
Equivalence Checking using
Gröbner Bases

Amr Sayed-Ahmed1 Daniel Große1,2

Mathias Soeken3 Rolf Drechsler1,2

1University of Bremen, Germany
2DFKI GmbH, Germany

3EPFL, Switzerland

Email: asahmed@informatik.uni-bremen.de

FMCAD, October 2016

1



Introduction

I Formal verification circumvents costly bugs

I Automated verification of floating-point circuits at gate level is
still a major challenge

I The proposed algebraic technique is a fully automated
verification for floating-point circuits

2



Introduction

I Formal verification circumvents costly bugs

I Automated verification of floating-point circuits at gate level is
still a major challenge

I The proposed algebraic technique is a fully automated
verification for floating-point circuits

2



Introduction

I Formal verification circumvents costly bugs

I Automated verification of floating-point circuits at gate level is
still a major challenge

I The proposed algebraic technique is a fully automated
verification for floating-point circuits

2



Outline

Symbolic Computation

Algebraic Combinational Equivalence Checking (ACEC)
Reverse Engineering
Arithmetic Sweeping

Experimental Results

Conclusion

3



Outline

Symbolic Computation

Algebraic Combinational Equivalence Checking (ACEC)
Reverse Engineering
Arithmetic Sweeping

Experimental Results

Conclusion

4



Algebraic Decision Procedure

I Ideal Membership Testing:

Recursive
DivisionGröbner Bases Model

G = {g1, . . . , gs}

Equivalence
Relationship

pr

Remainder
Checking

Equivalence

Inconsistency

r

r = 0

r 6= 0

5



Modeling a Circuit as Gröbner Bases

I Modeling Logic Gates:

z = ¬a⇒ g := −z + 1− a z = a⊕ b⇒ g := −z + a+ b− 2ab
z = a ∧ b⇒ g := −z + ab z = a ∨ b⇒ g := −z + a+ b− ab

g3 := −x4 + x2c g4 := −x3 + ab
g5 := −x2 − ab+ a+ b g6 := −x1 − 2ab+ a+ b

6



Modeling a Circuit as Gröbner Bases
I Modeling Logic Gates:

z = ¬a⇒ g := −z + 1− a z = a⊕ b⇒ g := −z + a+ b− 2ab
z = a ∧ b⇒ g := −z + ab z = a ∨ b⇒ g := −z + a+ b− ab

I Full Adder Example:
a g6 g2

b g5 s

c g3

g4 g1 cout

x1

x4x3

x2

leading monomial tail terms
↘ ↙

g1 := −cout −x4x3 + x4 + x3

g3 := −x4 + x2c g4 := −x3 + ab
g5 := −x2 − ab+ a+ b g6 := −x1 − 2ab+ a+ b

6



Modeling a Circuit as Gröbner Bases
I Modeling Logic Gates:

z = ¬a⇒ g := −z + 1− a z = a⊕ b⇒ g := −z + a+ b− 2ab
z = a ∧ b⇒ g := −z + ab z = a ∨ b⇒ g := −z + a+ b− ab

I Full Adder Example:
a g6 g2

b g5 s

c g3

g4 g1 cout

x1

x4x3

x2

leading monomial tail terms
↘ ↙

g1 := −cout −x4x3 + x4 + x3 g2 := −s− 2x1c+ x1 + c

g3 := −x4 + x2c g4 := −x3 + ab
g5 := −x2 − ab+ a+ b g6 := −x1 − 2ab+ a+ b

6



Modeling a Circuit as Gröbner Bases
I Modeling Logic Gates:

z = ¬a⇒ g := −z + 1− a z = a⊕ b⇒ g := −z + a+ b− 2ab
z = a ∧ b⇒ g := −z + ab z = a ∨ b⇒ g := −z + a+ b− ab

I Full Adder Example:
a g6 g2

b g5 s

c g3

g4 g1 cout

x1

x4x3

x2

leading monomial tail terms
↘ ↙

g1 := −cout −x4x3 + x4 + x3 g2 := −s− 2x1c+ x1 + c
g3 := −x4 + x2c g4 := −x3 + ab
g5 := −x2 − ab+ a+ b g6 := −x1 − 2ab+ a+ b

6



Modeling a Circuit as Gröbner Bases

I Modeling Logic Gates:

z = ¬a⇒ g := −z + 1− a z = a⊕ b⇒ g := −z + a+ b− 2ab
z = a ∧ b⇒ g := −z + ab z = a ∨ b⇒ g := −z + a+ b− ab

