
Proceedings of the 16th Conference on
Formal Methods in Computer-Aided Design (FMCAD 2016)

Mountain View, California, USA, October 3 - 6, 2016

Edited by Ruzica Piskac and Muralidhar Talupur

Proceedings of the 16th Conference on

Formal Methods in Computer-Aided Design

FMCAD 2016

October 3 - 6, 2016

Mountain View, California, USA

Edited by Ruzica Piskac and Muralidhar Talupur

ISBN: 978-0-9835678-6-8
Copyright owned jointly by the authors and FMCAD Inc.
Title page: Photo provided with limited rights.

Preface

The International Conference on Formal Methods in Computer-Aided Design (FMCAD) is a series of meetings presenting
groundbreaking results on the theory and application of rigorous formal techniques for the automated design of systems. The
FMCAD conference covers the entire spectrum of formal aspects of specification, verification, synthesis, and testing, and is a
leading forum for researchers and practitioners in academia and industry alike. The sixteenth meeting in the series was held
in Mountain View, California, USA, October 3-6, 2016.

FMCAD 2016 featured a high quality program comprised of five parts: a memorial session for Professor Helmut Veith, one
of the original co-chairs for this event, a tutorial day with four tutorials, a series of invited talks by experts in areas adjoining
formal methods, a student forum, and finally the main program consisting of the accepted papers.

Before his unexpected passing, Helmut Veith was one of the key persons in shaping this event. We have endeavored to
stay true to his vision by creating a program that is informative, high quality, and enjoyable at the same time. We had a
memorial session for Helmut with talks by his collaborators and friends. This was a followed by a keynote by Professor
Christos Papadimitriou on algorithms and evolution. Helmut was excited about having this talk at FMCAD and we were glad
that Professor Papadimitriou was able to give this talk.

This year FMCAD featured exciting keynote talks not just from formal methods, but also from adjoining areas:
• Formal Verification for Computer Security: Lessons Learned and Future Directions by Dawn Song (UC Berkeley)
• Understanding Evolution through Algorithms by Christos Papadimitriou (UC Berkeley)
• Network Verification - When Clarke Meets Cerf by George Varghese (UCLA)
All these talks were given by well known experts, possibly outside the traditional topics at FMCAD, but were crucial

for expanding horizons of the formal methods community. The talk on evolution, in particular, was not connected to formal
methods, but we honored Helmut’s wish to have a fun invited talk on the latest advances in the broader field of Computer
Science.

The tutorial day featured four tutorials, given below in the order of presentation. These gave the audience both a look into
the latest developments in the field, and a retrospective on formal methods in the industry.

• Machine Learning and Systems for the Next Frontier in Formal Verification by Manish Pandey, Synopsys Inc.
• Verifying Hyperproperties of Hardware Systems by Bernd Finkbeiner (Saarland University) and Markus Rabe (UC

Berkeley)
• A Paradigm Shift in Verification Methodology by Pranav Ashar (RealIntent)
• Program Synthesis for Networks by Pavol Černý (University of Colorado Boulder)
FMCAD also offered the fourth edition of the Student Forum, organized by Hossein Hojjat (Rochester Institute of Technol-

ogy). The Forum is described in more detail later in these proceedings.
For the main program, we received 64 submissions, resulting in 23 high quality accepted papers. Each paper was reviewed

by at least four reviewers. The authors were then given the opportunity to respond to the comments and correct any misun-
derstanding. This rebuttal phase lasted a week and was followed by discussions among the reviewers to converge on a final
score for the paper.

The final set of accepted papers ranged from protocol verification, architectural specification capture, traditional hardware,
software verification, SMT solvers, program synthesis, and verification of timed systems. During the conference each paper
was presented by one of the authors followed by a brief Q&A. Each regular paper was allotted 30 minutes and the three short
papers were allotted 15 minutes each.

A conference with such a diverse program and audience as FMCAD relies on a large number of people supporting the
organization. The program committee members are too numerous to list individually; we thank each and every one of them for
their time, dedication to the purpose of FMCAD, their willingness to help the authors improve their manuscripts, and their help
with additional tasks such as selecting and reviewing papers for the Best Paper Award. Our sincere gratitude further goes out
to the Publication Chair Florian Zuleger (Vienna University of Technology, Austria; in charge of these proceedings). Hossein
Hojjat (Rochester Institute of Technology) took over the non-trivial task of serving as Student Forum Chair; his engagement and
enthusiasm for the process ensured an encouragingly large number of Student Forum submissions. Special thanks goes to Jens
Katelaan (Vienna University of Technology, Austria) and Keshav Kini (University of Texas at Austin) formally the Webchairs,
creating and maintaining a snappy new FMCAD website. The conference would not be possible without the tireless efforts of
our Local Chairs Sean Safarpour (Synopsys) and Divjyot Sethi (Cisco) who made all the arrangements for conference to take
place. Sean in particular worked with Synopsys management to host FMCAD at its facilities and ultimately save us quite a
bit of expenses. As always, the FMCAD Steering Committee was available with both guidance and encouragement whenever
needed, and even when not. We thank Armin Biere (Johannes Kepler University in Linz, Austria), Alan Hu (University of
British Columbia, Canada), Warren A. Hunt, Jr. (University of Texas at Austin), and Vigyan Singhal (Oski Technology).

We would like to express our gratitude to our industrial sponsors Amazon, Cadence Design Systems, Cisco Systems, FMCAD,
Inc., IBM, Infosys, Mentor Graphics, OneSpin Solutions, Oski Technology, and Synopsys. for their continued financial support
of the FMCAD community. The National Science Foundation and FMCAD Inc. provided generous funds in support of the
Student Forum, without which this event would simply not be possible.

FMCAD 2016 once again received in-cooperation status with ACM under the Special Interest Groups on Programming
Languages (SIGPLAN) and on Software Engineering (SIGSOFT). It also received technical sponsorship from the IEEE Council
on Electronic Design Automation. The FMCAD 2016 Proceedings are available through the ACM Digital Library, the IEEE
Xplore Digital Library, and are also available as a free download from the FMCAD Website.

At the heart of the conference are, of course, the accepted papers, the tutorials, and the keynotes; we thank all presenters for
their efforts to devote a significant portion of their time to FMCAD. We are grateful to all authors of submissions, accepted
or not, and all attendees of FMCAD 2016, for playing their part in making FMCAD a continued success story.

Finally, we would like to dedicate these proceedings to Helmut Veith, our cherished friend, and colleague. He will be dearly
missed both as a collaborator and a friend.

Ruzica Piskac and Muralidhar Talupur
FMCAD 2016 Program Chairs
Mountain View, California, October 2016.

Organization Committee

Program Co-Chairs
Ruzica Piskac Yale University
Muralidhar Talupur FormalSim

Local Arrangement Chairs & Webmasters
Sean Safarpour Synopsys
Divjyot Sethi Cisco
Jens Katelaan Technical University of Vienna
Keshav Kini University of Texas Austin

Publication Chair
 Florian Zuleger Technical University of Vienna

Student Forum Chair
Hossein Hojjat Rochester Institute of Technology

Steering Committee
 Armin Biere Johannes Kepler University in Linz, Austria
 Alan J. Hu University of British Columbia, Canada
 Warren A. Hunt, Jr. University of Texas at Austin, USA
 Vigyan Singhal Oski Tech

Program Committee
Pranav Ashar Real Intent
Domagoj Babic Google
Armin Biere Johannes Kepler University
Roderick Bloem Graz University of Technology
Ahmed Bouajjani LIAFA, University Paris Diderot
Gianpiero Cabodi Politecnico di Torino
Supratik Chakraborty IIT Bombay
Leonardo de Moura Microsoft Research
Michael Emmi IMDEA Software Institute
Malay Ganai Synopsys
Arie Gurfinkel University of Waterloo
Ziyad Hanna Cadence Design System
Fei He School of Software, Tsinghua University
Keijo Heljanko Aalto University
Warren Hunt University of Texas
Himanshu Jain Synopsys
Gerwin Klein NICTA and UNSW
Daniel Kroening Computer Science Department, University of Oxford
Shuvendu Lahiri Microsoft Research
Rebekah Leslie-Hurd Intel
Panagiotis Manolios Northeastern University
Kenneth McMillan Microsoft Research
John O’Leary Intel Corporation
Lee Pike Galois, Inc.
Ruzica Piskac Yale University
Ahmed Rezine Linköping University
Sean Safarpour Synopsys
Divjyot Sethi CISCO
Natasha Sharygina University of Lugano
Sharon Shoham The Academic College of Tel Aviv Yaffo
Muralidhar Talupur FormalSim
Michael Tautschnig Queen Mary University of London
Helmut Veith Vienna University of Technology
Tomas Vojnar Brno University of Technology
Chao Wang Virginia Tech
Eran Yahav Technion
Florian Zuleger Technische Universiät Wien

Additional Reviewers

Alberti, Francesco
Alpernas, Kalev
Alt, Leonardo
Aminof, Benjamin
Andronick, June
Asarin, Eugene
Asathulla, Mudabir

Bannister, Callum
Bjesse, Per
Bortin, Maksym
Bozga, Marius
Brain, Martin
Braud-Santoni, Nicolas

Calderon Trilla, Jose Manuel
Cerny, Eduard
Ceska, Milan
Chakroborty, Souy
Chen, Ben
Chou, Cuong

Dang, Thao
David, Cristina

Ebrahimi, Masoud
Enea, Constantin

Fedyukovich, Grigory

Gopalakrishnan, Sivaram
Graf, Susanne
Guo, Shengjian

Hoenicke, Jochen
Holik, Lukas
Hyvärinen, Antti

Iabrudi, Andréa
Ivrii, Alexander

Katelaan, Jens
Khalimov, Ayrat
Kini, Keshav
Koenighofer, Bettina
Kumar, Ramana

Leslie-Hurd, Joe

Mador-Haim, Sela
Maranget, Luc
Marescotti, Matteo
Meshman, Yuri

Moondanos, John
Mukherjee, Rajdeep
Murray, Toby

Nadel, Alexander
Narayana, Srinivas
Ngo, Van Chan
Nonoshita, Hiroshi
Norrish, Michael

Padon, Oded
Palena, Marco
Pani, Thomas
Parizek, Pavel
Parthasarathy, Ganapathy
Partush, Nimrod
Pasini, Paolo
Peleg, Hila
Petri, Gustavo
Plassan, Guillaume
Ponce-De-Leon, Hernan

Radicek, Ivan
Rasin, Dan
Reynolds, Andrew
Roeck, Franz
Roy, Tonmoy

Saarikivi, Olli
Sangnier, Arnaud
Santolucito, Mark
Schrammel, Peter
Seidl, Martina
Selfridge, Ben
Sinn, Moritz
Sousa, Marcelo
Sproston, Jeremy
Subramanyan, Pramod
Sung, Chungha

Vendraminetto, Danilo
Vizel, Yakir

Westbrook, Edwin
Winwood, Simon
Wolfovitz, Guy
Wu, Meng

Zeljić, Aleksandar
Zhang, Naling
Zhou, Min

Table of Contents

Formal Verification for Computer Security: Lessons Learned and Future Directions . 1
Dawn Song

Understanding Evolution through Algorithms . 2
Christos Papadimitriou

Network Verification - When Clarke Meets Cerf . 3
George Varghese

Machine Learning and Systems for the Next Frontier in Formal Verification . 4
Manish Pandey

Verifying Hyperproperties of Hardware Systems . 5
Bernd Finkbeiner and Markus Rabe

A Paradigm Shift in Verification Methodology . 6
Pranav Ashar

Program Synthesis for Networks . 7
Pavol Černý

The FMCAD 2016 Graduate Student Forum . 8
Hossein Hojjat

Soundness of the Quasi-Synchronous Abstraction . 9
Guillaume Baudart, Timothy Bourke and Marc Pouzet

Synthesizing Adaptive Test Strategies from Temporal Logic Specifications . 17
Roderick Bloem, Robert Koenighofer, Ingo Pill and Franz Roeck

Reducing Interpolant Circuit Size by Ad Hoc Logic Synthesis and SAT-Based Weakening . 25
Gianpiero Cabodi, Paolo E. Camurati, Marco Palena, Paolo Pasini and Danilo Vendraminetto

Extracting Behaviour from an Executable Instruction Set Model . 33
Brian Campbell and Ian Stark

Categorical Semantics of Digital Circuits . 41
Dan Ghica and Achim Jung

Equivalence Checking By Logic Relaxation . 49
Eugene Goldberg

Minimal unsatisfiable core extraction for SMT . 57
Ofer Guthmann, Ofer Strichman and Anna Trostanetski

Efficient Uninterpreted Function Abstraction and Refinement for Word-level Model Checking . 65
Yen-Sheng Ho, Pankaj Chauhan, Pritam Roy, Alan Mishchenko and Robert Brayton

Optimizing Horn Solvers for Network Repair . 73
Hossein Hojjat, Philipp Ruemmer, Jedidiah McClurg, Pavol Černy and Nate Foster

On ∃∀∃! Solving: A Case Study on Automated Synthesis of Magic Card Tricks. 81
Susmit Jha, Vasumathi Raman and Sanjit A. Seshia

Property-Directed k-Induction . 85
Dejan Jovanović and Bruno Dutertre

Lazy Proofs for DPLL(T)-Based SMT Solvers . 93
Guy Katz, Clark Barrett, Cesare Tinelli, Andrew Reynolds and Liana Hadarean

Verifiable Hierarchical Protocols with Network Invariants on Parametric Systems . 101
Opeoluwa Matthews, Jesse Bingham and Daniel Sorin

Modular Specification and Verification of a Cache-Coherent Interface . 109
Kenneth McMillan

Proof Certificates for SMT-based Model Checkers for Infinite-state Systems . 117
Alain Mebsout and Cesare Tinelli

