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Case study

• TileLink is a protocol for implementing a coherent 
memory in a system-on-chip (SoC).

• Goal: a formal, modular specification of TileLink
• Specify the protocol

• Prove that it implements correct memory semantics

• Rigorously test component implementations

• Allow rapid configuration of SoC designs



TileLink system

• Hierarchy of memory system components for SoC
using a common interface protocol.
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Hierarchy implements weakly consistent memory model.



Modular verification

• General approach:
• Write generic formal specifications of components

• Verify components locally against specifications

• Infer that systems of such components are correct

• Composable specifications:
• Correctness of components implies correctness of 

system.

• With a composable specification, we can assemble 
arbitrary configurations of components.

Some composable specifications are better than others, however…



Good composability

• Assume/guarantee specifications
• A conjunction of temporal properties of interfaces

• Assume/guarantee relationships

A B

𝑝

𝑞

A: “𝐺 (𝐻𝑞 ⇒ 𝑝)”

B: “𝐺 (𝐻𝑝 ⇒ 𝑞)”

A∥B: “𝐺(𝑝 ∧ 𝑞)” composable!

This proof is checkable in P-time

We want our specifications to be composable “by construction”.



Memory semantics

Memory operations:

op(loc,kind,addr,data)

CPU
read
write

atomic

Happens-before relation on operations:

happens-before(𝑜𝑝1, 𝑜𝑝2)  ⇔ loc(𝑜𝑝1) = loc(𝑜𝑝2) ∧ time(𝑜𝑝1) < time(𝑜𝑝2)

Weak consistency:

A set of operations is weakly consistent if there exists an ordering 𝜋 s.t:
• 𝜋 respects happens-before
• 𝜋 is consistent

Consistency:

A sequence of ops is consistency if every read sees value of most recent write.

∧ (addr(𝑜𝑝1) = addr(𝑜𝑝2) ∨ atomic(𝑜𝑝1) ∨ atomic(𝑜𝑝2)) 



Problem

• How do you write a “good” composable
specification for a system if its key property refers to 
all events in the system?

How do we witness the serialization 𝜋?

How do local operations fit into the global serialization?



Solution

• Add a “reference object”.
• Constructs the witness for 𝜋.
• Verifies consistency 𝜋 as it is constructed 

These operations allow us to define the semantics of the system interfaces.

ref.

create

commit
create : op × loc → stamp

commit : stamp → unit

eval : stamp → valueeval
mem

commit(stamp): assumes happens-before(X,op(stamp)) ⇒ committed(X)

value = eval(stamp):

guarantees value = result(𝜋,op(stamp)) 

assumes committed(stamp)



TileLink system

• Hierarchy of memory system components for SoC
using a common interface protocol.
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TileLink interface protocol

• Protocol messages implement
• Coherent requests (MESI)
• Invalidation
• Ordered, non-coherent operations

• Interface has two roles:
• Client ≈ processor
• Manager ≈ memory

Acquire Grants Finish Probe Release

client

manager

Typical transaction flow at interface



Writing a “good” composable spec

• Specification has two parts:
• Temporal properties of interface

• Assume/guarantee relationships between properties

• Interface properties of two types:
• Interface protocol properties

• Semantic properties, relative to reference object



Semantic interface properties

• Manager-side properties
• M[1]: Data in cached Grant must match ref.mem.

• M[2]: If uncached resp. then committed(stamp)

• M[3]: If uncached resp. then data = eval(stamp)

• Client-side properties
• C[1]: Data in cached Release must match ref.mem. 

• C[2]: If uncached req. then happens-before(X,stamp) 
implies requested(X).

• C[3]: If uncached resp. then data = eval(stamp)

These properties refer to the reference object to define 
ordering and data values at the interface.



Commitment properties

• Client-side commitments:
• SC[1]: Read may be committed on client side only if interface 

has shared or exclusive permissions.
• SC[2]: Write may be committed on client side only if interface 

has exclusive permissions.

• Manager-side properties
• SM[1]: Read may be committed on manager side only if 

interface has shared or invalid permissions.
• SM[2]: Write may be committed on manager side only if 

interface has invalid permissions.

The coherence state determines what commitments are 
allowed on either side of the interface. This is the 
function of coherence. 

Note: “client side” means any component left of the interface.



Assume/guarantee relationships
• An L2 cache has TileLink interfaces on processor side and memory side.
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Assume/guarantee relationships
• An L2 cache has TileLink interfaces on processor side and memory side.

reference object

…𝑐𝑜𝑚𝑝𝑃… 𝑐𝑜𝑚𝑝
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𝑴𝒎 𝑪𝒄𝐶𝑚 𝑀𝑐

𝑆𝐶𝑚

𝑺𝑴𝒎 𝑆𝑀𝑐

𝑺𝑪𝒄

P,R:  𝐶𝑚
− , 𝑀𝑐

− → 𝐶𝑐 , 𝑀𝑚

P,R:  𝑆𝐶𝑚, 𝐶𝑚
− , 𝑀𝑐

− → 𝑆𝐶𝑐
P,R:  𝑆𝑀𝑐 , 𝐶𝑚

− , 𝑀𝑐
− → 𝑆𝑀𝑚

P,R:  𝐶𝑚
− , 𝑀𝑐

−, 𝑆𝑀𝑐
−, 𝑆𝐶𝑚

− → 𝑅𝐴𝑃

𝐺 𝑅𝐴𝑝

Checking this proof is a 
purely syntactic operation



Formal proofs

• We can now formally verify components in isolation 
against their assume/guarantee specifications:
• Reording buffer
• Hierarchical cache
• Processor, memory, etc.

• These are simple abstract component models, intended 
to show that the specification has the intended 
implementations.
• Show key property that protocol is insensitive to message re-

ordering.
• In the process, specification was corrected.

Because our assume/guarantee specification is composable, we 
know that hierarchies built from these components implement a 
weakly consistent shared memory.



Compositional testing

• From an assume/guarantee specification, we can 
automatically generate a test environment.

reference object

𝐿2
RTL
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generategenerate
checkcheck

• Tested two RTL level components with randomized 
generation using Z3:
• L2 cache bank

• Snooping hub

check



Testing results

• Compositional testing revealed currency errors in 
the RTL in under 1s (< 100 cycles)
• Unit testing provides much greater flexibility in covering 

internal corner cases

• Randomized specification-based testing reduces bias

• Latent bugs
• Most bugs could not be stimulated in integration test

• Latent bugs affect re-usability

• Importance of composability
• All system-level errors exposed to unit testing

• Gain confidence that components can be assembled into 
arbitrary configuration.



Conclusion

• Good composable specification is such that:
• Correct component imply correct system

• The proof of this is efficiently checkable

• Global properties (such as memory consistency)
• Reference object + temporal assume/guarantee

• Allows local specification of interface semantics

• Composable TileLink interface spec provides:
• Documentation of the interface

• Ability to reason formally about specification

• Efficient and rigorous test to find latent bugs

Composable specifications provide a way to formal verification 
experts to provide value in an environment where most engineers do 
not have formal skills.



Specification as a social process

• The specification develops over time in 
collaboration with the system architects.
• Ambiguities in informal specs must be resolved.

• Initial formal spec almost certainly does not reflect 
designers intention.

• Mismatch with implementation may indicate properties 
should be strengthened or weakened for efficiency.

• Over time the formal spec becomes a valuable 
document.
• Encapsulates design knowledge.

• Allows rigorous testing and verification.