I Full Adder Example:
leading monomial tail terms

↘ ↙
g1 := −cout −x4x3 + x4 + x3 g2 := −s− 2x1c+ x1 + c
g3 := −x4 + x2c g4 := −x3 + ab
g5 := −x2 − ab+ a+ b g6 := −x1 − 2ab+ a+ b

I Leading monomials are relatively prime =⇒ The model is
Gröbner bases

6



Ideal Membership Testing

I Following Full Adder Example: specification polynomial
pr := −2ccout − s+ c+ b+ a

I Its model

g1 := −cout −x4x3 + x4 + x3 g2 := −s− 2x1c+ x1 + c
g3 := −x4 + x2c g4 := −x3 + ab
g5 := −x2 − ab+ a+ b g6 := −x1 − 2ab+ a+ b

I Recursive Division:

7



Ideal Membership Testing

I Following Full Adder Example: specification polynomial
pr := −2ccout − s+ c+ b+ a

I Its model

g1 := −cout −x4x3 + x4 + x3 g2 := −s− 2x1c+ x1 + c
g3 := −x4 + x2c g4 := −x3 + ab
g5 := −x2 − ab+ a+ b g6 := −x1 − 2ab+ a+ b

I Recursive Division:
pr := −2ccout − s+ c+ b+ a

g1−−−→
−s +2x4x3 − 2x4 − 2x3 + c+ b+ a

g2−−−→

7



Ideal Membership Testing

I Following Full Adder Example: specification polynomial
pr := −2ccout − s+ c+ b+ a

I Its model

g1 := −cout −x4x3 + x4 + x3 g2 := −s− 2x1c+ x1 + c
g3 := −x4 + x2c g4 := −x3 + ab
g5 := −x2 − ab+ a+ b g6 := −x1 − 2ab+ a+ b

I Recursive Division:
g2−−−→ 2x4x3 − 2x4 − 2x3 + 2x1c− x1 + b+ a

g3−−−→

7



Ideal Membership Testing

I Following Full Adder Example: specification polynomial
pr := −2ccout − s+ c+ b+ a

I Its model

g1 := −cout −x4x3 + x4 + x3 g2 := −s− 2x1c+ x1 + c
g3 := −x4 + x2c g4 := −x3 + ab
g5 := −x2 − ab+ a+ b g6 := −x1 − 2ab+ a+ b

I Recursive Division:
g3−−−→ 2x3x2c− 2x3 − 2x2c+ 2x1c− x1 + b+ a

g4−−−→

7



Ideal Membership Testing

I Following Full Adder Example: specification polynomial
pr := −2ccout − s+ c+ b+ a

I Its model

g1 := −cout −x4x3 + x4 + x3 g2 := −s− 2x1c+ x1 + c
g3 := −x4 + x2c g4 := −x3 + ab
g5 := −x2 − ab+ a+ b g6 := −x1 − 2ab+ a+ b

I Recursive Division:
g4−−−→ 2x2cba− 2x2c+ 2x1c− x1 − 2ba+ b+ a

g5−−−→ 2x1c− x1 + 4cba− 2ca− 2cb− 2ab+ b+ a
g6−−−→ 0

7



Outline

Symbolic Computation

Algebraic Combinational Equivalence Checking (ACEC)
Reverse Engineering
Arithmetic Sweeping