Routing under Constraints . 125
Alexander Nadel

A Consistency Checker for Memory Subsystem Traces . 133
Matthew Naylor, Simon Moore and Alan Mujumdar

Hybrid Partial Order Reduction with Under-Approximate Dynamic Points-To and Determinacy Information 141
Pavel Parizek

Formal Verification of Division and Square Root Implementations, an Oracle Report . 149
David Rager, Jo Ebergen, Dmitry Nadezhin, Austin Lee, Cuong Chau and Ben Selfridge

Integrating Proxy Theories and Numeric Model Lifting for Floating-Point Arithmetic . 153
Jaideep Ramachandran and Thomas Wahl

Trustworthy Specifications of ARM v8-A and v8-M System Level Architecture . 161
Alastair Reid

Equivalence Checking Using Gröbner Bases . 169
Amr Sayed-Ahmed, Daniel Grosse, Mathias Soeken and Rolf Drechsler

Accurate ICP-based Floating-Point Reasoning . 177
Karsten Scheibler, Felix Neubauer, Ahmed Mahdi, Martin Fränzle, Tino Teige, Tom Bienmüller, Detlef Fehrer and
Bernd Becker

SWAPPER: A Framework for Automatic Generation of Formula Simplifiers based on Conditional Rewrite Rules 185
Rohit Singh and Armando Solar-Lezama

Lazy Sequentialization for TSO and PSO via Shared Memory Abstractions . 193
Ermenegildo Tomasco, Truc Nguyen Lam, Omar Inverso, Bernd Fischer, Salvatore La Torre and Gennaro Parlato

Combining Requirement Mining, Software Model Checking, and Simulation-Based Verification for Industrial
Automotive Systems . 201

Tomoya Yamaguchi, Tomoyuuki Kaga, Alexandre Donzé and Sanjit A Seshia

Formal Verification for Computer Security: Lessons
Learned and Future Directions

Dawn Song
UC Berkeley

ABSTRACT OF INVITED TALK

Formal verification techniques have been fruitful for a broad spectrum of different security applications and domains.
However, many important questions and considerations influence the success of applying formal verification techniques to
security applications and domains. In this talk, I will share lessons learned from experience of over a decade in applying formal
verification techniques to security. I will also discuss new exciting application domains such as blockchain and smart contracts
for formal verification. I will pose important, open challenges and discuss future directions for verifying next-generation systems
such as learning systems.

1

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Understanding Evolution through Algorithms
Christos Papadimitriou

UC Berkeley

ABSTRACT OF INVITED TALK

Why is evolution so successful? What is the role of sex (recombination)? Why is there so much diversity in populations?
How do novel traits arise? Are mutations random? And is evolution optimizing something? This talk will review recent work
by the speaker and collaborators aiming at understanding the many persistent mysteries of evolution through computational
ideas.

2

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Network Verification - When Clarke Meets Cerf
George Varghese

UCLA

ABSTRACT OF INVITED TALK

Surveys reveal that network outages are prevalent, and that many outages take hours to resolve, resulting in significant lost
revenue. Many bugs are caused by errors in configuration files which are programmed using arcane, low-level languages, akin
to machine code. Taking our cue from program and hardware verification, we suggest fresh approaches. I will first describe
a geometric model of network forwarding called Header Space. While header space analysis is similar to finite state machine
verification, we exploit domain-specific structure to scale better than off-the shelf model checkers. Next, I show how to exploit
physical symmetry to scale network verification for large data centers. While Emerson and Sistla showed how to exploit
symmetry for model checking in 1996, they exploited symmetry on the logical Kripke structure. While header space models
allow us to verify the forwarding tables in routers, there are also routing protocols such as BGP that build the forwarding
tables. We show to go from header space verification to what we call control space verification to proactively catch latent
bugs in BGP configurations. I will end with a vision for what we call Network Design Automation to build a suite of tools
for networks inspired by the Electronic Design Automation Industry. (With collaborators at CMU, Edinburgh, MSR, Stanford,
and UCLA.)

3

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Machine Learning and Systems for the Next
Frontier in Formal Verification

Manish Pandey
Synopsys

ABSTRACT OF TUTORIAL TALK

This tutorial covers basics of machine learning, systems and infrastructure considerations for performing machine learning
at scale, and applications of machine learning to improve formal verification performance and usability. It starts with blackbox
classifier training with gradient descent, and proceeds on to deep network training and simple convolutional neural networks.
Next, it discusses how machine learning can be performed at scale, overcoming the performance and throughput limitations of
traditional compute and storage systems. Finally, the tutorial describes several ways in which machine learning can be applied
for improving formal tools performance and enhancing debug capabilities.

4

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Verifying Hyperproperties of Hardware Systems
Bernd Finkbeiner
Saarland University

Markus Rabe
UC Berkeley

ABSTRACT OF TUTORIAL TALK

This tutorial presents hardware verification techniques for hyperproperties. The most prominent application of hyperproperties
is information flow security: information flow policies characterize the secrecy and integrity of a system by comparing two
or more execution traces, for example by comparing the observations made by an external observer on execution traces that
result from different values of a secret variable. Such a comparison cannot be represented as a set of traces and thus falls
outside the standard notion of trace properties. A comparison between execution traces can, however, be represented as a set
of sets of traces, which is called a hyperproperty. Hyperproperties occur naturally in many applications beyond their origins in
security: examples include the symmetric access to critical resources in distributed protocols and Hamming distances between
code words in coding theory.

The hardware verification approach of the tutorial is based on recently developed temporal logics for hyperproperties. Unlike
classic temporal logics like LTL or CTL, which refer to one computation path at a time, temporal logics for hyperproperties like
HyperLTL and HyperCTL can express properties that relate multiple traces by explicitly quantifying over multiple computation
paths simultaneously. We will relate the logics to the linear-branching spectrum of process equivalences, and show that even
though the satisfiability problem of the logics is undecidable in general, the model checking problem can be solved efficiently.
We will show how the logics can be used to verify real hardware designs, including an I2C bus master, the symmetric access
to a shared resource in a mutual exclusion protocol, and the functional correctness of encoders and decoders for error resistant
codes.

5

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

A Paradigm Shift in Verification Methodology
Pranav Ashar

Real Intent

ABSTRACT OF TUTORIAL TALK

Todays SoCs are driving unprecedented verification complexity. The combination of billions of gates, system-level func-
tionality on a chip, complex design methodologies like asynchronous clock domains and an explosion of untimed paths on
a chip, interacting dynamic power domains, aggressive reset schemes etcetera could have been the perfect storm to staunch
productivity. Instead it has turned out to be the mother of all necessities that has driven significant innovation in verification
and brought about a paradigm shift.

Static sign-off has proven to be a pillar in this new paradigm. This talk will discuss the template for what has made static
techniques successful in verifying modern SoCs. The recent successes are, in no small part, due to the FMCAD community
that has pursued formal methods doggedly for decades despite glacial practical adoption. Complementing the efforts of the
research community has been the equally determined pursuit in the EDA community to bring structure and automation into
the verification process. Through this partnership, we have been able to bring about an analysis framework within which a
combination of semantic analysis and formal methods enables a systematic verification process that leads to sign-off level
confidence for important failure modes. It will be gratifying for the FMCAD audience to realize that SAT, model checking,
functional abstraction, QBF etcetera have become essential in being able to tape out some of the most complex chips in the
world on time and within budget. The adoption of IC3/PDR into the verification process was almost immediate.

The recent successes represent a strong debut for static methods. What is the vision to extend the promise into bigger slices
of the verification pie? System-level verification continues to be an art-form with very little of the automation, process and
problem-framing that have proven successful in other domains. May be the FMCAD community should adopt that as its next
major challenge.

6

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Program Synthesis for Networks
Pavol Černý

University of Colorado Boulder

ABSTRACT OF TUTORIAL TALK

Software is eating the world. But how will we write all the programs to control everything from sensors to data centers?
Program synthesis provides an answer. It increases the productivity of programmers by enabling them to capture their insights
in a variety of forms, not just in standard code. In this tutorial, we focus on some challenges in programming networks, and
we show how program synthesis algorithms can help.

Developing network programs is difficult, as networks are large distributed systems. In particular, implementing programs that
update the configuration of a network in response to events is an intricate problem. First, even if initial and final configurations
are correct, subtle bugs in update programs can lead to incorrect transient behaviors, including forwarding loops, black holes,
and access control violations. Second, if the update program reacts to events occurring near simultaneously in different parts
of the network, naive implementations can lead to causality violations and conflicts. We present scalable program synthesis
algorithms that produce network programs that are both correct by construction and efficient.

7

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

The FMCAD 2016 Graduate Student Forum
Hossein Hojjat

Computer Science Department
Rochester Institute of Technology

Abstract—The FMCAD Student Forum provides a platform for
graduate students at any career stage to introduce their research
to the wider Formal Methods community, and solicit feedback.
In 2016, the event took place in Mountain View, California,
as integral part of the FMCAD conference. Ten students were
invited to give a short talk and present a poster illustrating their
work. The presentations covered a broad range of topics in the
field of verification and synthesis, including automated reasoning,
model checking of hardware, software, as well as hybrid systems,
verification and synthesis of networks, and application of artificial
intelligence techniques to circuit design.

Since 2013, the FMCAD conference features a Student
Forum, providing a platform for graduate students at any
career stage to introduce their research to the wider Formal
Methods community. The FMCAD 2016 Graduate Student Fo-
rum follows the tradition of its predecessors, which took place
in Austin, Texas, USA in 2015 [1], in Lausanne, Switzerland
in 2014 [2] and in Portland, Oregon, USA in 2013 [3].

Graduate students were invited to submit short reports
describing their ongoing research in the scope of the FMCAD
conference. The submissions to the forum presented novel
technical contributions and outlining future research planned
by the authors. The presentations covered a broad range of
topics in the field of verification and synthesis, including
automated reasoning, model checking of hardware, software,
as well as hybrid systems, verification and synthesis of net-
works, and application of artificial intelligence techniques to
circuit design. Based on the reviews provided by members
of the organizing committee as well as a number of external
reviewers, 10 submissions were accepted. The reviews focused
on the novelty of the work, the technical maturity of the
submission, and the quality and soundness of the presentation.
The following contributions have been accepted:

• Elaheh Ghassabani, Michael W. Whalen, Andrew Gacek,
Rockwell Collins: “Inductive Validity Cores for Formal
Verification”

• Yu-Yun Dai, Robert Brayton: “Circuit Recognition with
Convolutional Neural Networks”

• Bo-Yuan Hunag, Pramod Subramanyan, Sharad Malik,
Sayak Ray, Hareesh Khattri, Jason Fung, Abhranil Maiti:
“Instruction-Level Abstraction Based SoC Firmware Ver-
ification”

• William Hallahan, Ruzica Piskac, Ennan Zhai, Avi Sil-
berschatz: “Automated Firewall Repair with Example
Synthesis”

• Hongce Zhang, Sharad Malik: “Equivalence Checking
Using the Intermediate Instruction-Level Abstraction”

• Baoluo Meng: “Solving Relational Constraints with Ex-

tensions to a Theory of Finite Set in SMT”
• Mark Santolucito, Ruzica Piskac: “Version Space Learn-

ing for Verification on Temporal Differentials”
• Jaideep Ramachandran: “Precise Arithmetic Reasoning

using Approximate Solvers”
• Rohit Dureja, Kristin Rozier: “Comparative Safety Anal-

ysis of Wireless Communication Networks in Avionics”
• Andres Noetzli: “Proofs for Preprocessing in SMT

Solvers”
The 2016 student forum is the second in the series to

feature a Best Contribution Award (based on the quality of
the submission, the poster, and the presentation), announced
during the conference and publicized on the FMCAD website.1

For the first time in the student forum series, we used a
voting system to choose the best contribution. We allowed
any participant (other than the authors and their supervisors)
to vote for a single contribution. We created an electronic
voting system and provided a link to the system in the
registration packages of participants. Such a system offered
several advantages. First of all, it inspired the poster presenters
to do their best possible presentations for any participant, not
only the referees who have a voice in determining the best
contributions. Second, to increase the number of votes, the
students were motivated to talk to more people and to try to
attract their attentions to their posters. The overall experience
was overwhelming in a more interactive poster session with
more attendants.

The Student Forum would not have been possible without
the excellent contributions of the student authors. The gen-
erous support of the National Science Foundation enabled us
to subsidize the travel cost of the participating students. The
help and advice of Georg Weissenbacher, who organized the
previous student forums, as well as Sean Safarpour (Synop-
sys), who took care of local arrangements, was crucial to the
success of the event. We are also indebted to Ruzica Piskac
for her help with the reviews.

REFERENCES

[1] G. Weissenbacher, “The FMCAD 2015 graduate student forum,” in
Formal Methods in Computer-Aided Design (FMCAD). IEEE, 2015, p.
8.

[2] R. Piskac, “The FMCAD 2014 graduate student forum,” in Formal
Methods in Computer-Aided Design (FMCAD). IEEE, 2014, p. 13.

[3] T. Wahl, “The FMCAD graduate student forum,” in Formal Methods in
Computer-Aided Design (FMCAD). IEEE, 2013, pp. 16-17.

1http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD16/

8

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Soundness of the Quasi-Synchronous Abstraction
Guillaume Baudart∗‡ Timothy Bourke‡∗

∗ École normale supérieure, PSL Research University
† Sorbonne Universités, UPMC Univ. Paris 06

‡ Inria Paris

Marc Pouzet∗†‡

Abstract—Many critical real-time embedded systems
are implemented as a set of processes that execute
periodically with bounded jitter and communicate with
bounded transmission delay. The quasi-synchronous ab-
straction was introduced by P. Caspi for model-checking
the safety properties of applications running on such
systems. The simplicity of the abstraction is appealing:
the only events are process activations; logical steps
account for transmission delays; and no process may
be activated more than twice between two successive
activations of any other.

