Equivalence Checking using Gröbner Bases

Amr Sayed-Ahmed¹ Mathias Soeken³ Daniel Große^{1,2} Rolf Drechsler^{1,2}

¹University of Bremen, Germany ²DFKI GmbH, Germany ³EPFL, Switzerland

Email: asahmed@informatik.uni-bremen.de

FMCAD, October 2016

Introduction

Formal verification circumvents costly bugs

 Automated verification of floating-point circuits at gate level is still a major challenge

The proposed algebraic technique is a fully automated verification for floating-point circuits

Introduction

Formal verification circumvents costly bugs

 Automated verification of floating-point circuits at gate level is still a major challenge

The proposed algebraic technique is a fully automated verification for floating-point circuits

Introduction

Formal verification circumvents costly bugs

 Automated verification of floating-point circuits at gate level is still a major challenge

 The proposed algebraic technique is a fully automated verification for floating-point circuits

Outline

Symbolic Computation

Algebraic Combinational Equivalence Checking (ACEC) Reverse Engineering Arithmetic Sweeping

Experimental Results

Conclusion

Outline

Symbolic Computation

Algebraic Combinational Equivalence Checking (ACEC) Reverse Engineering Arithmetic Sweeping

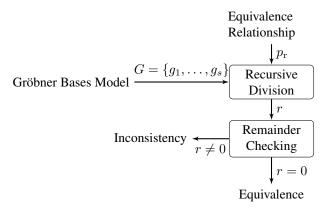
Experimental Results

Conclusion



Algebraic Decision Procedure

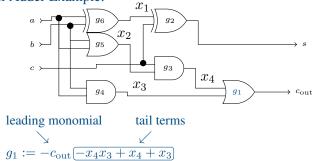
Ideal Membership Testing:

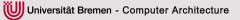




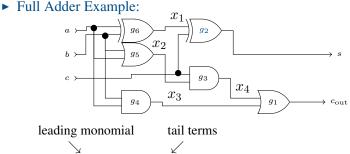
$$\begin{aligned} z &= \neg a \Rightarrow g := -z + 1 - a \\ z &= a \land b \Rightarrow g := -z + ab \end{aligned} \qquad \begin{aligned} z &= a \oplus b \Rightarrow g := -z + a + b - 2ab \\ z &= a \land b \Rightarrow g := -z + ab \end{aligned} \qquad \begin{aligned} z &= a \lor b \Rightarrow g := -z + a + b - ab \end{aligned}$$

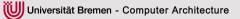
$$\begin{array}{ll} z=\neg a\Rightarrow g:=-z+1-a & z=a\oplus b\Rightarrow g:=-z+a+b-2ab\\ z=a\wedge b\Rightarrow g:=-z+ab & z=a\vee b\Rightarrow g:=-z+a+b-ab \end{array}$$



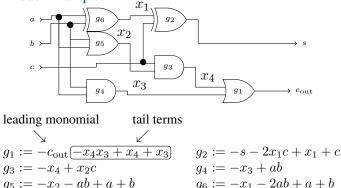


$$\begin{array}{ll} z=\neg a\Rightarrow g:=-z+1-a & z=a\oplus b\Rightarrow g:=-z+a+b-2ab\\ z=a\wedge b\Rightarrow g:=-z+ab & z=a\vee b\Rightarrow g:=-z+a+b-ab \end{array}$$





$$\begin{array}{ll} z=\neg a\Rightarrow g:=-z+1-a & z=a\oplus b\Rightarrow g:=-z+a+b-2ab\\ z=a\wedge b\Rightarrow g:=-z+ab & z=a\vee b\Rightarrow g:=-z+a+b-ab \end{array}$$



Modeling a Circuit as Gröbner Bases

Modeling Logic Gates:

$$\begin{array}{ll} z=\neg a\Rightarrow g:=-z+1-a & z=a\oplus b\Rightarrow g:=-z+a+b-2ab\\ z=a\wedge b\Rightarrow g:=-z+ab & z=a\vee b\Rightarrow g:=-z+a+b-ab \end{array}$$

Full Adder Example:
leading monomial tail terms

$$\begin{array}{c} \searrow & \swarrow \\ g_1 := -c_{\text{out}} \overline{(-x_4x_3 + x_4 + x_3)} \\ g_3 := -x_4 + x_2c \\ g_5 := -x_2 - ab + a + b \\ \end{array}$$

$$\begin{array}{c} g_2 := -s - 2x_1c + x_1 + c \\ g_4 := -x_3 + ab \\ g_6 := -x_1 - 2ab + a + b \\ \end{array}$$