Experimental Results

Conclusion

8



Flow of ACEC

Circuit
Netlist 1

Gröbner
Modeling

N1

Gröbner
Modeling

Circuit
Netlist 2

N2

Combined
Model

G1
G2

G

9



Flow of ACEC
Circuit
Netlist 1

Gröbner
Modeling

N1

Gröbner
Modeling

Circuit
Netlist 2

N2

Combined
Model

G1
G2

Membership
Testing

Output
Relationships

Inconsistency

Equivalence

G

9



Flow of ACEC
Circuit
Netlist 1

Gröbner
Modeling

N1

Gröbner
Modeling

Circuit
Netlist 2

N2

Combined
Model

G1
G2

Membership
Testing

Output
Relationships

Inconsistency

Equivalence

G

=⇒ Computationally Infeasible

9



Flow of ACEC
Circuit
Netlist 1

Gröbner
Modeling

N1

Gröbner
Modeling

Circuit
Netlist 2

N2

Combined
Model

G1
G2

Reverse
Engineering

G

G′wG

Model
Rewriting

G
Identifying

& Abstracting
Arithmetic Units

G′ wG

G′

G′: Rewritten Combined Model
wG: Abstracted Polynomials Set of Arithmetic Units

9



Flow of ACEC

Reverse
Engineering

Arithmetic
Sweeping

G′wG

G

sG

Deducing
Relationships

G′wG

Membership
Testing

Internal
Relationships

G′wG

Model
Simplification

Equivelance/
Inconsistency

sGG′

9



Flow of ACEC

Reverse
Engineering

Arithmetic
Sweeping

G′wG

G

Membership
Testing

Output
Relationships

sG

Inconsistency

Equivalence

9



Outline

Symbolic Computation

Algebraic Combinational Equivalence Checking (ACEC)
Reverse Engineering
Arithmetic Sweeping

Experimental Results

Conclusion

10



Reverse Engineering
I Based on detecting carry bits propagation within arithmetic units

(integer adders and multipliers)
I Full adder model revealing carry terms:

g1 : −s+ c+ b+ a+ 4cba− 2cb− 2ca− 2ba
g2 : −cout − 2cba+ cb+ ca+ ba

I Identifying subsets of polynomials that share carry terms,
therefore, model arithmetic components

I Model rewriting is required for:
I Revealing carry terms
I Removing vanishing monomials (redundant monomials that

always evaluate to zero)
I Abstraction by Gaussian elimination, for the full adder:

2g2 + g1 → gr : −2cout − s+ c+ b+ a

11



Reverse Engineering
I Based on detecting carry bits propagation within arithmetic units

(integer adders and multipliers)
I Full adder model revealing carry terms:

g1 : −s+ c+ b+ a+ 4cba− 2cb− 2ca− 2ba
g2 : −cout − 2cba+ cb+ ca+ ba

I Identifying subsets of polynomials that share carry terms,
therefore, model arithmetic components

I Model rewriting is required for:
I Revealing carry terms
I Removing vanishing monomials (redundant monomials that

always evaluate to zero)
I Abstraction by Gaussian elimination, for the full adder:

2g2 + g1 → gr : −2cout − s+ c+ b+ a

11



Reverse Engineering
I Based on detecting carry bits propagation within arithmetic units

(integer adders and multipliers)
I Full adder model revealing carry terms:

g1 : −s+ c+ b+ a+ 4cba− 2cb− 2ca− 2ba
g2 : −cout − 2cba+ cb+ ca+ ba

I Identifying subsets of polynomials that share carry terms,
therefore, model arithmetic components

I Model rewriting is required for:
I Revealing carry terms
I Removing vanishing monomials (redundant monomials that

always evaluate to zero)
I Abstraction by Gaussian elimination, for the full adder:

2g2 + g1 → gr : −2cout − s+ c+ b+ a

11



Reverse Engineering
I Based on detecting carry bits propagation within arithmetic units

(integer adders and multipliers)
I Full adder model revealing carry terms:

g1 : −s+ c+ b+ a+ 4cba− 2cb− 2ca− 2ba
g2 : −cout − 2cba+ cb+ ca+ ba

I Identifying subsets of polynomials that share carry terms,
therefore, model arithmetic components

I Model rewriting is required for:
I Revealing carry terms
I Removing vanishing monomials (redundant monomials that

always evaluate to zero)
I Abstraction by Gaussian elimination, for the full adder:

2g2 + g1 → gr : −2cout − s+ c+ b+ a

11



Reverse Engineering
I Based on detecting carry bits propagation within arithmetic units

(integer adders and multipliers)
I Full adder model revealing carry terms:

g1 : −s+ c+ b+ a+ 4cba− 2cb− 2ca− 2ba
g2 : −cout − 2cba+ cb+ ca+ ba

I Identifying subsets of polynomials that share carry terms,
therefore, model arithmetic components

I Model rewriting is required for:
I Revealing carry terms
I Removing vanishing monomials (redundant monomials that

always evaluate to zero)
I Abstraction by Gaussian elimination, for the full adder:

2g2 + g1 → gr : −2cout − s+ c+ b+ a

11



Reverse Engineering
I Based on detecting carry bits propagation within arithmetic units