We formalize the relation between the real-time
model and the quasi-synchronous abstraction by in-
troducing the notion of a unitary discretization. Even
though the abstraction has been applied several times
in the literature, we show, surprisingly, that it is not
sound for general systems of more than two processes.
Our central result is to propose necessary and sufficient
conditions on both communication topologies and tim-
ing parameters to recover soundness.

I. Introduction
The Synchronous Real-Time Model [2], [10] characterizes

many distributed embedded systems: it applies whenever
bounds exist on successive process executions and trans-
mission delays. In particular, whenever computing units
that execute periodically with jitter are connected together
by network links. It is commonly employed in critical
aerospace, power, and rail systems.

The quasi-synchronous approach [6], [8] formalizes a set
of techniques for building distributed control systems that
were observed by P. Caspi while consulting at Airbus on
the distributed deployment of Lustre/SCADE1 [17] designs.
One of the key ideas is to model the computing units,
network links, and shared memories themselves as a syn-
chronous program [6, §3]. Such models can be verified using
model-checking tools for discrete programs. This approach
has, for instance, been applied to a Proximity Flight Safety
(PFS) case-study from EADS Space Transportation [19]
and to the analysis of systems specified in the Architecture
Analysis and Design Language (AADL) [5], [20], [28].

An alternative way of developing real-time applications
is to synchronize process executions. The Time-Triggered
Architecture (TTA) [21], [22] thoroughly develops this
approach and there are several clock synchronization
protocols suitable for embedded systems. Once a clock

1http://www.ansys.com/Products/Embedded-Software/
ANSYS-SCADE-Suite

synchronization scheme is adopted and assumed or verified
correct, modeling and reasoning about applications is
greatly simplified because non-determinism, in the form of
possible interleavings, is either eliminated or reduced. The
quasi-synchronous approach is nevertheless appropriate
in certain applications either due to their simplicity, for
example, microprocessors communicating directly over
serial links, or the need for complete independence between
subsystems, for example, as in redundant subnetworks
connected only at voting units.

Figure 1 gives an overview of the quasi-synchronous
approach. On the left is a real-time model comprising
two processes, A and B, communicating through network
links. Processes and links are annotated with timing
bounds on executions (Tmin and Tmax) and transmission
delays (τmin and τmax). Underneath is an example trace
showing process activations and corresponding message
transmissions. On the right is a discrete-time abstraction
in which timing parameters are replaced by a discrete
program called Scheduler that overapproximates their
effect by controlling process activations, and, importantly,
message transmissions are modeled by a single logical step.
Underneath is a trace of the discrete-time model.

The ultimate aim is to verify properties of the real-time
model in the simpler discrete-time model. The essential
property is that every sequence of states that occurs in
the real-time model can also occur in the discrete-time
model.2 Such an association guarantees soundness: all
safety properties provable in the discrete-time model also
hold of the real-time model. Since changes in state are
directly related to received messages, we focus on traces
without modeling process and network states explicitly.
This means that a discrete model is a valid abstraction if
every real-time trace has a discrete-time counterpart.

Contributions: We formalize the relation between real-
time and discrete-time traces in the quasi-synchronous
approach by introducing a unitary discretization based
on the respective causality relations of the two models.
With this tool we show that abstracting transmission
delays as unit delays is not sound in general. We state
and prove necessary and sufficient conditions on commu-
nication topologies and timing characteristics to recover
soundness. We provide practical criteria for using the

2Assuming the state of the processes does not reference real time.

9

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

http://www.ansys.com/Products/Embedded-Software/ANSYS-SCADE-Suite
http://www.ansys.com/Products/Embedded-Software/ANSYS-SCADE-Suite

A B

TA TB

0 < Tmin ≤ TA, TB ≤ Tmax
0 < τmin ≤ τA, τB ≤ τmax

τA

τB

A

B

(a) Real-time model (RT)

A B

Scheduler
cA cB

A

B

(b) Discrete-time model (DT)

Fig. 1: Soundness: A property ϕ that can be verified in the discrete-time model
will also holds for the real-time model, RT |= ϕ ⇐= DT |= ϕ.

quasi-synchronous abstraction to formally verify real-time
systems in discrete-time model-checking tools [16], [18].

A. The Real-time Model
We consider the classic synchronous real-time model [2],

[10], noting that ‘synchronous’ does not mean ‘lock step’.

Definition 1 (Synchronous Real-Time Model). A syn-
chronous real-time model is a finite set of processes P,
where for every process, the delay T between two successive
activations is bounded:

0 ≤ Tmin ≤ T ≤ Tmax. (RP)

Values are transmitted between processes with a delay τ ∈ R,
bounded by τmin and τmax:

0 ≤ τmin ≤ τ ≤ τmax. (RT)

Each message is buffered at receivers until a newer value
is received. Execution time (τexec) can be modeled either
as a part of the communication delay (τ = τexec + τtrans),
or as part of the activation period (τexec < Tmin) with
the convention that application components communicate
through logical delays: values computed in one reaction
are sent at the beginning of the next one.

For readability, we assume global bounds on successive
process activations, but our results are readily generalized
to multirate systems.

B. The Discrete-time Model
The simplest discrete abstraction is the asynchronous

model where time is ignored altogether and process activa-
tions may be interleaved arbitrarily. This is sound but far
from complete: many properties that hold in the real-time
model cannot be shown in the discrete one. Furthermore,
the many possible interleavings complicate reasoning about
or model-checking the discrete-time model.

A finer abstraction was proposed by Caspi for processes
that execute ‘almost periodically’, that is, Tmin ≈ Tmax.

He realized that the interleavings of systems satisfying RP
can be constrained [7, §3.2]:

It is not the case that a component process
executes more than twice between two successive
executions of another process.

Furthermore, he observed that when transmission delays
are ‘significantly shorter than the periods of [process
activations]’ they can be modeled by unit delays in the
discrete-time model, but that ‘if longer transmission delays
are needed, modeling should be more complex’ [6, §3.2.1].
A unit delay models the fact that a message sent at one
logical instant is received at the next one.

More complex modeling refers to the standard approach
of placing buffer processes between communicating pro-
cesses. Such buffers provide receive and send events and
maintain internal state to track messages in transmission.
The quasi-synchronous abstraction eschews explicit link
models thereby simplifying scheduling logic and halving
the number of variables needed to model communication.

These observations allow abstraction from the timing
details of the real-time model in definition 1 to give a non-
deterministic and discrete-time model of systems termed
quasi-synchronous. In the discrete-time model, boolean
variables called clocks are set to true to activate processes.

Definition 2 (Quasi-Synchronous Model). A quasi-
synchronous model comprises a scheduler and finite set
of processes P. The scheduler is connected to each process
by a discrete clock signal. It activates the processes non-
deterministically but ensures that no pair of clock signals
(cA, cB), for a pair of processes A,B ∈ P, ever contains the
subsequence [

t
]
·
[
f
f

]∗

·
[
t
f

]
·
[
f
f

]∗

·
[
t

]
,

where t indicates an activation, f means no activation,
and means either of the two. Processes communicate
through unit delays activated at every scheduler tick.

10

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

This restriction on subsequences of pairs of clock sig-
nals [6, §3.2.2] expresses formally the constraint quoted
beforehand. The forbidden subsequence involves at least
three activations of one process (A) between two successive
activations of another (B). A finite state scheduler that
produces valid sequences is readily constructed from the
given regular expression (using, for instance, the reglo
tool [29]). The processes and unit delays can be modeled
directly in Lustre [17], for instance, and verified by model-
checking [5], [19], [20], [28].

The quasi-synchronous model aims to reduce the state-
space of a model in two ways: 1) by limiting the in-
terleavings of process activations and 2) by simplifying
message transmission modeling. In this paper, we show
how the constraints imposed by the latter choice limit the
applicability of the abstraction.

C. Relating Real time and Discrete time
Given definitions 1 and 2, it is natural to query the exact

relationship between them, namely: what are necessary
and sufficient conditions on the architecture to ensure the
soundness of the abstraction?

The first step is to formalize real-time traces and their
causality (section II). The main contribution of this paper
is then to characterize the link between this causality
relation and the causalities expressible in the discrete model.
Specifically, we define a ‘unitary discretization’ that relates
real-time traces to discrete-time traces (section III). It is
quite constraining due to the modeling of communications
as unit delays, but it still allows for the treatment of
practically-relevant systems of two processes [19], [20]
and those with certain communication topologies. Based
on these results, we define precisely when the quasi-
synchronous model can be applied to a real-time system
(section IV). We relate our work to classic distributed
systems models, to the expression of causality in distributed
systems, and to existing work on the quasi-synchronous
abstraction (section V).

II. Traces and Causality
We define a formal model for reasoning about real-time

models and their discretization. It has two components:
(real-time) traces and their induced causality relations. In
the following, we fix an arbitrary real-time model with
processes P and parameters Tmin, Tmax, τmin, and τmax
that satisfy definition 1. We formalize pairs of sending and
receiving processes using a communicates-with relation,
written ⇒, between the processes of a real-time model.
This relation is not necessarily symmetric, A ⇒ B need
not imply B ⇒ A, but it must be reflexive (A⇒ A).

Definition 3 (Trace). A (real-time) trace E is a set of
activation events {Ai | A ∈ P ∧ i ∈ N} and two functions:
• t(Ai), the date of event Ai with respect to an ideal

reference clock, and
• τ(Ai, B), the transmission delay of the message sent

at Ai to a process B.

A

B

C

A1 A2

B1 B2

C1 C2

A

B

C

Fig. 2: A trace (above) and a possible unitary discretization.

Both t(Ai) and τ(Ai, B) are non-negative reals satisfying
the constraints of definition 1, namely if A⇒ B,

0 ≤ Tmin ≤ t(Ai+1)− t(Ai) ≤ Tmax, and
0 ≤ τmin ≤ τ(Ai, B) ≤ τmax.

The causality relation between events within a given
trace is essentially the happened before relation of Lam-
port [23]. Unlike Lamport, however, we do not explicitly
model message reception. A message is received if the next
execution of the receiver occurs after the corresponding
transmission delay.

Definition 4 (Happened Before). For a trace E, let → be
the smallest relation on activation events that satisfies

(local) If i < j then Ai → Aj, and
(recv) If A⇒ B and t(Ai) + τ(Ai, B) ≤ t(Bj)

then Ai → Bj.
Activations at a single process are totally ordered (local);
an activation at one process happens before an activation
at another process when a message sent at the former is
received before the latter (recv).

Compared to Lamport, we do not close the relation
by transitivity. In this way, Ai → Bj means that Bj
occurs strictly after the reception of the message sent by
process A at Ai. The same technique is used elsewhere [31,
definition 1].

III. Unitary Discretization
We now address the central question of relating the real-

time and discrete-time models. The problem is essentially
one of correctly discretizing real-time traces.

If process A sends messages to process B, the most
general approach is to ensure that when an event Ai occurs
before an event Bj in the discrete-time trace, Ai happens
before Bj (Ai → Bj) in the corresponding real-time trace
and vice versa. Figure 2 shows an example trace for a
three-process system and a possible unitary discretization.

Definition 5 (Unitary Discretization).
A function f : E → N that assigns each event in a (real-
time) trace to a logical instant of a corresponding discrete
trace, is a unitary discretization if for all Ai, Bj ∈ E,

Ai → Bj ⇐⇒ (f(Ai) < f(Bj) and A⇒ B) . (UD)

11

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Discretizing a real-time model satisfying definition 1 to a
model of the form given in definition 2 amounts to finding a
unitary discretization for each of its (real-time) traces. The
forward half of the equivalence comes from the fact that the
→ relation induces a partial order on events. Completing
this relation to a total order gives a discretization that
respects the causality of the real-time model [23].

A unitary discretization links the causality of events in
the real-time model to the causality implicit in the discrete-
time model. The backward direction of the equivalence
imposes that if an event y occurs after an event x in
the discrete-time model, that is, f(x) < f(y), it is either
because y is a later activation of the same process as x, or
because y occurs strictly after the receipt of the message
sent at x. It is the communication through unit delays on a
common clock that tightly links the two causality relations.

In distributed systems terminology, condition UD is
called strong consistency [30]. The problem of finding a
unitary discretization is thus equivalent to the problem
of finding a strongly consistent scalar clock. Raynal and
Singhal report in their survey [30] that this is not possible
in general, that is, there is no scalar clock function f that
satisfies UD. This was already noted by Lamport in his
original paper: ‘We cannot expect the converse condition
to hold as well [...]’ [23, p.560].

The aim is to formulate sufficient conditions on the
(static) ⇒ relation and on the timing characteristics of the
real-time model to guarantee the existence of a unitary
discretization. The following proposition will be useful.

Proposition 1. If f is a unitary discretization for a trace,
for a pair of processes where A⇒ B we have that

Ai → Bj =⇒ f(Ai) < f(Bj), and
Ai 6→ Bj =⇒ f(Ai) ≥ f(Bj).

Proof. The first implication is a direct consequence of the
definition of a unitary discretization. The second one follows
by contraposition. If f(Ai) < f(Bj), and since A⇒ B, we
have Ai → Bj by the definition of f .

An intermediate step to defining a static condition on
communications is to characterize traces for which there
is no unitary discretization. Our characterization will be
based on a graph of the constraints of proposition 1.

Definition 6 (Trace Graph). Given a trace E, its directed,
weighted trace graph G has as vertices {Ai | A ∈ P∧ i ∈ N}
and as edges the smallest relations that satisfy

1) If Ai → Bj then Ai
1−→ Bj, and

2) If A⇒ B and Ai 6→ Bj then Bj
0−→ Ai.