► Leading monomials are relatively prime ⇒ The model is Gröbner bases



Ideal Membership Testing

► Following Full Adder Example: specification polynomial $p_r := -2c_{cout} - s + c + b + a$

Its model

$$\begin{array}{ll} g_1 := -c_{\text{out}} \underbrace{-x_4 x_3 + x_4 + x_3}_{3} & g_2 := -s - 2x_1 c + x_1 + c \\ g_3 := -x_4 + x_2 c & g_4 := -x_3 + ab \\ g_5 := -x_2 - ab + a + b & g_6 := -x_1 - 2ab + a + b \end{array}$$

Recursive Division:

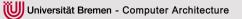
Ideal Membership Testing

► Following Full Adder Example: specification polynomial $p_r := -2c_{cout} - s + c + b + a$

Its model

$$\begin{array}{ll} g_1 := -c_{\text{out}} \overline{(-x_4 x_3 + x_4 + x_3)} & g_2 := -s - 2x_1 c + x_1 + c \\ g_3 := -x_4 + x_2 c & g_4 := -x_3 + ab \\ g_5 := -x_2 - ab + a + b & g_6 := -x_1 - 2ab + a + b \end{array}$$

 $\begin{array}{l} \blacktriangleright \ \textit{Recursive Division:} \\ p_{\rm r} := -2c_{\rm cout} - s + c + b + a \xrightarrow{g_1} \\ -s (+2x_4x_3 - 2x_4 - 2x_3) + c + b + a \xrightarrow{g_2} \end{array}$



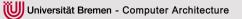
Ideal Membership Testing

► Following Full Adder Example: specification polynomial $p_r := -2c_{cout} - s + c + b + a$

Its model

$$\begin{array}{ll} g_1 := -c_{\text{out}} \overline{(-x_4 x_3 + x_4 + x_3)} & g_2 := -s - 2x_1 c + x_1 + c \\ g_3 := -x_4 + x_2 c & g_4 := -x_3 + ab \\ g_5 := -x_2 - ab + a + b & g_6 := -x_1 - 2ab + a + b \end{array}$$

 $\blacktriangleright Recursive Division:$ $\underline{\xrightarrow{g_2}} 2x_4x_3 - 2x_4 - 2x_3 + 2x_1c - x_1 + b + a \xrightarrow{g_3}$



Ideal Membership Testing

► Following Full Adder Example: specification polynomial $p_r := -2c_{cout} - s + c + b + a$

Its model

$$\begin{array}{ll} g_1 := -c_{\text{out}} \overline{(-x_4 x_3 + x_4 + x_3)} & g_2 := -s - 2x_1 c + x_1 + c \\ g_3 := -x_4 + x_2 c & g_4 := -x_3 + ab \\ g_5 := -x_2 - ab + a + b & g_6 := -x_1 - 2ab + a + b \end{array}$$

 $\blacktriangleright Recursive Division:$ $\xrightarrow{g_3} 2x_3x_2c - 2x_3 - 2x_2c + 2x_1c - x_1 + b + a \xrightarrow{g_4}$

Ideal Membership Testing

► Following Full Adder Example: specification polynomial $p_r := -2c_{cout} - s + c + b + a$

Its model

$$\begin{array}{ll} g_1 := -c_{\text{out}} \overline{(-x_4 x_3 + x_4 + x_3)} & g_2 := -s - 2x_1 c + x_1 + c \\ g_3 := -x_4 + x_2 c & g_4 := -x_3 + ab \\ g_5 := -x_2 - ab + a + b & g_6 := -x_1 - 2ab + a + b \end{array}$$

 $\blacktriangleright Recursive Division:$ $\xrightarrow{g_4} 2x_2cba - 2x_2c + 2x_1c - x_1 - 2ba + b + a$ $\xrightarrow{g_5} 2x_1c - x_1 + 4cba - 2ca - 2cb - 2ab + b + a \xrightarrow{g_6} 0$

Outline

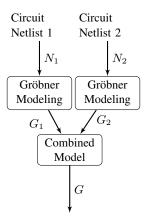
Symbolic Computation

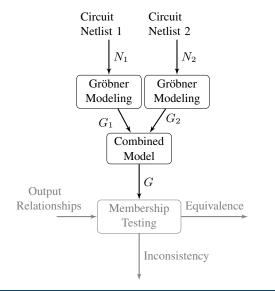
Algebraic Combinational Equivalence Checking (ACEC)