(integer adders and multipliers)
I Full adder model revealing carry terms:

g1 : −s+ c+ b+ a+ 4cba− 2cb− 2ca− 2ba
g2 : −cout − 2cba+ cb+ ca+ ba

I Identifying subsets of polynomials that share carry terms,
therefore, model arithmetic components

I Model rewriting is required for:
I Revealing carry terms
I Removing vanishing monomials (redundant monomials that

always evaluate to zero)
I Abstraction by Gaussian elimination, for the full adder:

2g2 + g1 → gr : −2cout − s+ c+ b+ a

11



Reverse Engineering
I Based on detecting carry bits propagation within arithmetic units

(integer adders and multipliers)
I Full adder model revealing carry terms:

g1 : −s+ c+ b+ a+ 4cba− 2cb− 2ca− 2ba
g2 : −cout − 2cba+ cb+ ca+ ba

I Identifying subsets of polynomials that share carry terms,
therefore, model arithmetic components

I Model rewriting is required for:
I Revealing carry terms
I Removing vanishing monomials (redundant monomials that

always evaluate to zero)
I Abstraction by Gaussian elimination, for the full adder:

2g2 + g1 → gr : −2cout − s+ c+ b+ a

11



Reverse Engineering: 1) Model Rewriting

I XOR rewriting preserves inputs and outputs of chains of XOR
gates

I Parallel Adder Model:
c2 = D2 ∨ (X2 ∧D1) ∨ (X2 ∧X1 ∧D0) =⇒ g1 :=
−c2 +X2X1a2b2a1b1a0b0 −X2X1a1b1a0b0 −X2X1a2b2a0b0 −
X2a2b2a1b1 +X2X1a0b0 +X2a1b1 + a2b2

s2 = X2 ⊕ c1 =⇒ g2 := −s2 − 2c1X2 + c1 +X2

c1 = D1 ∨ (X1 ∧D0)=⇒ g3 := −c1−X1a1b1a0b0 +X1a0b0 + a1b1
s1 = X1 ⊕ c0 =⇒ g4 := −s1 − 2c0X1 + c0 +X1

c0 = D0 =⇒ g5 := −c0 + a0b0
s0 = X0 =⇒ g6 := −s0 +X0

Xi = ai ⊕ bi =⇒ gk−i−1 := −Xi − 2aibi + bi + ai
Di = ai ∧ bi =⇒ gk−i := −Di + aibi

12



Reverse Engineering: 1)Model Rewriting

I Common rewriting preserves shared variables between
polynomials

I Parallel adder model after XOR rewriting:
g1 := −c2 +X2X1a0b0 +X2a1b1 + a2b2

g2 := −s2 − 2c1X2 + c1 +X2

g3 := −c1 +X1a0b0 + a1b1
g4 := −s1 − 2c0X1 + c0 +X1

g5 := −c0 + a0b0
g6 := −s0 +X0

g7 := −X0 − 2a0b0 + b0 + a0
g8 := −X1 − 2a1b1 + b1 + a1
g9 := −X2 − 2a2b2 + b2 + a2

I X0, c0 and c1 will be eliminated

13



Reverse Engineering: 1)Model Rewriting

I Common rewriting preserves shared variables between
polynomials

I Parallel adder model after XOR rewriting:
g1 := −c2 +X2X1a0b0 +X2a1b1 + a2b2

g2 := −s2 − 2c1X2 + c1 +X2

g3 := −c1 +X1a0b0 + a1b1
g4 := −s1 − 2c0X1 + c0 +X1

g5 := −c0 + a0b0
g6 := −s0 +X0

g7 := −X0 − 2a0b0 + b0 + a0
g8 := −X1 − 2a1b1 + b1 + a1
g9 := −X2 − 2a2b2 + b2 + a2

I X0, c0 and c1 will be eliminated

13



Reverse Engineering: 1)Model Rewriting

I Common rewriting preserves shared variables between
polynomials

I Parallel adder model after XOR rewriting:
g1 := −c2 +X2X1a0b0 +X2a1b1 + a2b2

g2 := −s2 − 2c1X2 + c1 +X2

g3 := −c1 +X1a0b0 + a1b1
g4 := −s1 − 2c0X1 + c0 +X1

g5 := −c0 + a0b0
g6 := −s0 +X0

g7 := −X0 − 2a0b0 + b0 + a0
g8 := −X1 − 2a1b1 + b1 + a1
g9 := −X2 − 2a2b2 + b2 + a2