An example trace graph is shown in figure 3. Edges
labeled with one (x 1−→ y) represent the constraints
f(x) < f(y). Each such edge indicates that the source
activation must come before the destination activation in a
unitary discretization, that is, the value of f , from source
to destination, must increase by at least one. Edges labeled

A1 A2

B1 B2

C1 C2

Fig. 3: The trace (sub-)graph of the trace in figure 2. Black
thick arrows denote x 1−→ y/f(x) < f(y). Thin gray arrows
denote x 0−→ y/f(x) ≤ f(y).

with zeros (x 0−→ y) represent the constraints f(x) ≤ f(y).
Each such edge indicates that the source activation cannot
be placed before the destination activation in a unitary
discretization, that is, the value of f , from source to
destination, must be the same or larger. A path through
several activations defines their relative ordering in all
unitary discretizations.

The satisfaction of the required constraints, or the
impossibility of satisfying them, can now be phrased in
terms of cycles in the graph. A cycle comprising only 0−→’s
is acceptable: its activations are all assigned the same
discrete slot (for example, B1 and C1 in figure 3). Any cycle
containing a 1−→ represents a set of unsatisfiable constraints:
one of the events must be placed in two different slots.

Lemma 1 (∃UD ⇐⇒ ∃PC). For a trace E, there is a
unitary discretization (∃UD) if and only if there is no cycle
of positive weight in the corresponding trace graph G (∃PC).

Proof. Assume there is a cycle of positive weight. By the
construction of G there is an event x such that, for any
unitary discretization function, f(x) < f(x), which is
impossible.

Conversely, if there are no cycles of positive weight,
we may define a function f that maps each event x to
the weight of the longest path in G that leads to x. By
construction, Ai → Bj =⇒ f(Ai) < f(Bj), which is
the forward implication of UD (definition 5). The other
direction of UD follows by contraposition. Assume Ai 6→ Bj .
If A ⇒ B, we have Bj 0−→ Ai and thus, by the definition
of f , that f(Bj) ≤ f(Ai). This gives ¬(f(Ai) < f(Bj)) as
required. The other case, A 6⇒ B, is trivial.

The unitary discretization described in the proof above is
the most concise one and can be expressed as

f(x) = max ({f(y) + 1 | y 1−→ x} ∪ {f(z) | z 0−→ x} ∪ {0}) .

Other discretizations are constructed by adding ‘extra’
instants between process activations as in figure 2.

A. Discretizing general systems
One might expect that real-time models are unitary

discretizable if the transmission delays are ‘significantly

12

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

A

B

C

x

y

z

τmax

τmax τmax

(a) Real-time trace.

x
y

z

(b) z → y.

x
y

z

(c) x→ z.

Fig. 4: A real-time trace that is not unitary discretizable
(x 1−→ y 0−→ z 0−→ x) and that may occur whenever τmax > 0.

shorter’ than the period of the process, that is τmax � Tmin.
Unfortunately this is not the case.

Theorem 1 (No General Unitary Discretization). General
real-time models with three processes or more communicat-
ing non-instantaneously are not unitary discretizable.

Proof. If τmax > 0, figure 4a shows a trace with a cycle
of positive weight, x 1−→ y 0−→ z 0−→ x, for which there is no
unitary discretization (lemma 1).

Figure 4 shows the two possible discretizations of the
counterexample. In figure 4b the message sent at z should
have been received at y (z → y); whereas in figure 4c the
message sent at x should have been received at z (x→ z).
Neither correctly abstracts the real-time trace of figure 4a.

B. Recovering Soundness
The counterexample of figure 4 shows that when three

processes communicate such that A⇒ B ⇔ C ⇔ A, there
is at least one trace that has no unitary discretization.
Problematic cycles in traces can be prevented either by
constraining the timing parameters of the model or by
restricting communication graphs: forbidding A ⇒ B
removes Ai

1−→ Bj and Bj
0−→ Ai, for all i and j, in

associated trace graphs (if A 6= B). We propose conditions
that preclude cycles of positive weight in all possible traces
and thus guarantee the existence of unitary discretizations.

Theorem 2. Let Lc be the size of the longest elementary
cycle in the communication graph. A real-time model
satisfying definition 1 is unitary discretizable if and only if,

1) all u-cycles of the communication graph are cycles or
balanced u-cycles, or τmax = 0, and

2) there is no balanced u-cycle in the communication graph
or τmin = τmax, and

3) there is no cycle in the communication graph or

Tmin ≥ Lcτmax. (CD)

A u-cycle is an elementary cycle in the undirected
communication graph, that is, the graph obtained from
the communication graph by forgetting the direction of

A B

D C

(a) cycle

A B

C

(b) u-cycle

A B

D C

(c) b-cycle

Fig. 5: Examples of communication topologies.

the edges. A balanced u-cycle has the same number of
edges in both directions. Figure 5 shows three examples
of u-cycles, the rightmost one is also a balanced u-cycle.
In the following C, uC, and bC denote the sets of cycles,
u-cycles, and balanced u-cycles, respectively.

In simpler terms, theorem 2 states that communication
topologies containing u-cycles are only permissible if
communication is perfectly instantaneous. Cycles can be
allowed by imposing the additional constraint CD and
balanced u-cycles can be allowed by imposing τmin = τmax.
The following proposition is needed in the proof.

Proposition 2. If a trace graph has a cycle of positive
weight, then it has a cycle of positive weight of the form:3

A+ b0−→ B+ b1−→ C+ b2−→ . . . bn−→ A+

where processes A,B,C, . . . are pairwise distinct.

We write A+ to denote successive activations of process A.

Proof. From any cycle of positive weight one can build
another cycle of positive weight with the correct form. The
proof is given in the extended paper.

We now present a proof sketch for theorem 2, the
complete proof can be found in the extended paper.

Proof. The proof is by contraposition in both directions.
Using lemma 1 we have ∃UD⇐⇒ ∃PC. Therefore we prove
the following statement, which is equivalent to theorem 2.

∃PC⇐⇒

∣∣∣∣∣∣∣
∃c ∈ C and CD, or,
∃c ∈ bC and τmin < τmax, or,
∃c ∈ uC \ (C ∪ bC) and τmax > 0

(C1)
(C2)
(C3)

To prove that C1 or C2 or C3 =⇒ ∃PC we show that
in each of the three possible cases one can build a trace
with a cycle of positive weight. Figure 6 shows such a
counterexample for a u-cycle of 5 processes.

To prove that ∃PC =⇒ C1 or C2 or C3, suppose that
there exists a trace with a cycle of positive weight. By
proposition 2, there also exists a trace with a cycle of
positive weight of the form:

A+ b0−→ B+ b1−→ C+ b2−→ . . . bn−→ A+, (1)

where processes A, B, C, . . . are pairwise distinct. By
proposition 2, for two processes A and B, a transition

3 bi−→ is used as a generic notation for either 1−→ or 0−→.

13

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

A

B

C

D

E

e0

e1

e2

e3

e4

τmin

τmin

τmax

τmax

τmax

Fig. 6: Counterexample e0
1−→ e1

1−→ e2
0−→ e3

0−→ e4
0−→ e0,

based on the u-cycle A⇒ B ⇒ C ⇔ D ⇔ E ⇔ A.

Ai
0−→ Bj corresponds to a communication channel A⇔ B

with A 6= B and a transition Ai
1−→ Bj corresponds to a

communication channel in the opposite direction A⇒ B
with the possibility that A = B for activations of the same
process. Since the processes of (1) are pairwise distinct, the
sequence of processes c = A,B,C, . . . , A forms a u-cycle
of the communication graph. There are three cases:

1) c ∈ C imposes Tmin < Lcτmax (CD), hence C1 holds.
2) c ∈ bC imposes τmin < τmax and C2 holds.
3) c ∈ uC \ (C ∪ bC) imposes τmax > 0 and C3 holds.

Theorem 1 is a particular case of theorem 2. Without
assumptions on the communication graph there could be a
u-cycle that is neither a cycle nor a balanced u-cycle.

Corollary 1 (2-process Unitary Discretization). A real-
time model satisfying definition 1 with two processes can be
unitarily discretized if and only if

Tmin ≥ 2τmax. (2D)

Proof. Direct consequence of theorem 2: for systems of two
processes, Lc = 2 and CD becomes Tmin ≥ 2τmax.

Two-process models were the focus of the original work on
the quasi-synchronous approach [6] and they are relevant
in practice [19], [20]. This result is coherent with Caspi’s
requirement that transmission delays be ‘significantly
shorter than the periods of [process activations]’ [6, §3.2.1].

IV. The Quasi-Synchronous Abstraction
We now apply the preceding definitions and results on

unitary discretizations to precisely describe when the quasi-
synchronous model can be applied to a real-time system.

A discrete-time model is termed quasi-synchronous if ‘it
is not the case that a component process executes more
than twice between two successive executions of another
process’ [7, §3.2]. Since any given process only detects
the activations of another by receiving the corresponding
messages, the quasi-synchronous condition corresponds to
two constraints. For any process, 1) there are no more
than two activations between two message receptions, and
2) there are no more than two message receptions between

A

B
Bi Bi+1 Bi+2

Aj Aj+1 Aj+2Tmax Tmax

Tmin Tmin

τmax τmin τmin

A

B

Fig. 7: A trace (above) and a possible discretization that
violates definition 2.

two activations. This definition can be formalized using
unitary discretizations.

Definition 7 (Quasi-Synchronous Model). A real-time
model is quasi-synchronous if, for every trace t,

1) it has a unitary discretization f, and
2) for processes A⇔ B, there are no i and j such that

f(Bj) < f(Ai) < f(Ai+2) ≤ f(Bj+1) or,
f(Aj) ≤ f(Bi) < f(Bi+2) < f(Aj+1).

(QS)

This definition expresses the two central features of quasi-
synchrony: 1) communications as ‘logical’ unit delays, and
2) constraints on interleavings of process activations.

Condition QS is less constraining than definition 2 from
section I-B. That definition, proposed by Caspi, has the
advantage of forbidding a single symmetric subsequence,
but the link with process interleavings is obscured. In fact,
the proposition below shows that it is violated in any real-
time system with unidirectional communications (A⇔ B
but A 6⇒ B) that is not perfectly synchronous. So, while
definition 7 does not directly translate definition 2, we
argue that it more faithfully describes quasi-synchronous
systems in terms of process interleavings.

Proposition 3. A pair of (real-time) processes A and B
where A⇔ B but A 6⇒ B cannot be quasi-synchronous in
the sense of definition 2 if Tmin + τmin < Tmax + τmax.

Proof. If Tmin+τmin < Tmax+τmax, figure 7 shows an execu-
tion trace where Aj 0−→ Bi

1−→ Bi+1
1−→ Aj+1

0−→ Bi+2. A dis-
cretization f with f(Aj) = f(Bi) and f(Aj+1) = f(Bi+2)
is a valid unitary discretization that violates the condition
of definition 2.

While definition 7 conveys the essence of quasi-synchrony,
its conditions are rather abstract. The following theorem in-
corporates the results of sections II and III to state concrete
requirements on real-time parameters and communication
topologies. The extended paper has a full proof.

Theorem 3. A real-time model satisfying definition 1 is
quasi-synchronous (condition QS) if and only if,

1) the conditions of theorem 2 hold, and
2) the following condition holds,

2Tmin + τmin ≥ Tmax + τmax. (QT)

14

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

A

B

Ai Ai+1 Ai+2

Bj Bj+1

Tmin Tmin

Tmax

τmin τmax

A

B

Fig. 8: Witness for QS =⇒ QT.

Proof. The first condition ensures that the system is
unitary discretizable. Now, if QS does not hold, there is a
chain of events such that either

f(Bj) < f(Ai) < f(Ai+2) ≤ f(Bj+1) or,
f(Aj) ≤ f(Bi) < f(Bi+2) < f(Aj+1).

This gives Bj → Ai, and Bj+1 6→ Ai+2 in the first case;
and, Bi 6→ Aj and Bi+2 → Aj+1 in the second; which
implies 2Tmin + τmin < Tmax + τmax, that is, QT.

Conversely, if QT does not hold, then figure 8 shows a
trace where Bj 1−→ Ai

1−→ Ai+1
1−→ Ai+2

0−→ Bj+1. Then, by
definition 5, the discretization f such that

f(Bj) < f(Ai) < f(Ai+2) = f(Bj+1).

is a valid unitary discretization that violates QS.

Theorem 3 states precisely when the quasi-synchronous
abstraction is sound. If a real-time system satisfies the given
constraints on (logical) topology and timing, then the quasi-
synchronous abstraction can be used to formally verify its
properties. To give a few concrete examples, providing
condition QT holds, it applies to: 1) topologies without
feedback, for example, three filter sequences connected
to a triple voter; 2) trees of communicating pairs if
Tmin ≥ 2τmax, for example, a ‘daisy chain’ or a star of
intercommunicating neighbours; and 3) any feedback loop
of n nodes if Tmin ≥ nτmax, for example, unidirectional ring
networks or filters with ‘non-overlapping’ feedback loops. It
does not apply if condition QT is violated, or in topologies
with certain cycles, notably those with more than one path
between two processes. The extended paper includes some
examples of allowed and forbidden topologies.

V. Related Work
a) Distributed systems: The spectrum of formal mod-

els for distributed systems runs from completely syn-
chronous (definition 1) to completely asynchronous [26].
The completely synchronous model makes the strongest
timing assumptions—though they are not unreasonable for
embedded systems—and it is possible to simulate round-
based applications and solve problems like consensus and
leader election even in the presence of failures [2], [10].