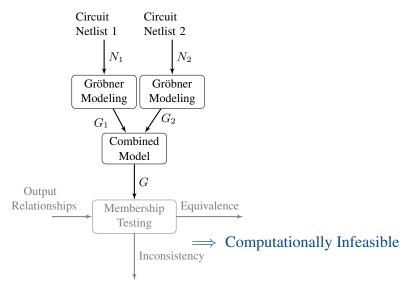
Reverse Engineering Arithmetic Sweeping

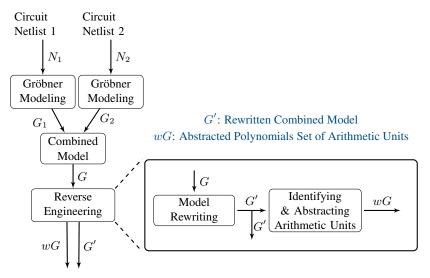
Experimental Results

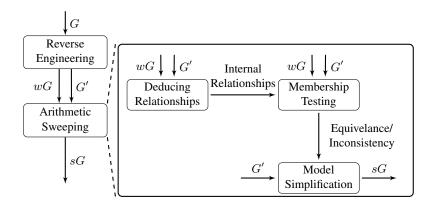
Conclusion

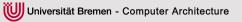


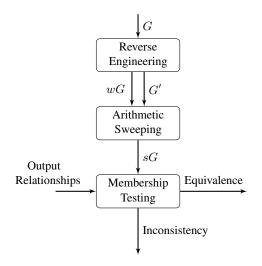












Outline

Symbolic Computation

Algebraic Combinational Equivalence Checking (ACEC) Reverse Engineering Arithmetic Sweeping

Experimental Results

Conclusion

Reverse Engineering

- Based on detecting carry bits propagation within arithmetic units (integer adders and multipliers)
- ► Full adder model revealing carry terms: $g_1 : -s + c + b + a + 4cba - 2cb - 2ca - 2ba$ $g_2 : -c_{out} - 2cba + cb + ca + ba$
- Identifying subsets of polynomials that share carry terms, therefore, model arithmetic components
- Model rewriting is required for:
 - Revealing carry terms
 - Removing vanishing monomials (redundant monomials that always evaluate to zero)
- Abstraction by Gaussian elimination, for the full adder:

$$2g_2 + g_1 \to g_r : -2c_{out} - s + c + b + a$$

Reverse Engineering

- Based on detecting carry bits propagation within arithmetic units (integer adders and multipliers)
- ► Full adder model revealing carry terms:

 $g_1: -s+c+b+a+4cba-2cb-2ca-2ba$

 $g_2: -c_{\text{out}} - 2cba + cb + ca + ba$

- Identifying subsets of polynomials that share carry terms, therefore, model arithmetic components
- Model rewriting is required for:
 - Revealing carry terms
 - Removing vanishing monomials (redundant monomials that always evaluate to zero)
- Abstraction by Gaussian elimination, for the full adder:

$$2g_2 + g_1 \rightarrow g_r : -2c_{\text{out}} - s + c + b + a$$

Reverse Engineering

- Based on detecting carry bits propagation within arithmetic units (integer adders and multipliers)
- ► Full adder model revealing carry terms:

 $g_1: -s+c+b+a+4cba-2cb-2ca-2ba$

 $g_2: -c_{\text{out}} - 2cba + cb + ca + ba$

- Identifying subsets of polynomials that share carry terms, therefore, model arithmetic components
- Model rewriting is required for:
 - Revealing carry terms
 - Removing vanishing monomials (redundant monomials that always evaluate to zero)
- Abstraction by Gaussian elimination, for the full adder:

$$2g_2 + g_1 \rightarrow g_r : -2c_{\text{out}} - s + c + b + a$$

Reverse Engineering

- Based on detecting carry bits propagation within arithmetic units (integer adders and multipliers)
- ► Full adder model revealing carry terms:

 $g_1: -s + c + b + a + 4cba - 2cb - 2ca - 2ba$ $g_2: -c_{\text{out}} - 2cba + cb + ca + ba$