I X0, c0 and c1 will be eliminated

13



Reverse Engineering: 2) Extracting Arithmetic
Units

I Parallel adder model after common rewriting:
g1 := −c2+X2X1a0b0 +X2a1b1 + a2b2

g2 := −s2−2X2X1a0b0 − 2X2a1b1 +X2 +X1a0b0+a1b1
g4 := −s1−2X1a0b0 + a0b0 +X1

g6 := −s0 +−2a0b0 + b0 + a0
g8 := −X1 − 2a1b1 + b1 + a1
g9 := −X2 − 2a2b2 + b2 + a2

I Abstraction by Gaussian elimination:

14



Reverse Engineering: 2) Extracting Arithmetic
Units

I Parallel adder model after common rewriting:
g1 := −c2+X2X1a0b0 +X2a1b1 + a2b2

g2 := −s2−2X2X1a0b0 − 2X2a1b1 +X2 +X1a0b0+a1b1
g4 := −s1−2X1a0b0 + a0b0 +X1

g6 := −s0 +−2a0b0 + b0 + a0
g8 := −X1 − 2a1b1 + b1 + a1
g9 := −X2 − 2a2b2 + b2 + a2

I Abstraction by Gaussian elimination:

14



Reverse Engineering: 2) Extracting Arithmetic
Units

I Parallel adder model after common rewriting:
g1 := −c2+X2X1a0b0 +X2a1b1 + a2b2

g2 := −s2−2X2X1a0b0 − 2X2a1b1 +X2 +X1a0b0+a1b1
g4 := −s1−2X1a0b0 + a0b0 +X1

g6 := −s0 +−2a0b0 + b0 + a0
g8 := −X1 − 2a1b1 + b1 + a1
g9 := −X2 − 2a2b2 + b2 + a2

I Abstraction by Gaussian elimination:
2g1 + g2 −→ gres := −2c2 +2X2X1a0b0 + 2X2a1b1 + 2a2b2 −
s2 −2X2X1a0b0 − 2X2a1b1 +X2 +X1a0b0+a1b1

14



Reverse Engineering: 2) Extracting Arithmetic
Units

I Parallel adder model after common rewriting:
g1 := −c2+X2X1a0b0 +X2a1b1 + a2b2

g2 := −s2−2X2X1a0b0 − 2X2a1b1 +X2 +X1a0b0+a1b1
g4 := −s1−2X1a0b0 + a0b0 +X1

g6 := −s0 +−2a0b0 + b0 + a0
g8 := −X1 − 2a1b1 + b1 + a1
g9 := −X2 − 2a2b2 + b2 + a2

I Abstraction by Gaussian elimination:
2g1 + g2 −→ gres := −2c2 (((((((((((hhhhhhhhhhh

+2X2X1a0b0 + 2X2a1b1 + 2a2b2 −
s2 (((((((((((hhhhhhhhhhh
−2X2X1a0b0 − 2X2a1b1 +X2 +X1a0b0+a1b1

14



Reverse Engineering: 2) Extracting Arithmetic
Units

I Parallel adder model after common rewriting:
g1 := −c2+X2X1a0b0 +X2a1b1 + a2b2

g2 := −s2−2X2X1a0b0 − 2X2a1b1 +X2 +X1a0b0+a1b1
g4 := −s1−2X1a0b0 + a0b0 +X1

g6 := −s0 +−2a0b0 + b0 + a0
g8 := −X1 − 2a1b1 + b1 + a1
g9 := −X2 − 2a2b2 + b2 + a2

I Abstraction by Gaussian elimination:
gres := −2c2 − s2 +X2 +X1a0b0+2a2b2+a1b1
2gres+g4 −→ gres := −4c2−2s2−s1+2X2+X1+4a2b2+2a1b1+a0b0

14



Reverse Engineering: 2) Extracting Arithmetic
Units

I Parallel adder model after common rewriting:
g1 := −c2+X2X1a0b0 +X2a1b1 + a2b2

g2 := −s2−2X2X1a0b0 − 2X2a1b1 +X2 +X1a0b0+a1b1
g4 := −s1−2X1a0b0 + a0b0 +X1

g6 := −s0 +−2a0b0 + b0 + a0
g8 := −X1 − 2a1b1 + b1 + a1
g9 := −X2 − 2a2b2 + b2 + a2

