/guarantee specification is composable, we
know that hierarchies built from these components implement a
weakly consistent shared memory.

Compositional testing

• From an assume/guarantee specification, we can
automatically generate a test environment.

reference object

𝐿2
RTL

…𝑐𝑜𝑚𝑝… 𝑐𝑜𝑚𝑝

𝑹𝑨𝑷

𝐶𝑚 𝑀𝑐

𝑆𝐶𝑚

𝑆𝑀𝑐

𝑴𝒎 𝑪𝒄

𝑺𝑴𝒎

𝑺𝑪𝒄

generategenerate
checkcheck

• Tested two RTL level components with randomized
generation using Z3:
• L2 cache bank

• Snooping hub

check

Testing results

• Compositional testing revealed currency errors in
the RTL in under 1s (< 100 cycles)
• Unit testing provides much greater flexibility in covering

internal corner cases

• Randomized specification-based testing reduces bias

• Latent bugs
• Most bugs could not be stimulated in integration test

• Latent bugs affect re-usability

• Importance of composability
• All system-level errors exposed to unit testing

• Gain confidence that components can be assembled into
arbitrary configuration.

Conclusion

• Good composable specification is such that:
• Correct component imply correct system

• The proof of this is efficiently checkable

• Global properties (such as memory consistency)
• Reference object + temporal assume/guarantee

• Allows local specification of interface semantics

• Composable TileLink interface spec provides:
• Documentation of the interface

• Ability to reason formally about specification

• Efficient and rigorous test to find latent bugs

Composable specifications provide a way to formal verification
experts to provide value in an environment where most engineers do
not have formal skills.

Specification as a social process

• The specification develops over time in
collaboration with the system architects.
• Ambiguities in informal specs must be resolved.

• Initial formal spec almost certainly does not reflect
designers intention.

• Mismatch with implementation may indicate properties
should be strengthened or weakened for efficiency.

• Over time the formal spec becomes a valuable
document.
• Encapsulates design knowledge.

• Allows rigorous testing and verification.