- Identifying subsets of polynomials that share carry terms, therefore, model arithmetic components
- Model rewriting is required for:
 - Revealing carry terms
 - Removing vanishing monomials (redundant monomials that always evaluate to zero)
- Abstraction by Gaussian elimination, for the full adder:

$$2g_2 + g_1 \to g_r : -2c_{out} - s + c + b + a$$

Reverse Engineering

- Based on detecting carry bits propagation within arithmetic units (integer adders and multipliers)
- ► Full adder model revealing carry terms:

 $g_1: -s + c + b + a + 4cba - 2cb - 2ca - 2ba$ $g_2: -c_{\text{out}} - 2cba + cb + ca + ba$

- Identifying subsets of polynomials that share carry terms, therefore, model arithmetic components
- Model rewriting is required for:
 - Revealing carry terms
 - Removing vanishing monomials (redundant monomials that always evaluate to zero)
- Abstraction by Gaussian elimination, for the full adder:

$$2g_2 + g_1 \to g_r : -2c_{out} - s + c + b + a$$

Reverse Engineering

- Based on detecting carry bits propagation within arithmetic units (integer adders and multipliers)
- ► Full adder model revealing carry terms:

 $g_1: -s + c + b + a + 4cba - 2cb - 2ca - 2ba$ $g_2: -c_{\text{out}} - 2cba + cb + ca + ba$

- Identifying subsets of polynomials that share carry terms, therefore, model arithmetic components
- Model rewriting is required for:
 - Revealing carry terms
 - Removing vanishing monomials (redundant monomials that always evaluate to zero)
- Abstraction by Gaussian elimination, for the full adder:

 $2g_2 + g_1 \rightarrow g_r : -2c_{\text{out}} - s + c + b + a$

Reverse Engineering

- Based on detecting carry bits propagation within arithmetic units (integer adders and multipliers)
- ► Full adder model revealing carry terms:

 $g_1: -s + c + b + a + 4cba - 2cb - 2ca - 2ba$ $g_2: -c_{\text{out}} - 2cba + cb + ca + ba$

- Identifying subsets of polynomials that share carry terms, therefore, model arithmetic components
- Model rewriting is required for:
 - Revealing carry terms
 - Removing vanishing monomials (redundant monomials that always evaluate to zero)
- ► Abstraction by Gaussian elimination, for the full adder:

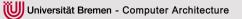
$$2g_2 + g_1 \rightarrow g_r : -2c_{\text{out}} - s + c + b + a$$

Reverse Engineering: 1) Model Rewriting

- XOR rewriting preserves inputs and outputs of chains of XOR gates
- Parallel Adder Model:

 $\begin{array}{l} c_2 = D_2 \lor (X_2 \land D_1) \lor (X_2 \land X_1 \land D_0) & \Longrightarrow g_1 := \\ -c_2 + X_2 X_1 a_2 b_2 a_1 b_1 a_0 b_0 - X_2 X_1 a_1 b_1 a_0 b_0 - X_2 X_1 a_2 b_2 a_0 b_0 - \\ X_2 a_2 b_2 a_1 b_1 + X_2 X_1 a_0 b_0 + X_2 a_1 b_1 + a_2 b_2 \end{array}$

$$\begin{array}{lll} s_{2} = X_{2} \oplus c_{1} & \Longrightarrow & g_{2} := -s_{2} - 2c_{1}X_{2} + c1 + X_{2} \\ c_{1} = D_{1} \lor (X_{1} \land D_{0}) \Longrightarrow & g_{3} := -c_{1} - X_{1}a_{1}b_{1}a_{0}b_{0} + X_{1}a_{0}b_{0} + a_{1}b_{1} \\ s_{1} = X_{1} \oplus c_{0} & \Longrightarrow & g_{4} := -s_{1} - 2c_{0}X_{1} + c_{0} + X_{1} \\ c_{0} = D_{0} & \Longrightarrow & g_{5} := -c_{0} + a_{0}b_{0} \\ s_{0} = X_{0} & \Longrightarrow & g_{6} := -s_{0} + X_{0} \\ X_{i} = a_{i} \oplus b_{i} & \Longrightarrow & g_{k-i-1} := -X_{i} - 2a_{i}b_{i} + b_{i} + a_{i} \\ D_{i} = a_{i} \land b_{i} & \Longrightarrow & g_{k-i} := -D_{i} + a_{i}b_{i} \end{array}$$