I Abstraction by Gaussian elimination:
gres := −4c2 − 2s2 − s1 + 2X2 +X1+4a2b2+2a1b1+a0b0
2gres + g6 −→ gres :=

−8c2 − 4s2 − 2s1 − s0 + 4X2 + 2X1+8a2b2+4a1b1 + b0 + a0

14



Reverse Engineering: 2) Extracting Arithmetic
Units

I Parallel adder model after common rewriting:
g1 := −c2+X2X1a0b0 +X2a1b1 + a2b2

g2 := −s2−2X2X1a0b0 − 2X2a1b1 +X2 +X1a0b0+a1b1
g4 := −s1−2X1a0b0 + a0b0 +X1

g6 := −s0 +−2a0b0 + b0 + a0
g8 := −X1 − 2a1b1 + b1 + a1
g9 := −X2 − 2a2b2 + b2 + a2

I Abstraction by Gaussian elimination:
gres := −8c2− 4s2− 2s1− s0 +4X2 +2X1+8a2b2+4a1b1 + b0 + a0
gres + 2g8 −→ gres :=

−8c2 − 4s2 − 2s1 − s0 + 4X2+8a2b2 + 2b1 + 2a1 + b0 + a0

14



Reverse Engineering: 2) Extracting Arithmetic
Units

I Parallel adder model after common rewriting:
g1 := −c2+X2X1a0b0 +X2a1b1 + a2b2

g2 := −s2−2X2X1a0b0 − 2X2a1b1 +X2 +X1a0b0+a1b1
g4 := −s1−2X1a0b0 + a0b0 +X1

g6 := −s0 +−2a0b0 + b0 + a0
g8 := −X1 − 2a1b1 + b1 + a1
g9 := −X2 − 2a2b2 + b2 + a2

I Abstraction by Gaussian elimination:
gres := −8c2 − 4s2 − 2s1 − s0 + 4X2+8a2b2 + 2b1 + 2a1 + b0 + a0
gres + 4g9 −→
gres := −8c2 − 4s2 − 2s1 − s0 + 4b2 + 4a2 + 2b1 + 2a1 + b0 + a0

14



Outline

Symbolic Computation

Algebraic Combinational Equivalence Checking (ACEC)
Reverse Engineering
Arithmetic Sweeping

Experimental Results

Conclusion

15



Arithmetic Sweeping

Reverse
Engineering

Arithmetic
Sweeping

G′wG

G

sG

Deducing
Relationships

G′wG

Membership
Testing

Internal
Relationships

G′wG

Model
Simplification

Equivelance/
Inconsistency

sGG′

16



Deducing Relationships

DPU2DPU1

DPU3 DPU4

C1 Netlist C2 Netlist

Transitive

Fan-in

Transitive

Fan-in

I Partitioning the combined model based on the extracted
arithmetic information

17



Deducing and Testing Relationships

DPU2DPU1

−x+ x̂
G′
−−−→+ r

Transitive

Fan-in

Transitive

Fan-in

I Deducing and testing bit relationships between variables of the
transitive fan-in of arithmetic units

18



Deducing and Testing Relationships

DPU2DPU1

−2n−1sn−1 − · · · − s0+2n−1ŝn−1 + · · ·+ ŝ0
wG−−−−→+ r

I Testing the word relationship between output variables of
compared arithmetic units, using the abstracted polynomials

18



Model Simplification

DPU3 DPU4

C1 Netlist C2 Netlist

I Merging proved equivalent variables simplifies the combined
model dramatically

I Therefore, testing output relationships wrt. the simplified model
is computationally feasible

19



Model Simplification

DPU3 DPU4

C1 Netlist C2 Netlist

I Merging proved equivalent variables simplifies the combined
model dramatically

I Therefore, testing output relationships wrt. the simplified model
is computationally feasible

19



Outline

Symbolic Computation

Algebraic Combinational Equivalence Checking (ACEC)
Reverse Engineering
Arithmetic Sweeping

Experimental Results

Conclusion

20



Experimental Results

Simple Multiplier
Complex

Multiplier

EXP

Adder

EXP

Adder

Normalize & Round

Optimized-

Normalize & Round

Left Hand Side Right Hand Side

eaeb eaebfafb fafb

fpep f̂pêp

Figure: Compared FP Multiplier Circuits

21



Experimental Results

Multiplier FP operand Commercial ABC ACEC
Architecture # bits (h:m:s) (h:m:s) (h:m:s)