The impossibility of consensus in the asynchronous
model [14] and the desire to treat more general systems
than the synchronous model motivates the study of partially

synchronous models [26, Part III]. There are models
with bounds on transmissions and the relative speeds of
processes, and these bounds are not necessarily known or
may only hold eventually [12]. In the θ-model [33] bounds
are not given on transmissions but rather on the ratio of
the longest and shortest end-to-end delays of messages
simultaneously in transit. The Finite Average Response
time model [13] only assumes a lower bound on activations
and a finite average response time for transmissions. Timing
assumptions may also be allowed to vary across different
communication links [1]. The Asynchronous Bounded-Cycle
model [31] avoids any reference to transmission delays or
bounds on activations and instead constrains the causality
chains induced by transmission.

We treat the standard synchronous distributed sys-
tems model and our treatment of causality and timing
constraints has nothing to do with recovering possibility
results or determining algorithmic complexity in a partially
synchronous model. We study a different question: when is a
very specific discrete abstraction sound for the synchronous
real-time model? Our main problem comes from the
unusual but potentially advantageous modeling of trans-
missions as unit delays. This gives rise to a unique form
of causality—the unitary discretization—that is relevant
to the model-checking problem we consider but not to the
theory of distributed computing.

Unsurprisingly, our notion of causality follows Lamport’s
seminal work [23]. His causality relation was recently
extended to a syncausality relation [3, Definition 2] by
using upper bounds on transmission delays to complete
causality chains. Our causality relation is similar but
message reception is not modeled explicitly, the (recv)
clause is based on actual transmission delays not an upper
bound, and transitivity is not avoided. The syncausality
relation is developed into ‘centipede’ and ‘centibroom’
abstractions to study coordination problems, whereas we
develop the unitary discretization to verify the soundness
of a discrete model. Our approach is closer to work on
execution graphs [31]: we also use a non-transitive relation
and count along causality chains. But our trace graphs
incorporate two types of constraints (0−→ and 1−→) due to the
different nature of the problem we study. Furthermore, the
work on execution graphs focuses on asynchronous systems
and does not propose constraining real-time parameters
and communication topologies to eliminate cycles.

b) Logical clocks: As already mentioned in section III,
the existence of a unitary discretization is equivalent to the
problem of finding a strongly consistent scalar clock. As
this is not possible in general [23], [30], research has sought
more powerful mechanisms, like vector clocks [27] and
matrix clocks [15], for capturing the causalities of events.
These mechanisms do not resolve the problem posed in
this paper, since the modeling of transmissions as unit
delays and the activations of processes on boolean streams
require the total ordering given by a global scalar clock: a
synchronous modeling of an asynchronous system.

15

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

c) Quasi-synchrony: Most existing work on the quasi-
synchronous abstraction either assumes instantaneous
communication [5], [28]—which may be valid in a shared
memory model but not a message-passing one—or takes
the discrete model as given and applies it directly to model
and analyze systems [19], [20], [32]. We seek to clarify the
original definitions [6] and to precisely define the relation
between the real-time and discrete-time models. This leads
to the understanding of discretization in terms of causality
and the restrictions on process intercommunications and
timing which are the central contributions of this paper.

Our work is complementary to the development of
abstract domains to statically analyze synchronous real-
time systems [4], and to the verification of properties like
maximal lost messages, message inversions, and message
latency, in an interactive theorem prover [24], [25].

In n-synchrony, unlike in quasi-synchrony, the difference
of cumulative process activation counts is bounded [9]. The
relation between a similar model and real-time has recently
been studied [11]. Both n-synchrony and quasi-synchrony
can be related to ‘clock bounds’ and ‘drift bounds’ [32].

VI. Conclusion
The quasi-synchronous abstraction provides a way to

model and reason about a class of distributed embedded
systems whose processes communicate by sampling with
bounded jitter. Given a real-time model satisfying certain
constraints on timing parameters and communication
topologies, properties obtained of the corresponding quasi-
synchronous model are also true of the original model.
In other words, a precise class of practically-relevant dis-
tributed control systems can be verified without resorting
to timed formalisms and tools, and by modeling message
transmission as a unit delay, but not all of them.

Acknowledgments
We thank Cesare Tinelli for sharing his experiences on

model-checking quasi-synchronous models and Thibault
Rieutord and our anonymous reviewers for their suggestions
and comments.

References
[1] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg.

Communication-efficient leader election and consensus with
limited link synchrony. In PODC, pages 328–337, 2004.

[2] H. Attiya, C. Dwork, N. Lynch, and L. Stockmeyer. Bounds on
the time to reach agreement in the presence of timing uncertainty.
JACM, 41(1):122–152, 1994.

[3] I. Ben-Zvi and Y. Moses. Beyond Lamport’s happened-before:
On time bounds and the ordering of events in distributed systems.
In DISC, pages 421–436, 2010.

[4] J. Bertrane. Static analysis of communicating imperfectly-clocked
synchronous systems using continuous-time abstract domains.
PhD thesis, École Polytechnique, 2008.

[5] S. Bhattacharyya, S. Miller, J. Yang, S. Smolka, B. Meng,
C. Sticksel, and C. Tinelli. Verification of quasi-synchronous
systems with Uppaal. In DASC, pages 8A4–1–8A4–12, 2014.

[6] P. Caspi. The quasi-synchronous approach to distributed control
systems. Technical Report CMA/009931, Verimag, Crysis
Project, 2000. “The Cooking Book”.

[7] P. Caspi. Embedded control: From asynchrony to synchrony and
back. In EMSOFT, pages 80–96, 2001.

[8] P. Caspi, C. Mazuet, and N. Reynaud Paligot. About the design
of distributed control systems: The quasi-synchronous approach.
In SAFECOMP, pages 215–226, 2001.

[9] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau,
and M. Pouzet. N-synchronous Kahn networks: a relaxed model
of synchrony for real-time systems. In POPL, pages 180–193,
2006.

[10] F. Cristian. Synchronous and asynchronous group communica-
tion (long version). CACM, 1996.

[11] A. Desai, S. A. Seshia, S. Qadeer, D. Broman, and J. C. Eidson.
Approximate synchrony: An abstraction for distributed almost-
synchronous systems. In CAV, pages 429–448, 2015.

[12] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the
presence of partial synchrony. JACM, 35(2):288–323, 1988.

[13] C. Fetzer, U. Schmid, and M. Süßkraut. On the possibility of
consensus in asynchronous systems with finite average response
times. In ICDCS, pages 271–280, 2005.

[14] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. JACM, 32(2):374–
382, 1985.

[15] M. J. Fischer and A. Michael. Sacrificing serializability to attain
high availability of data in an unreliable network. In PODS,
pages 70–75, 1982.

[16] G. Hagen and C. Tinelli. Scaling up the formal verification of
Lustre programs with SMT-based techniques. In A. Cimatti and
R. B. Jones, editors, FMCAD, pages 15:1–15:9, 2008.

[17] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous dataflow programming language Lustre. Proc. IEEE,
79(9):1305–1320, 1991.

[18] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and
verifying real-time systems by means of the synchronous data-
flow language LUSTRE. IEEE Trans. Software Engineering,
18(9):785–793, 1992.

[19] N. Halbwachs and L. Mandel. Simulation and verification of
asynchronous systems by means of a synchronous model. In
ACSD, pages 3–14, 2006.

[20] E. Jahier, N. Halbwachs, and P. Raymond. Synchronous model-
ing and validation of schedulers dealing with shared resources.
Technical Report 2008-10, Verimag, 2008.

[21] H. Kopetz. Real-time systems: design principles for distributed
embedded applications. Springer-Verlag, 2011.

[22] H. Kopetz and G. Bauer. The time-triggered architecture. Proc.
IEEE, 91(1):112–126, 2003.

[23] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. CACM, 21(7):558–565, 1978.

[24] R. Larrieu and N. Shankar. A framework for high-assurance
quasi-synchronous systems. In MEMOCODE, pages 72–83, 2014.

[25] W. Li, L. Gérard, and N. Shankar. Design and verification of
multi-rate distributed systems. In MEMOCODE, pages 20–29,
2015.

[26] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[27] F. Mattern. Virtual time and global states of distributed systems.

Parallel and Distributed Algorithms, 1(23):215–226, 1989.
[28] S. Miller, S. Bhattacharyya, C. Tinelli, S. Smolka, C. Sticksel,

B. Meng, and J. Yang. Formal verification of quasi-synchronous
systems. Technical report, DTIC Document, 2015.

[29] P. Raymond. Recognizing regular expressions by means of
dataflow networks. In ICALP, pages 336–347, 1996.

[30] M. Raynal and M. Singhal. Logical time: Capturing causality in
distributed systems. IEEE Computer, 29(2):49–56, 1996.

[31] P. Robinson and U. Schmid. The asynchronous bounded-cycle
model. TCS, 412(1):5580–5601, 2011.

[32] G. Smeding and G. Goessler. A correlation preserving perfor-
mance analysis for stream processing systems. In MEMOCODE,
pages 11–20, July 2012.

[33] J. Widder and U. Schmid. The theta-model: achieving synchrony
without clocks. Distributed Computing, 22(1):29–47, 2009.

16

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Synthesizing Adaptive Test Strategies from
Temporal Logic Specifications

Roderick Bloem∗, Robert Könighofer∗, Ingo Pill†, and Franz Röck∗
∗Institute of Applied Information Processing and Communications, Graz University of Technology, Austria

†Institute of Software Technology, Graz University of Technology, Austria

I. INTRODUCTION

Model checking [12], [42] cannot always be applied ef-
fectively to obtain confidence in the correctness of a system.
Possible reasons include scalability issues, third-party IP com-
ponents for which no code or detailed model is available, or
a high effort for building system models that are sufficiently
precise. Moreover, model checking cannot verify the final and
“live” product but only an (abstracted) model.

Testing is a natural alternative to complement formal meth-
ods, and automatic test case generation helps keeping the
effort manageable. Black-box techniques, where tests are
derived from a specification rather than the implementation,
are particularly attractive: First, tests can be computed before
the implementation work starts, and can thus guide the devel-
opment. Second, the same tests can be reused across different
realizations of the same specification. Third, a specification
is usually much simpler than its implementation, which gives
a scalability advantage. At the same time, the specification
focuses on the critical aspects that require thorough testing.
Fault-based techniques [26], where test cases are computed to
reveal certain fault classes, are particularly appealing — after
all, the foremost goal in testing is to detect bugs.

Methods to derive tests from declarative requirements (see,
e.g., [23]) are sparse. One issue in this setting is controllability:
the requirements leave plenty of implementation freedom, so

This work was supported in part by the Austrian Science Fund (FWF)
through the research network RiSE (S11406-N23) and by the European
Commission through projects IMMORTAL (317753) and eDAS (608770).

Specification 𝜑

Fault Model
Synthesis

Runtime
Verification

Adaptive
Test

Strategy

System Under
Test (SUT)

Oracle

input

o
u

tp
u

t

Test case
generation

Test case execution Input Verdict

Pass/
Fail/
Inconcl.

Fig. 1. Our testing setup. This paper focuses on test strategy synthesis.

they cannot be used to fully predict the system behavior for
given inputs. Consequently, test cases have to be adaptive,
i.e., able to react to observed behavior at runtime, rather
than being fixed input sequences. This is particularly true for
reactive systems that interact with their environment. Existing
methods often work around this complication by requiring a
deterministic system model as additional input [22]. Even a
probabilistic model fixes the behavior in a way not necessarily
required by the specification.

We present a fault-based approach to compute adaptive test
strategies for reactive systems such that certain coverage goals
are achieved for every implementation of a given specification
ϕ. The tests can thus be used across realizations of ϕ that
differ not only in implementation details but also in their
observable behavior. This is useful for standards and protocols
that are implemented by multiple vendors, for systems under
development, where the exact behavior is not yet fixed, etc.

Fig. 1 outlines our assumed testing setup, i.e., how our
approach for synthesizing adaptive test strategies (illustrated in
black) can be integrated in the testing chain. The user provides
a specification ϕ, expressing requirements for the system
under test (SUT) in Linear Temporal Logic (LTL) [40]. As
coverage goal, the user also provides a fault model, which is
an LTL formula that defines a class of faults for which the test
shall cause a specification violation. We consider permanent
and transient faults by distinguishing four fault occurrence
frequencies1 and compute tests to reveal faults for the lowest
frequency possible. We compute test strategies using reactive
synthesis [41] with partial information [29], providing strong
guarantees about all uncertainties: If synthesis is successful
and if the computed tests are executed long enough, they reveal
all faults from the fault model for every realization of the
specification and every behavior of the uncontrollable part of

1We consider faults that occur at least once, repeatedly, from some point
on, or permanently.

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

17

Abstract—Constructing good test cases is difficult and time-
consuming, especially if the system under test is still under
development and its exact behavior is not yet fixed. We propose
a new approach to compute test cases for reactive systems from
a given temporal logic specification. The tests are guaranteed
to reveal certain simple bugs (like occasional bit-flips) in every
realization of the specification and for every behavior of the
uncontrollable part of the system’s environment. We aim at
unveiling faults for the lowest of four fault occurrence frequencies
possible (ranging from a single occurrence to persistence). Based
on well-established hypotheses from fault-based testing, we argue
that such tests are also sensitive for more complex bugs. Since
the specification may not define the system behavior completely,
we use reactive synthesis algorithms (with partial information) to
compute adaptive test strategies that react to behavior at runtime.
We work out the underlying theory and present first experiments
demonstrating that our approach can be applied to industrial
specifications and that the resulting strategies are capable of
detecting bugs that are hard to detect with random testing.

the system’s environment2. Finally, existing techniques from
runtime verification [6] can be used to build an oracle that
checks the system behavior against the specification while tests
are executed.3

In summary, this paper makes the following contributions:
• A novel approach to compute adaptive test strategies for

reactive systems from temporal specifications that provide
implementation freedom. The tests are guaranteed to
reveal certain bugs for every specification realization.