Reverse Engineering: 1)Model Rewriting

- Common rewriting preserves shared variables between polynomials
- ▶ Parallel adder model after XOR rewriting: $g_1 := -c_2 + X_2 X_1 a_0 b_0 + X_2 a_1 b_1 + a_2 b_2$

$$g_{2} := -s_{2} - 2c_{1}X_{2} + c_{1} + X_{2}$$

$$g_{3} := -c_{1} + X_{1}a_{0}b_{0} + a_{1}b_{1}$$

$$g_{4} := -s_{1} - 2c_{0}X_{1} + c_{0} + X_{1}$$

$$g_{5} := -c_{0} + a_{0}b_{0}$$

$$g_{6} := -s_{0} + X_{0}$$

$$g_{7} := -X_{0} - 2a_{0}b_{0} + b_{0} + a_{0}$$

$$g_{8} := -X_{1} - 2a_{1}b_{1} + b_{1} + a_{1}$$

$$g_{9} := -X_{2} - 2a_{2}b_{2} + b_{2} + a_{2}$$

• X_0 , c_0 and c_1 will be eliminated

Reverse Engineering: 1)Model Rewriting

- Common rewriting preserves shared variables between polynomials
- Parallel adder model after XOR rewriting:

$$g_1 := -c_2 + X_2 X_1 a_0 b_0 + X_2 a_1 b_1 + a_2 b_2$$

$$g_{2} := -s_{2} - 2c_{1}X_{2} + c1 + X_{2}$$

$$g_{3} := -c_{1} + X_{1}a_{0}b_{0} + a_{1}b_{1}$$

$$g_{4} := -s_{1} - 2c_{0}X_{1} + c_{0} + X_{1}$$

$$g_{5} := -c_{0} + a_{0}b_{0}$$

$$g_{6} := -s_{0} + X_{0}$$

$$g_{7} := -X_{0} - 2a_{0}b_{0} + b_{0} + a_{0}$$

$$g_{8} := -X_{1} - 2a_{1}b_{1} + b_{1} + a_{1}$$

$$g_{9} := -X_{2} - 2a_{2}b_{2} + b_{2} + a_{2}$$

• X_0 , c_0 and c_1 will be eliminated

Reverse Engineering: 1)Model Rewriting

- Common rewriting preserves shared variables between polynomials
- Parallel adder model after XOR rewriting:

$$g_1 := -c_2 + X_2 X_1 a_0 b_0 + X_2 a_1 b_1 + a_2 b_2$$

$$g_{2} := -s_{2} - 2c_{1}X_{2} + c1 + X_{2}$$

$$g_{3} := -c_{1} + X_{1}a_{0}b_{0} + a_{1}b_{1}$$

$$g_{4} := -s_{1} - 2c_{0}X_{1} + c_{0} + X_{1}$$

$$g_{5} := -c_{0} + a_{0}b_{0}$$

$$g_{6} := -s_{0} + X_{0}$$

$$g_{7} := -X_{0} - 2a_{0}b_{0} + b_{0} + a_{0}$$

$$g_{8} := -X_{1} - 2a_{1}b_{1} + b_{1} + a_{1}$$

$$g_{9} := -X_{2} - 2a_{2}b_{2} + b_{2} + a_{2}$$

• X_0 , c_0 and c_1 will be eliminated

 ▶ Parallel adder model after common rewriting: g₁ := -c₂+X₂X₁a₀b₀ + X₂a₁b₁ + a₂b₂ g₂ := -s₂-2X₂X₁a₀b₀ - 2X₂a₁b₁ + X₂ + X₁a₀b₀+a₁b₁ g₄ := -s₁-2X₁a₀b₀ + a₀b₀ + X₁ g₆ := -s₀ + -2a₀b₀ + b₀ + a₀ g₈ := -X₁ - 2a₁b₁ + b₁ + a₁ g₉ := -X₂ - 2a₂b₂ + b₂ + a₂

 ▶ Abstraction by *Gaussian elimination*:

► Parallel adder model after common rewriting: $g_1 := -c_2 + X_2 X_1 a_0 b_0 + X_2 a_1 b_1 + a_2 b_2$ $g_2 := -s_2 - 2X_2 X_1 a_0 b_0 - 2X_2 a_1 b_1 + X_2 + X_1 a_0 b_0 + a_1 b_1$ $g_4 := -s_1 - 2X_1 a_0 b_0 + a_0 b_0 + X_1$ $g_6 := -s_0 + -2a_0 b_0 + b_0 + a_0$ $g_8 := -X_1 - 2a_1 b_1 + b_1 + a_1$ $g_9 := -X_2 - 2a_2 b_2 + b_2 + a_2$

Abstraction by Gaussian elimination:

 ▶ Parallel adder model after common rewriting: g₁ := -c₂+X₂X₁a₀b₀ + X₂a₁b₁ + a₂b₂ g₂ := -s₂-2X₂X₁a₀b₀ - 2X₂a₁b₁ + X₂ + X₁a₀b₀+a₁b₁ g₄ := -s₁-2X₁a₀b₀ + a₀b₀ + X₁ g₆ := -s₀ + -2a₀b₀ + b₀ + a₀ g₈ := -X₁ - 2a₁b₁ + b₁ + a₁ g₉ := -X₂ - 2a₂b₂ + b₂ + a₂

 Abstraction by *Gaussian elimination*:

 $\begin{array}{l} 2g_1 + g_2 \rightarrow g_{\rm res} := -2c_2 (+2X_2X_1a_0b_0 + 2X_2\overline{a_1b_1}) + 2a_2b_2 - \\ s_2 \overline{(-2X_2X_1a_0b_0 - 2X_2a_1b_1)} + X_2 + X_1a_0b_0 + a_1b_1 \end{array}$

► Parallel adder model after common rewriting: $g_1 := -c_2 + X_2 X_1 a_0 b_0 + X_2 a_1 b_1 + a_2 b_2$ $g_2 := -s_2 - 2X_2 X_1 a_0 b_0 - 2X_2 a_1 b_1 + X_2 + X_1 a_0 b_0 + a_1 b_1$ $g_4 := -s_1 - 2X_1 a_0 b_0 + a_0 b_0 + X_1$ $g_6 := -s_0 + -2a_0 b_0 + b_0 + a_0$ $g_8 := -X_1 - 2a_1 b_1 + b_1 + a_1$ $g_9 := -X_2 - 2a_2 b_2 + b_2 + a_2$

Abstraction by Gaussian elimination:

$$\begin{array}{l} 2g_1 + g_2 \to g_{\rm res} := -2c_2 \left[+2X_2 X_1 a_6 b_0 \pm 2X_2 a_1 b_1 \right] + 2a_2 b_2 - g_2 \left[-2X_2 X_1 a_6 b_0 \pm 2X_2 a_1 b_1 \right] + X_2 + X_1 a_0 b_0 + a_1 b_1 \end{array}$$

Parallel adder model after common rewriting: g₁ := -c₂+X₂X₁a₀b₀ + X₂a₁b₁ + a₂b₂ g₂ := -s₂-2X₂X₁a₀b₀ - 2X₂a₁b₁ + X₂ + X₁a₀b₀+a₁b₁ g₄ := -s₁-2X₁a₀b₀ + a₀b₀ + X₁ g₆ := -s₀ + -2a₀b₀ + b₀ + a₀ g₈ := -X₁ - 2a₁b₁ + b₁ + a₁ g₉ := -X₂ - 2a₂b₂ + b₂ + a₂
Abstraction by *Gaussian elimination*: g_{res} := -2c₂ - s₂ + X₂ + X₁a₀b₀+2a₂b₂+a₁b₁

 $2g_{\rm res} + g_4 \rightarrow g_{\rm res} := -4c_2 - 2s_2 - s_1 + 2X_2 + X_1 + 4a_2b_2 + 2a_1b_1 + a_0b_0$

 ▶ Parallel adder model after common rewriting: g₁ := -c₂+X₂X₁a₀b₀ + X₂a₁b₁ + a₂b₂ g₂ := -s₂-2X₂X₁a₀b₀ - 2X₂a₁b₁ + X₂ + X₁a₀b₀+a₁b₁ g₄ := -s₁-2X₁a₀b₀ + a₀b₀ + X₁ g₆ := -s₀ + -2a₀b₀ + b₀ + a₀ g₈ := -X₁ - 2a₁b₁ + b₁ + a₁ g₉ := -X₂ - 2a₂b₂ + b₂ + a₂