SP-CT-BK 16 00:08:50 TO 00:01:42
SP-WT-CH 16 00:09:08 TO 00:01:44

SP-CT-BK 24 TO TO 00:17:49
SP-WT-CH 24 TO TO 00:25:58

SP-CT-BK 32 TO TO 02:24:01
SP-WT-CH 32 TO TO 03:41:43

SP→ Simple Partial Product

WT→Wallace Tree

CT→ Compressor Tree

CH→ Carry Look Ahead
Adder

BK→ Brent-Kung Adder

TO=100 Hour

22



Outline

Symbolic Computation

Algebraic Combinational Equivalence Checking (ACEC)
Reverse Engineering
Arithmetic Sweeping

Experimental Results

Conclusion

23



Conclusion

I New algebraic equivalence checking technique for circuits that
combine data-path and control logic

I New reverse engineering algorithm to extract and abstract
arithmetic components

I Arithmetic sweeping based on input and output boundaries of the
abstracted components

I Efficient polynomial representation (negative-Davio
decomposition)

I Checking equivalence of large floating-point multipliers which
cannot be verified by state-of-art equivalence checkers

I Verifying heavy optimized circuits and dealing with
non-equivalent circuits are still major challenges

24



Conclusion

I New algebraic equivalence checking technique for circuits that
combine data-path and control logic

I New reverse engineering algorithm to extract and abstract
arithmetic components

I Arithmetic sweeping based on input and output boundaries of the
abstracted components

I Efficient polynomial representation (negative-Davio
decomposition)

I Checking equivalence of large floating-point multipliers which
cannot be verified by state-of-art equivalence checkers

I Verifying heavy optimized circuits and dealing with
non-equivalent circuits are still major challenges

24



Conclusion

I New algebraic equivalence checking technique for circuits that
combine data-path and control logic

I New reverse engineering algorithm to extract and abstract
arithmetic components

I Arithmetic sweeping based on input and output boundaries of the
abstracted components

I Efficient polynomial representation (negative-Davio
decomposition)

I Checking equivalence of large floating-point multipliers which
cannot be verified by state-of-art equivalence checkers

I Verifying heavy optimized circuits and dealing with
non-equivalent circuits are still major challenges

24



Conclusion

I New algebraic equivalence checking technique for circuits that
combine data-path and control logic

I New reverse engineering algorithm to extract and abstract
arithmetic components

I Arithmetic sweeping based on input and output boundaries of the
abstracted components

I Efficient polynomial representation (negative-Davio
decomposition)

I Checking equivalence of large floating-point multipliers which
cannot be verified by state-of-art equivalence checkers

I Verifying heavy optimized circuits and dealing with
non-equivalent circuits are still major challenges

24



Conclusion

I New algebraic equivalence checking technique for circuits that
combine data-path and control logic

I New reverse engineering algorithm to extract and abstract
arithmetic components

I Arithmetic sweeping based on input and output boundaries of the
abstracted components

I Efficient polynomial representation (negative-Davio
decomposition)

I Checking equivalence of large floating-point multipliers which
cannot be verified by state-of-art equivalence checkers

I Verifying heavy optimized circuits and dealing with
non-equivalent circuits are still major challenges

24



Conclusion

I New algebraic equivalence checking technique for circuits that
combine data-path and control logic

I New reverse engineering algorithm to extract and abstract
arithmetic components

I Arithmetic sweeping based on input and output boundaries of the
abstracted components

I Efficient polynomial representation (negative-Davio
decomposition)

I Checking equivalence of large floating-point multipliers which
cannot be verified by state-of-art equivalence checkers

I Verifying heavy optimized circuits and dealing with
non-equivalent circuits are still major challenges

24



Equivalence Checking using
Gröbner Bases

Amr Sayed-Ahmed1 Daniel Große1,2

Mathias Soeken3 Rolf Drechsler1,2

1University of Bremen, Germany
2DFKI GmbH, Germany

3EPFL, Switzerland

Email: asahmed@informatik.uni-bremen.de

FMCAD, October 2016

25


	Symbolic Computation
	Algebraic Combinational Equivalence Checking (ACEC)
	 Reverse Engineering
	 Arithmetic Sweeping 

	 Experimental Results
	 Conclusion