• The underlying theory of our approach, i.e., we show that
it is sound and complete for many interesting cases and
provide a solution for the other cases.

• A proof of concept implementation and first experimental
results demonstrating that our approach can be applied to
industrial specifications and is capable of detecting bugs
that are hard to detect with random testing.

• To the best of our knowledge, we are the first to combine
fault-based and game-based testing.

Our approach is also an interesting application for synthesis.
Synthesis suffers from scalability issues and the fact that writ-
ing complete specifications is hard. Our approach synthesizes
test strategies from simple and incomplete specifications.

This paper is organized as follows. Section II discusses
related work. Section III gives preliminaries and notation. Our
test case generation approach is worked out in Section IV.
Section V presents first experiments. Section VI concludes.

II. BACKGROUND AND RELATED WORK

Fault-based testing. Fault-based test case generation meth-
ods like mutation testing [26] introduce simple faults into
a system implementation or model and compute tests that
uncover these faults. Based on hypotheses from fault-based
testing [35], we argue that tests that reveal such faults are
also sensitive to more complex issues. Two hypotheses extend
the value of such tests. The Coupling Effect [16], [35] states
that tests that detect simple faults are also sensitive to more
complex faults. The Competent Programmer Hypothesis [16],
[1] states that systems are mostly close to a correct version.
Our approach follows the same philosophy, also relying on
these hypotheses. However, most existing work focuses on
permanent faults and deterministic system descriptions that
define the behavior unambiguously. We also consider transient
faults with different frequencies and uncover faults in every
implementation of a given LTL [40] specification (and all
behaviors of the uncontrollable part of the system’s environ-
ment).

Adaptive tests. If the behavior of the system or the un-
controllable part of the environment is not fully specified, test
cases may have to react to observed behavior at runtime in
order to achieve their goals. Such adaptive test cases have been

2Uncontrollable environment aspects can be seen as part of the system for
the purpose of testing.

3While the semantics of LTL are defined over infinite execution traces,
we can only run the tests for a finite amount of time. This can result in
inconclusive verdicts [6]. We exclude this issue from the scope of this paper,
relying on the user to judge when tests have been executed long enough, and
on existing research on interpreting LTL over finite traces [24], [15], [14].

studied by Hierons [25] from a theoretical perspective, relying
on fairness assumptions (every non-deterministic behavior is
exhibited when trying often enough) or probabilities. Petrenko
et al. compute adaptive tests for trace inclusion [37], [39], [38]
or equivalence [36], [31], [38] from a specification given as
non-deterministic finite state machine (FSM), also relying on
fairness assumptions. Our work makes no such assumptions
but considers the SUT to be fully antagonistic. Aichernig et
al. [2] present a method to compute adaptive tests from (non-
deterministic) UML state machines. Starting from an initial
state, a trace to a goal state, the state that shall be covered by
the resulting test case, is searched for every possible system
behavior, issuing inconclusive verdicts only if the goal state is
not reachable any more. Our approach uses reactive synthesis
to enforce reaching the testing goal for all implementations if
this is possible.

Testing as a game. Yannakakis [44] points out that testing
reactive systems can be seen as a game between two players:
the tester providing inputs and trying to reveal faults, and the
SUT providing outputs and trying to hide faults. The tester can
only observe outputs and has thus partial information about
the SUT. The goal is to find a strategy for the tester that wins
against every SUT. The underlying complexities are studied by
Alur et al. [3]. Our work builds upon reactive synthesis [41]
(with partial information [29]), which can also be seen as a
game. However, we go far beyond the basic idea. We combine
the game concept with user-defined fault models, work out
the underlying theory, optimize the faults sensitivity in the
temporal domain, and present a realization and experiments
for LTL [40]. Nachmanson et al. [34] synthesize game strate-
gies as tests for non-deterministic software models, but their
approach is not fault-based and focuses on simple reachability
goals. A variant considers the SUT to behave probabilistically
with known probabilities [34]. This model is also used in [8].
Test strategies for reachability goals are also considered by
David et al. [13] for timed automata.

Vacuity detection. [7], [30], [5] aim at finding cases where
the specification is trivially satisfied (e.g., because the left
side of an implication is false). Good tests avoid vacuities in
order to challenge the SUT. The method by Beer et al. [7] can
produce witnesses that satisfy the specification non-vacuously,
which can serve as tests. Our approach avoid vacuities by
requiring that certain faulty SUTs violate the specification.

Testing with a model checker. Various methods to compute
tests from temporal specifications using a model checker have
been proposed [23]. The method by Fraser and Ammann [20]
ensures that properties are not vacuously satisfied and that
faults propagate to observable property violations (using finite-
trace semantics for LTL). Tan et al. [43] also define and apply
a coverage metric based on vacuity for LTL. Ammann et
al. [4] create tests from CTL [12] specifications using model
mutations. All these methods assume that a deterministic sys-
tem model is available in addition to the specification. Fraser
and Wotawa [21] also consider non-deterministic models, but
issue inconclusive verdicts if the system deviates from the
behavior foreseen in the test case. In contrast, we search for

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

18

test strategies that achieve their goal for every realization of the
specification. Boroday et al. [11] aim for a similar guarantee
(calling it strong test cases) using a model checker, but do not
consider adaptive test cases, and use an FSM as a specification.

III. PRELIMINARIES AND NOTATION

Traces. We want to test reactive systems that have a finite
set I = {i1, . . . , im} of Boolean inputs and a finite set O =
{o1, . . . , on} of Boolean outputs. The input alphabet is ΣI =
2I , the output alphabet is ΣO = 2O, and Σ = 2I∪O. The set
of infinite words over Σ is denoted by Σω . We also refer to
words as (execution) traces.

Linear Temporal Logic. We use Linear Temporal
Logic (LTL) [40] as a specification language for reactive
systems. The syntax is defined as follows: Every input or
output p ∈ I∪O is an LTL formula; and if ϕ1 and ϕ2 are LTL
formulas, then so are ¬ϕ1, ϕ1 ∨ ϕ2, Xϕ1 and ϕ1 U ϕ2. We
write σ |= ϕ to denote that a trace σ = σ0σ1 . . . ∈ Σω satisfies
LTL formula ϕ. This is defined inductively as follows:
• σ0σ1σ2 . . . |= p iff p ∈ σ0,
• σ |= ¬ϕ iff σ 6|= ϕ,
• σ |= ϕ1 ∨ ϕ2 iff σ |= ϕ1 or σ |= ϕ2,
• σ0σ1σ2 . . . |= Xϕ iff σ1σ2 . . . |= ϕ, and
• σ0σ1 . . . |= ϕ1 Uϕ2 iff ∃j ≥ 0 . σjσj+1 . . . |= ϕ2 ∧ ∀0 ≤
k < j . σkσk+1 . . . |= ϕ1.

That is, Xϕ requires ϕ to hold in the next step, and ϕ1 U ϕ2

means that ϕ1 must hold until ϕ2 holds (and ϕ2 must hold
eventually). We also use the usual abbreviations ϕ1 ∧ ϕ2 =
¬(¬ϕ1∨¬ϕ2), ϕ1 → ϕ2 = ¬ϕ1∨ϕ2, Fϕ = trueUϕ (meaning
that ϕ must hold eventually), and Gϕ = ¬F¬ϕ (ϕ must hold
always). By ϕ[x ← y] we denote the LTL formula ϕ where
all occurrences of x have been textually replaced by y.

Mealy machines. We use Mealy machines to model the
reactive system under test. A Mealy machine is a tuple S =
(Q, q0,ΣI ,ΣO, δ, λ), where Q is a finite set of states, q0 ∈
Q is the initial state, δ : Q × ΣI → Q is a total transition
function, and λ : Q × ΣI → ΣO is a total output function.
Given the input trace σI = x0x1 . . . ∈ Σω

I , S produces the
output trace σO = S(σI) = λ(q0, x0)λ(q1, x1) . . . ∈ Σω

O,
where qi+1 = δ(qi, xi) for all i ≥ 0. That is, in every time
step i, the Mealy machine reads the input letter xi ∈ ΣI ,
responds with an output letter λ(qi, xi) ∈ ΣO, and updates
its state to qi+1 = δ(qi, xi). A Mealy machine can directly
model synchronous hardware designs, but also other systems
with inputs and outputs evolving in discrete time steps.

Moore machines. We use Moore machines to describe test
strategies. A Moore machine is a special Mealy machine with
∀q ∈ Q .∀x, x′ ∈ ΣI . λ(q, x) = λ(q, x′). That is, λ(q, x) is
insensitive to x, i.e., becomes a function λ : Q → ΣO. This
means that the input xi at step i can affect the next state qi+1

and thus the next output λ(qi+1) but not the current output
λ(qi). We write Moore(I,O) (resp. Mealy(I,O)) for the set
of all Moore (Mealy) machines with inputs I and outputs O.

Composition. When given two Mealy machines S1 =
(Q1, q0,1, 2

I , 2O1 , δ1, λ1) ∈ Mealy(I,O1) and S2 =
(Q2, q0,2, 2

I∪O2 , 2O2 , δ2, λ2) ∈ Mealy(I ∪ O1, O2), we write

S = S1 ◦ S2 for their sequential composition S =
(Q1 × Q2, (q0,1, q0,2), 2I , 2I∪O1 , δ, λ) ∈ Mealy(I,O1 ∪ O2)
with δ

(
(q1, q2), x

)
=
(
δ1(q1, x), δ2(q2, x ∪ λ1(q1, x))

)
and

λ
(
(q1, q2), x

)
= λ1(q1, x) ∪ λ2

(
q2, x ∪ λ1(q1, x)

)
.

Systems and test strategies. A reactive system S is a Mealy
machine. An (adaptive) test strategy is a Moore machine T =
(T, t0,ΣO,ΣI ,∆,Λ) with input and output alphabet swapped.
That is, T produces values for input signals and reacts to
values of output signals. A test strategy T can be run on a
system S as follows. In every time step i (starting with i = 0),
T first computes the next input xi = λ(ti). Then, the system
computes the output yi = λ(qi, xi). Finally, both machines
compute their next state ti+1 = ∆(ti, yi) and qi+1 = δ(qi, xi).
We write σ(T ,S) = (x0∪y0)(x1∪y1) . . .Σω for the resulting
execution trace. If T = (T, t0, 2

O′
,ΣI ,∆,Λ) ∈ Moore(O′, I)

can observe only a subset O′ ⊆ O of the outputs, we define
σ(T ,S) with ti+1 = ∆(ti, yi∩O′). A test suite is a set TS ⊆
Moore(O, I) of adaptive test strategies.

Realizability. A Mealy machine S ∈ Mealy(I,O) re-
alizes an LTL formula ϕ, written S ||= ϕ, if ∀M ∈
Moore(O, I) . σ(M,S) |= ϕ. An LTL formula ϕ is Mealy
realizable if there exists a Mealy machine that realizes it.
Likewise, a Moore machine M ∈ Moore(I,O) realizes ϕ,
written M||=ϕ, if ∀S ∈ Mealy(O, I) . σ(M,S) |= ϕ.

SUT 𝑆

 𝑆′ ⊨ 𝜑 𝐹 ⊨ 𝛿
𝐼 𝑜𝑖

′
𝑜1

𝑜𝑛

𝑜𝑖
…

…

Fig. 2. Coverage goal illustra-
tion.

Many coverage metrics [33]
have been proposed to assess the
quality of a test suite. Since the
goal in testing is to detect bugs,
we follow a fault-centered ap-
proach: a test suite has high qual-
ity if it reveals certain kinds of
faults in a system. As illustrated in Fig. 2, we assume that

4All proofs can be found in the Appendix of the extended version available
on arxiv.org

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

19

Reactive synthesis. We use reactive synthesis to compute
test strategies. A reactive (Moore, LTL) synthesis procedure
takes as input a set I of Boolean inputs, a set O of Boolean
outputs, and an LTL specification ϕ over these signals. It
produces a Moore machineM∈ Moore(I,O) that realizes ϕ,
or the message unrealizable if no such Moore machine exists.
We denote this computation byM = synt(I,O, ϕ). A synthe-
sis procedure with partial information is defined similarly, but
takes a subset I ′ ⊆ I of the inputs as additional argument.
It produces a Moore machine M′ = syntp(I,O, ϕ, I ′) with
M′ ∈ Moore(I ′, O) that realizes ϕ while only observing
the inputs I ′, or the message unrealizable if no such Moore
machine exists.

IV. SYNTHESIS OF ADAPTIVE TEST STRATEGIES

This section presents our approach for synthesizing adaptive
test strategies for reactive systems specified in LTL. First, we
elaborate on the coverage objective we aim to achieve.Then we
present our strategy synthesis algorithm. Finally, we discuss
extensions and variants4.

A. Coverage Objective for Test Strategy Computation

our SUT is “almost correct”, i.e., that it is composed of a
correct implementation S ′ of the specification ϕ, but with a
fault F that affects one of the outputs. In order to make our
approach flexible, we allow the user to define the considered
faults as an LTL formula δ. Through δ, the user can define both
permanent and transient faults of various types. For instance,
δ = F(oi ↔ ¬o′i) describes a bit-flip that occurs at least
once, GF¬oi models a stuck-at-0 fault that occurs infinitely
often, and G(X(oi) ↔ o′i) models a permanent shift by one
time step. We strive for a test suite that reveals every fault
that satisfies δ for every realization of ϕ. This renders the
test suite independent of the implementation and the concrete
fault manifestation. The following definition formalizes this
intuition into a coverage objective.