 ▶ Abstraction by *Gaussian elimination*:

$$g_{\rm res} := -4c_2 - 2s_2 - s_1 + 2X_2 + X_1 + 4a_2b_2 + 2a_1b_1 + a_0b_0$$

$$2g_{\rm res} + g_6 \to g_{\rm res} :=$$

$$-8c_2 - 4s_2 - 2s_1 - s_0 + 4X_2 + 2X_1 + 8a_2b_2 + 4a_1b_1 + b_0 + a_0$$

▶ Parallel adder model after common rewriting: $g_1 := -c_2 + X_2 X_1 a_0 b_0 + X_2 a_1 b_1 + a_2 b_2$ $g_2 := -s_2 - 2X_2 X_1 a_0 b_0 - 2X_2 a_1 b_1 + X_2 + X_1 a_0 b_0 + a_1 b_1$ $g_4 := -s_1 - 2X_1 a_0 b_0 + a_0 b_0 + X_1$ $g_6 := -s_0 + -2a_0 b_0 + b_0 + a_0$ $g_8 := -X_1 - 2a_1 b_1 + b_1 + a_1$ $g_9 := -X_2 - 2a_2 b_2 + b_2 + a_2$ ▶ Abstraction by Consequence alumination:

• Abstraction by Gaussian elimination: $g_{res} := -8c_2 - 4s_2 - 2s_1 - s_0 + 4X_2 + 2X_1 + 8a_2b_2 + 4a_1b_1 + b_0 + a_0$ $g_{res} + 2g_8 \rightarrow g_{res} :=$ $-8c_2 - 4s_2 - 2s_1 - s_0 + 4X_2 + 8a_2b_2 + 2b_1 + 2a_1 + b_0 + a_0$

Parallel adder model after common rewriting: $q_1 := -c_2 + X_2 X_1 a_0 b_0 + X_2 a_1 b_1 + a_2 b_2$ $q_2 := -s_2 - 2X_2 X_1 a_0 b_0 - 2X_2 a_1 b_1 + X_2 + X_1 a_0 b_0 + a_1 b_1$ $q_4 := -s_1 - 2X_1 a_0 b_0 + a_0 b_0 + X_1$ $q_6 := -s_0 + -2a_0b_0 + b_0 + a_0$ $a_8 := -X_1 - 2a_1b_1 + b_1 + a_1$ $q_9 := -X_2 - 2a_2b_2 + b_2 + a_2$ Abstraction by Gaussian elimination: $q_{\text{res}} := -8c_2 - 4s_2 - 2s_1 - s_0 + 4X_2 + 8a_2b_2 + 2b_1 + 2a_1 + b_0 + a_0$ $q_{\rm res} + 4q_9 \rightarrow$ $q_{\text{res}} := -8c_2 - 4s_2 - 2s_1 - s_0 + 4b_2 + 4a_2 + 2b_1 + 2a_1 + b_0 + a_0$

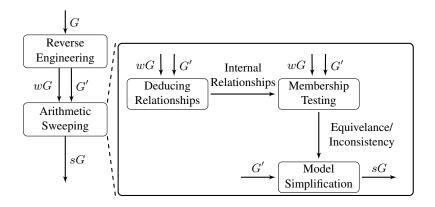
Outline

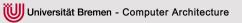
Symbolic Computation

Algebraic Combinational Equivalence Checking (ACEC) Reverse Engineering Arithmetic Sweeping

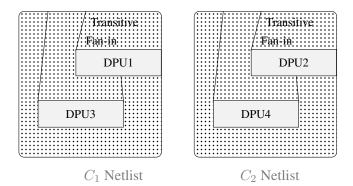
Experimental Results

Arithmetic Sweeping

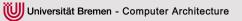




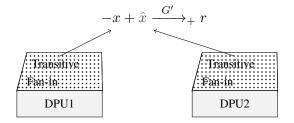
Deducing Relationships



 Partitioning the combined model based on the extracted arithmetic information

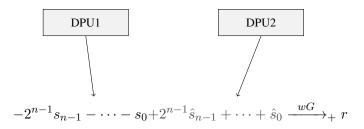


Deducing and Testing Relationships



 Deducing and testing bit relationships between variables of the transitive fan-in of arithmetic units

Deducing and Testing Relationships



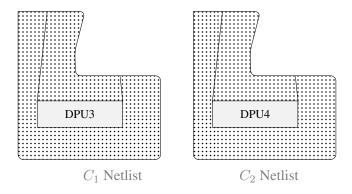
 Testing the word relationship between output variables of compared arithmetic units, using the abstracted polynomials

Model Simplification



- Merging proved equivalent variables simplifies the combined model dramatically
- Therefore, testing output relationships wrt. the simplified model is computationally feasible

Model Simplification



- Merging proved equivalent variables simplifies the combined model dramatically
- Therefore, testing output relationships wrt. the simplified model is computationally feasible

Outline

Symbolic Computation

Algebraic Combinational Equivalence Checking (ACEC) Reverse Engineering Arithmetic Sweeping