Definition 1: A test suite TS ⊆ Moore(O, I) for a system
with inputs I , outputs O, and specification ϕ is universally
complete5 with respect to a given fault model δ iff

∀oi ∈ O . ∀S ′ ∈ Mealy(I,O ∪ {o′i} \ {oi}) .
∀F ∈ Mealy(I ∪O ∪ {o′i} \ {oi}, {oi}) .∃T ∈ TS .((
S ′ ||=ϕ[oi ← o′i] ∧ F ||=δ

)
→
(
σ(T ,S ′ ◦ F) 6|= ϕ

))
. (1)

That is, for every output oi, system S ′ ||= ϕ[oi ← o′i], and
fault F ||= δ, TS must contain a test strategy T that reveals
the fault by causing a specification violation (cf. Fig. 2). Note
that the test strategies T ∈ TS ⊆ Moore(O, I) cannot observe
the signal o′i. The reason is that this signal o′i does not exist in
the real system implementation(s) on which we run our tests
— it was only introduced to define our coverage objective.

There can be an unbounded number of system realizations
S ′ ||=ϕ[oi ← o′i] and faults F ||=δ. Computing a separate test
strategy for each combination is thus not a viable option. We
rather strive for computing only one test strategy per output
variable.

Theorem 2: A universally complete test suite TS ⊆
Moore(O, I) with respect to fault model δ exists for a system
with inputs I , outputs O, and specification ϕ if

∀oi ∈ O . ∃T ∈ Moore(O, I) .∀S ∈ Mealy(I,O ∪ {o′i}) .
σ(T ,S) |=

(
(ϕ[oi ← o′i] ∧ δ)→ ¬ϕ

)
. (2)

Intuitively, Theorem 2 holds because going from ∃T ∀S to
∀S∃T and from σ(T ,S) |= ϕ[oi ← o′i] ∧ δ to S ′ ◦ F ||=
ϕ[oi ← o′i] ∧ δ makes the formula weaker.

Theorem 2 states that Eq. 2 is a sufficient condition for
a universally complete test suite to exist. If it were also
a necessary condition, then computing one test strategy per
output signal would be enough. Unfortunately, this is not the
case in general.

Example 1. Consider a system with input I = {i}, output
O = {o}, and specification ϕ =

(
G(i → G i) ∧ F i

)
→(

G(o → G o) ∧ F o ∧ G(i ∨ ¬o)
)
. The left side of the

5The word “complete” indicates that every considered fault is revealed at
every output. The word “universal” indicates that this is achieved for every
(otherwise correct) system.

implication assumes that the input i is set to true at some
point, after which i remains true. The right side requires the
same for the output o. In addition, o must not be raised
while i is still false. This specification is realizable (e.g.,
by always setting o = i). The test suite TS = {T3} with
T3 shown in Fig. 3 is universally complete with respect to

¬i i

¬o true
o

Fig. 3. Strategy T3.

fault model δ = F(o ↔ ¬o′),
which requires the output to flip
at least once: As long as i is false,
any correct system implementa-
tion S ′ ∈ Mealy({i}, {o′}) ||=
ϕ[oi ← o′i] must keep the output
o′ = false. Eventually, F ||= δ must flip the output o to
true. When this happens, i is set to true by T3 so that the
resulting trace σ(T ,S ′ ◦ F) violates ϕ. Still, Eq. 2 is false6.
Strategy T3 does not satisfy Eq. 2 because for the system
S ∈ Mealy({i}, {o, o′}) that sets o′ = true and o = false in
all steps, we have σ(T3,S) |=

(
ϕ[oi ← o′i]∧δ∧ϕ

)
. The reason

is that i stays false, so ϕ[oi ← o′i] and ϕ are vacuously satisfied
by σ(T3,S). The formula δ is satisfied because o ↔ ¬o′
holds in all time steps. Thus, S is a counterexample to T3
satisfying Eq. 2. Similar counterstrategies exist for all other
test strategies.

The fact that Eq. 2 is not a necessary condition for a
universally complete test suite to exist is somewhat surprising,
especially in the light of the following two lemmas. Based
on these lemmas, the subsequent propositions will show that
Eq. 2 is both sufficient and necessary (i.e., one test per output
is enough) for many interesting cases.

Lemma 3: For every LTL specification ψ over some inputs
I and outputs O, we have that ∃T ∈ Moore(O, I) .∀S ∈
Mealy(I,O) . σ(T ,S) |= ψ holds if and only if ∀S ∈
Mealy(I,O) .∃T ∈ Moore(O, I) . σ(T ,S) |= ψ holds.

Lemma 4: For all LTL specifications A,G over inputs I and
outputs O, we have that

∀S ∈ Mealy(I,O) .∃T ∈ Moore(O, I) .

(S ||=A)→
(
σ(T ,S) |= G

) (3)

iff ∀S ∈ Mealy(I,O) .∃T ∈ Moore(O, I) .

σ(T ,S) |= (A→ G).
(4)

These two lemmas state that quantifiers can be swapped
and that assuming σ(T ,S) |= A is equivalent to assuming
(S ||= A) for the case where T has full information about
the outputs of S. Yet, in our setting, test strategies T ∈
Moore(O, I) have incomplete information about the system
S ∈ Mealy(I,O∪{o′i}) because they cannot observe o′i. Still,
T must enforce (ϕ[oi ← o′i] ∧ δ)→ ¬ϕ, which refers to this
hidden signal. Thus, Lemma 3 and 4 cannot be applied to Eq. 2
in general. However, in cases where there is (effectively) no
hidden information, the lemmas can be used to prove that Eq. 2
is both a necessary and a sufficient condition for a universally
complete test suite to exist. The following propositions show
that this is the case for many cases of practical interest.

6This is (at least partially) confirmed by our test strategy synthesis tool: it
reports that no test strategy with less than 12 states can satisfy Eq. 2.

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

20

Proposition 5: Given a fault model of the form δ = G(o′i ↔
ψ), where ψ is an LTL formula over I and O, a universally
complete test suite TS ⊆ Moore(O, I) with respect to δ, I, O,
and ϕ exists if and only if Eq. 2 holds.
The intuitive reason is that ϕ[oi ← o′i] can be rewritten to
ϕ[oi ← ψ] in Eq. 2, which eliminates the hidden signal such
that Lemma 3 and 4 can be applied. Proposition 5 entails
that computing one test strategy per output oi ∈ O is enough
for fault models such as permanent bit flips (defined by δ =
G(o′i ↔ ¬oi)).

Proposition 6: If the fault model δ does not reference o′i, a
universally complete test suite TS ⊆ Moore(O, I) with respect
to δ, I, O, and ϕ exists iff Eq. 2 holds.
The assumption S ′ ||=ϕ[oi ← o′i] can be dropped from Eq. 1
in this case. Correspondingly, σ(T ,S) |=

(
(ϕ[oi ← o′i] ∧

δ) → ¬ϕ
)

simplifies to σ(T ,S) |= (δ → ¬ϕ) in Eq. 2.
Since o′i is now gone, Lemma 3 and 4 apply. In general, the
assumption S ′ ||= ϕ[oi ← o′i] is needed to prevent a faulty
system S ′ 6||=ϕ[oi ← o′i] from compensating the fault F ||= δ
such that S ′ ◦ F ||=ϕ. E.g., for I = ∅, O = {o}, ϕ = G o and
δ = G(o↔ ¬o′), Eq. 1 would be false without S ′ ||=ϕ[oi ←
o′i] because there exists an S ′ that always sets o′ = false,
in which case S ′ ◦ F has o correctly set to true. However,
if δ does not reference o′, such a fault compensation is not
possible.

Proposition 6 applies to permanent or transient stuck-at-
0 or stuck-at-1 faults (e.g., δ = F¬oi or δ = GF oi),
but also to faults where oi keeps its previous value (e.g.,
δ = F(oi ↔ X(oi)) or takes the value of a different input or
output (e.g., δ = GF(oi ← i3)). Together with Proposition 5,
it shows that computing one test strategy per output is enough
for many interesting fault models. Finally, even if neither
Proposition 5 nor Proposition 6 applies, computing one test
strategy per output may still suffice for the concrete ϕ and δ at
hand. In the next section, we thus rely on Eq. 2 to compute one
test strategy per output in order to obtain universally complete
test suites.

B. Test Strategy Computation

Basic idea. Our test case generation approach builds
upon Theorem 2: For every output oi ∈ O, we want to
find a test strategy Ti ∈ Moore(O, I) such that ∀S ∈
Mealy(I,O ∪ {o′i}) . σ(T ,S) |=

(
(ϕ[oi ← o′i] ∧ δ) → ¬ϕ

)
holds. Recall from Section III that a synthesis procedure
M = syntp(I,O, ψ, I ′) with partial information computes a
Moore machine M ∈ Moore(I ′, O) with I ′ ⊆ I such that a
certain LTL objective ψ is enforced in all environments, i.e.,
∀S ∈ Mealy(O, I) . σ(M,S) |= ψ. If no suchM exists, syntp
returns unrealizable. Also recall that a test strategy is a Moore
machine with input and output signals swapped. We can thus
call Ti := syntp

(
O ∪ {o′i}, I, (ϕ[oi ← o′i] ∧ δ) → ¬ϕ,O

)
for

every output oi ∈ O in order to obtain a universally complete
test suite with respect to fault model δ for a system with
inputs I , outputs O, and specification ϕ. If syntp succeeds
(does not return unrealizable) for all oi ∈ O, the resulting
test suite TS = {Ti | oi ∈ O} is guaranteed to be universally

Algorithm 1 SYNTLTLTEST: Synthesizes adaptive test strate-
gies from an LTL spec.

1: procedure SYNTLTLTEST(I,O, ϕ, κ), returns: A set TS
of test strategies Ti

2: TS := ∅
3: for each oi ∈ O do
4: for each frq from (F,GF,FG,G) in this order do
5: Ti := syntp

(
O ∪ {o′i}, I,

(
ϕ[oi ← o′i] ∧ frq(κ)

)
→

¬ϕ,O
)

6: if Ti 6= unrealizable then
7: TS := TS ∪ {Ti}; break
8: return TS

complete. However, since Theorem 2 only gives a sufficient
but not a necessary condition, this procedure may fail to find a
universally complete test suite, even if one exists, in general.
In cases where Proposition 5 or Proposition 6 applies, it is
both sound and complete, though.

Fault models. To simplify the user input, we split the fault
model δ in our coverage objective from Definition 1 into two
parts: the fault kind κ and the fault frequency frq. The fault
kind κ is an LTL formula that is given by the user and defines
which faults we consider. For instance, κ = ¬oi describes a
stuck-at-0 fault, κ = oi ↔ ¬o′i defines a bit-flip, and κ =
o′i ↔ X(oi) describes a delay by one time step. The fault
frequency frq describes how often a fault of the specified kind
occurs, and is chosen by our algorithm. We distinguish 4 fault
frequencies, which we describe using temporal LTL operators.
• Fault frequency G means that the fault is permanent.
• Frequency FG means that the fault occurs from some

time step i on permanently. Yet, we do not make any
assumptions about the precise value of i.

• Frequency GF states that the fault strikes infinitely often,
but not when exactly.

• Frequency F means that the fault occurs at least once.
The fault model δ is then defined as δ = frq(κ). Note that there
is a natural order among our 4 fault frequencies: a fault of
kind κ that occurs permanently (frequency G) is just a special
case of the same fault κ occurring from some point onwards
(frequency FG), which is in turn a special case of κ occurring
infinitely often (frequency GF), which is a special case of κ
occurring at least once. Thus, a test strategy that reveals a fault
that occurs at least once (without knowing when) will also
reveal a fault that occurs infinitely often, etc. In our approach,
we thus compute test strategies to detect faults at the lowest
frequency for which a test strategy can be found.

Algorithm. The procedure SYNTLTLTEST in Algorithm 1
formalizes our approach. The input consists of (1) the inputs
I of the SUT, (2) the outputs O of the SUT, (3) an LTL
specification ϕ of the SUT, and (4) a fault kind κ. The result of
SYNTLTLTEST is a test suite TS. The algorithm iterates over
all outputs oi ∈ O (Line 3) and over our 4 fault frequencies
(Line 4), starting with the lowest one. Line 5 attempts to
compute a strategy to reveal a fault that is compliant with the
provided fault kind for the current frequency. If such a strategy

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

21

exists, it is added to TS and the next output is processed.
Otherwise, the algorithm tries the next higher fault frequency.

Sanity checks. Note that our coverage goal in Eq. 1 is
vacuously satisfied by any test suite if ϕ or δ is unrealizable.
The reason is that the test suite must reveal every fault F
realizing δ for every system S ′ realizing ϕ. If there is no
such fault or system, this is trivial. As a sanity check, we
thus test the (Mealy) realizability of ϕ and Gκ before starting
Algorithm 1 (because if Gκ is realizable, then so are FGκ,
GFκ and Fκ).

Handling unrealizability. If, for some output, Line 5 of
Alg. 1 returns unrealizable for the highest fault frequency
frq = G, we print a warning and suggest that the user examines
these cases manually. There are two possible reasons for unre-
alizability. First, due to limited observability, we do not find a
test strategy although one exists (see Example 1). Second, no
test strategy exists because there is some S ′ ||=ϕ[oi ← o′i] and
F ||= δ such that the composition S = S ′ ◦ F (see Fig. 2) is
correct, i.e., S ′ ◦F ||=ϕ. In other words, for some realization,
adding the fault may result in an equivalent mutant in the
sense that the specification is still satisfied. For example, in
case of a stuck-at-0 fault model, there may exist a realization
of the specification that has the considered output oi ∈ O
fixed to false. Such a high degree of underspecification is at
least suspicious and may indicate unintended vacuities [7] in
the specification ϕ, which should be investigated manually. If
Proposition 5 or 6 applies, or if synt

(
O ∪ {o′i}, I,

(
ϕ[oi ←

o′i]∧G(κ)
)
→ ¬ϕ

)
returns unrealizable, we can be sure that

the second case applies. Then, we can even compute additional
diagnostic information in the form of two Mealy machines
S ′ ||= ϕ[oi ← o′i] and F ||= δ (by synthesizing some Mealy
machine S ||=(ϕ[oi ← o′i]∧G(κ)∧ϕ) and splitting it into S ′
and F by stripping off different outputs). The user can then try
to find inputs for S ′ ◦ F such that the resulting trace violates
the specification. Failing to do so, the user will understand
why no test strategy exists (see also [28]). For cases where
the specification is as intended but no test strategy exists, we
can follow the approach by Faella [17], [18] to synthesize best-
effort strategies that are not guaranteed to cause a specification
violation but at least do not give up trying. But we leave this
extension for future work.