Experimental Results

Experimental Results

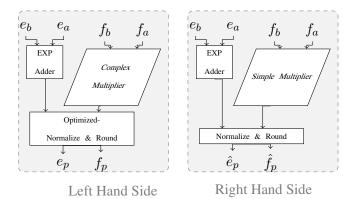


Figure: Compared FP Multiplier Circuits

Experimental Results

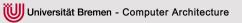
Multiplier	FP operand	Commercial	ABC	ACEC	$SP \rightarrow Simple Partial Product$
Architecture	# bits	(h:m:s)	(h:m:s)	(h:m:s)	$WT \rightarrow Wallace Tree$
SP-CT-BK SP-WT-CH	16 16	00:08:50 00:09:08	TO TO	00:01:42 00:01:44	$CT \rightarrow Compressor Tree$ $CH \rightarrow Carry Look Ahead$ Adder
SP-CT-BK	24	TO	TO	00:17:49	$BK \rightarrow Brent-Kung Adder$
SP-WT-CH	24	TO	TO	00:25:58	
SP-CT-BK	32	TO	TO	02:24:01	TO=100 Hour
SP-WT-CH	32	TO	TO	03:41:43	

Outline

Symbolic Computation

Algebraic Combinational Equivalence Checking (ACEC) Reverse Engineering Arithmetic Sweeping

Experimental Results



Conclusion

 New algebraic equivalence checking technique for circuits that combine data-path and control logic

- New reverse engineering algorithm to extract and abstract arithmetic components
- Arithmetic sweeping based on input and output boundaries of the abstracted components
- Efficient polynomial representation (negative-Davio decomposition)
- Checking equivalence of large floating-point multipliers which cannot be verified by state-of-art equivalence checkers
- Verifying heavy optimized circuits and dealing with non-equivalent circuits are still major challenges

- New algebraic equivalence checking technique for circuits that combine data-path and control logic
 - New reverse engineering algorithm to extract and abstract arithmetic components
 - Arithmetic sweeping based on input and output boundaries of the abstracted components
 - Efficient polynomial representation (negative-Davio decomposition)
- Checking equivalence of large floating-point multipliers which cannot be verified by state-of-art equivalence checkers
- Verifying heavy optimized circuits and dealing with non-equivalent circuits are still major challenges

- New algebraic equivalence checking technique for circuits that combine data-path and control logic
 - New reverse engineering algorithm to extract and abstract arithmetic components
 - Arithmetic sweeping based on input and output boundaries of the abstracted components
 - Efficient polynomial representation (negative-Davio decomposition)
- Checking equivalence of large floating-point multipliers which cannot be verified by state-of-art equivalence checkers
- Verifying heavy optimized circuits and dealing with non-equivalent circuits are still major challenges

- New algebraic equivalence checking technique for circuits that combine data-path and control logic
 - New reverse engineering algorithm to extract and abstract arithmetic components
 - Arithmetic sweeping based on input and output boundaries of the abstracted components
 - Efficient polynomial representation (negative-Davio decomposition)
- Checking equivalence of large floating-point multipliers which cannot be verified by state-of-art equivalence checkers
- Verifying heavy optimized circuits and dealing with non-equivalent circuits are still major challenges

- New algebraic equivalence checking technique for circuits that combine data-path and control logic
 - New reverse engineering algorithm to extract and abstract arithmetic components
 - Arithmetic sweeping based on input and output boundaries of the abstracted components
 - Efficient polynomial representation (negative-Davio decomposition)
- Checking equivalence of large floating-point multipliers which cannot be verified by state-of-art equivalence checkers
- Verifying heavy optimized circuits and dealing with non-equivalent circuits are still major challenges

- New algebraic equivalence checking technique for circuits that combine data-path and control logic
 - New reverse engineering algorithm to extract and abstract arithmetic components
 - Arithmetic sweeping based on input and output boundaries of the abstracted components
 - Efficient polynomial representation (negative-Davio decomposition)
- Checking equivalence of large floating-point multipliers which cannot be verified by state-of-art equivalence checkers
- Verifying heavy optimized circuits and dealing with non-equivalent circuits are still major challenges

Equivalence Checking using Gröbner Bases

Amr Sayed-Ahmed¹ Mathias Soeken³ Daniel Große^{1,2} Rolf Drechsler^{1,2}

¹University of Bremen, Germany ²DFKI GmbH, Germany ³EPFL, Switzerland

Email: asahmed@informatik.uni-bremen.de

FMCAD, October 2016