Optimizations. As discussed at Proposition 6, Line 5 in Al-
gorithm 1 can be simplified to Ti := synt

(
O, I, frq(κ)→ ¬ϕ

)
if κ does not reference o′i. If frq=G and κ is of the form κ =
(o′i ↔ ψ), where ψ is an LTL formula over I and O, Line 5
can be simplified to Ti := synt

(
O, I, ϕ[oi ← ψ] → ¬ϕ

)
.

This is justified by the proof of Proposition 5. Note that in
these cases, a synthesis procedure without partial information
suffices.

Complexity. Both syntp(O, I, ψ,O′) and synt(O, I, ψ) are
2EXPTIME complete in |ψ| [29], so the execution time of
Alg. 1 is at most doubly exponential in |ϕ|+ |κ|.

Theorem 7: For a system with inputs I , outputs O, and LTL
specification ϕ over I ∪ O, if the fault kind κ is of the form
κ = ψ or κ = (o′i ↔ ψ), where ψ is an LTL formula over
I and O, SYNTLTLTEST(I,O, ϕ, κ) will return a universally

complete test suite with respect to the fault model δ = G(κ)
if such a test suite exists.
Theorem 7 states that SYNTLTLTEST is not only sound but
also complete for many interesting fault models such as stuck-
at faults or permanent bit-flips. For κ = ψ, Theorem 7 can
even be strengthened to hold for all δ = frq(κ) with frq ∈
{F,GF,FG,G}.

C. Extensions and Variants

Faults at inputs. In this paper, we only consider faults at
the outputs. However, considering SUTs that behave as if they
would have read a faulty input is possible as well (by changing
Line 3 in Algorithm 1 to “for each o ∈ I ∪O do”).

Multiple faults. Simultaneous faults at multiple (inputs or)
outputs {o1, . . . , ok} ⊆ O can be considered by computing a
test strategy
T := syntp

(
O ∪ {o′1, . . . , o′k}, I, (ϕ[o1 ← o′1, . . . , ok ← o′k] ∧∧k

i=1 δi)→ ¬ϕ,O
)
, where the fault model δi can be different

for different outputs oi ∈ {o1, . . . , ok}.
Mutating the specification. We can also synthesize adap-

tive test strategies that would uncover bugs where the SUT
implements a mutated (i.e., slightly modified) specification
ϕ′ instead of ϕ by calling T := synt(O, I, ϕ′ → ¬ϕ). The
implication requires the original specification ϕ to be violated
under the assumption that the mutated specification ϕ′ holds
for the SUT. This variant does not require partial information
synthesis.

Other specification formalisms. We worked out our ap-
proach for LTL, but it would work for other languages if (1)
the language is closed under Boolean connectives (∧,¬), (2)
the desired fault models are expressible, and (3) a synthesis
procedure (with partial information) is available. These pre-
requisites do not only apply to many temporal logics but also
to various kinds of automata over infinite words.

V. EXPERIMENTAL RESULTS

We evaluated our method on two different specifications:
(1) an industrial specification, the AMBA Bus Arbiter for
2 masters [9], and (2) a specification of a door system
that requires sophisticated strategies to satisfy the coverage
objectives.

For the AMBA Bus Arbiter, we extended the LTL synthesis
tool PARTY [27]. PARTY implements SMT-based bounded
synthesis [19] for LTL, which sets a bound b on the number of
states of the system to be synthesized. This bound is increased
iteratively until a solution is found. For the second experiment,
where we only use fault models that do not require partial
information, we use the synthesis tool Acacia+ [10].

Test Setup. We generated mutants – stuck-at-0 and stuck-
at-1 faults – for every line in the source code of the implemen-
tation and dropped those that do not violate the specification.
Then we tested the mutated implementations for 20 time steps.
All experiments are performed on an Intel Xeon E5430 CPU
running at 2.66 GHz with a 64 bit Linux using one CPU core7.

7Our implementation, input files and scripts are provided at https://seafile.
iaik.tugraz.at/d/0d043a57d2/ with password fmcad2016.

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

22

https://seafile.iaik.tugraz.at/d/0d043a57d2/
https://seafile.iaik.tugraz.at/d/0d043a57d2/

TABLE I
RESULTS FOR THE AMBA BUS ARBITER. THE SUFFIX “K” MULTIPLIES BY

103 .

Decide Next Start Access Grant Bus Full Spec

Fault oi frq |T | sec MB frq |T | sec MB frq |T | sec MB frq |T | sec MB

St
uc

k
at

0
(κ

=
¬
o
i
)

hmaster0 FG 2 359

pe
ak

:
57

4
M

B - - 147

pe
ak

:
13

8
M

B - - 146

pe
ak

:
13

1
M

B GF 2 4,848

pe
ak

:
2,

20
7

M
B

hgrant0 F 2 18 G 2 150 F 2 2,082
hgrant1 - - 856 - - 172 GF 2 4,991
hmastlock - - 803 - - 133 - - 133 GF 2 5,808
start G 2 126 G 2 230 FG 2 9,367
locked - - 736 - - 170 GF 2 5,236
decide G 2 689 FG 2 9,934

St
uc

k
at

1
(κ

=
o
i
)

hmaster0 FG 2 1,237

pe
ak

:
78

3
M

B G 2 133

pe
ak

:
13

0
M

B G 2 153

pe
ak

:
13

1
M

B F 2 2,388

pe
ak

:
1,

91
7

M
B

hgrant0 - - 6,775 - - 171 GF 2 5,681
hgrant1 F 2 19 G 2 151 F 2 1,970
hmastlock G 2 9,64 G 2 115 G 2 186 F 2 1,473
start GF 3 53 - - 129 GF 2 5,934
locked GF 2 800 - - 202 GF 2 5,423
decide - - 1,011 GF 2 4,169

Fl
ip

(κ
=
o
i
↔
¬
o
′ i
) hmaster0 G 2 22k

pe
ak

:
6,

17
6

M
B G 2 54k

pe
ak

:
47

2
M

B GF 2 1,828

pe
ak

:
1,

47
6

M
B

hgrant0 F 2 29 F 2 10 Timeout
hgrant1 F 2 38 F 2 10 (> 6 days
hmastlock G 2 3,385 G 2 53k GF 2 1,057 for first
start FG 2 43k G 2 163 output)
locked GF 2 1,525 GF 2 86
decide F 3 61

A. AMBA Bus Arbiter Case Study

The ARM AMBA bus arbiter specification is an industrial
specification. Deriving test cases for it illustrates that our
approach can successfully handle real world examples.

The specification has 7 inputs, and 7 outputs. The properties
can be clustered into 3 (interdependent) parts [9]: deciding
about the next access, starting an access, and granting the
bus. In order to improve scalability and demonstrate that
our approach can operate on incomplete specifications, we
synthesize test strategies for these 3 parts separately. Each part
is combined with all assumptions to ensure that the synthesized
test strategies can be run on the full system.

Results. Table I summarizes the results. The groups in the
rows contain results for different fault models. Sub-rows dis-
tinguish the output signals oi ∈ O. The column-blocks contain
results for the 3 specification parts and the full specification.
The sub-columns list (1) the lowest fault frequency for which
Alg. 1 found a solution (“-” indicates that no strategy with ≤b
states exists, even with frq = G), (2) the number of states in
the resulting test strategy, (3) the execution time, and (4) the
peak memory consumption over all outputs. An empty sub-row
indicates that the output does not occur in that specification
parts.

In many cases, the synthesized test strategies cannot only
reveal permanent faults but also transient faults with low
frequencies. For stuck-at-0 and stuck-at-1, we can consider
the entire spec, and we get such strategies for 12 cases. If we
use the fault model that flips the output, we have to restrict
ourselves to a subset of the spec. Nevertheless, we can derive
another 6 strategies of the required quality.

Applying the strategies derived from the full specification
on mutated implementations, the tests are able to detect
between 25% and 48% of our faulty implementations with
transient mutants. Random sequences are able to detect the
same number.

Discussion. Deriving strategies for parts of the specification
that reveal (transient) flips succeeds more often than deriving

strategies revealing (transient) stuck-at faults because, with the
latter fault model, an output may be (temporarily) stuck at
the correct value. On the other hand, synthesizing flip-tests
consumes more resources because the optimization discussed
in Proposition 6 cannot be applied. This is also the reason
for the timeout with flips on the full specification. Although
test stragies are found for most outputs when processing the 3
specification parts separately, processing the full specification
yields better strategies but takes longer.

While the specification is large, it is still rather simple which
is confirmed by the resulting strategies which all contain at
most three states. Therefore, it is not unexpected that random
testing is as successful as our strategies. The achieved score on
killed mutants illustrates a quite successful application of our
approach on a real world example as we generate strategies
without any knowledge of the particular implementation and
the strategies, therefore, only focus on detecting faulty output
signals.

B. Door with PIN

Although the AMBA specification is industrial, the strate-
gies are rather straightforward. To evaluate our approach on
a specification that is hard to test with random testing, we
apply it on an example that specifies the opening mechanism
of a door that is secured by a PIN when the door is locked
and requires inputs that are are not very likely to be hit by
random sequences.

The specification of the example has 7 inputs, and 5 outputs.
The first output signal, doorclosed, displays whether the
door is closed or open, the second, doorlocked, whether it
is locked or unlocked. The other three binary output signals
provide an arbitrary PIN value in the range of 0 . . . 7. The 4
input signals control the open, close, lock and unlock
mechanism of the door, and the door is only opened if it is
not locked. Only one of these signals can be high at a time.
The other 3 inputs are binary PIN inputs. Whenever unlock
is high, the next two time steps the input PIN signals have
to copy the displayed PIN to satisfy the security policy, a
requirement that is unlikely to be met with random testing. If
the PIN is wrong the first time, the door is locked even if it
was unlocked before.

TABLE II
RESULTS FOR THE DOOR

SPECIFICATION.

Fault oi frq |T | sec MB

stuck-at-0
doorclosed GF 25 22,341 347
doorlocked FG 29 2,425 285

stuck-at-1
doorclosed GF 45 23,290 1,000
doorlocked FG 52 3.100 148

Results. Table II
summarizes the results
using Acacia+. Our
approach is able to derive
GF strategies for the output
doorclosed. For the
output doorlocked our
approach derived strategies
detecting FG faults. As the
number of states indicates,
the strategies are larger,
because they are independent of hardcoded PINs.

When testing a door implementation containing permanent
faults, our strategies are able to detect 83% of our stuck-at-0

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

23

mutants and 95% of our stuck-at-1 mutants while random tests
only detect 29% of the former and 10% of the latter.

Discussion. While doorlocked is not specified for every
step in time, our approach is still able to derive strategies.
Although our strategies originally only focus on stuck-at faults
of the output values they are able to detect most of the mutants.
The low success-rate of random tests is due to the fact that
they fail entering the correct PIN, whereas our strategies are
able to come across such difficult prefixes.

VI. CONCLUSION

We presented a new approach to compute adaptive test
strategies from temporal logic specifications using reactive
synthesis with partial information. The computed test strate-
gies reveal all instances of a user-defined fault class for every
realization of a given specification. Thus, they do not rely
on implementation details, which is important for products
that are still under development or for standards that will be
implemented by multiple vendors. Our approach is sound but
incomplete in general, i.e., may fail to find test strategies even
if they exist. However, for many interesting cases, we showed
that it is both sound and complete. The worst-case complexity
is doubly exponential in the specification size, but in our
setting, the specifications are typically small. This also makes
our approach an interesting application for reactive synthesis.
Our experiments demonstrate that our approach can compute
meaningful tests for industrially sized specifications and that
generated strategies are capable of detecting faults hidden in
paths that are unlikely taken by random sequences.

Current directions for future work include improving scal-
ability, success-rate, and usability of our approach. To this
end, we are investigating using random testing for inputs in
the strategies that are not fixed to single values, and best-effort
strategies [17], [18] for the case that there are no test strategies
that can guarantee triggering the fault.

REFERENCES

[1] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Mutation analysis. Technical Report GIT-ICS-79/08, Georgia Institute
of Technology, Atlanta, Georgia, 1979.

[2] B. K. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, R. Schlick, and S. Tiran.
Killing strategies for model-based mutation testing. Software Testing,
Verification and Reliability, 25(8):716–748, 2015.

[3] R. Alur, C. Courcoubetis, and M. Yannakakis. Distinguishing tests for
nondeterministic and probabilistic machines. In STOC’95. ACM, 1995.

[4] P. Ammann, W. Ding, and D. Xu. Using a model checker to test safety
properties. In ICECCS’01, pages 212–221. IEEE, 2001.

[5] R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer,
and M. Y. Vardi. Enhanced vacuity detection in linear temporal logic.
In CAV’03, LNCS 2725, pages 368–380. Springer, 2003.

[6] A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL
and TLTL. ACM Trans. Softw. Eng. Methodol., 20(4):14, 2011.

[7] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of
vacuity in ACTL formulaas. In CAV’97, pages 279–290. Springer, 1997.

[8] A. Blass, Y. Gurevich, L. Nachmanson, and M. Veanes. Play to test. In
FATES’05, LNCS 3997, pages 32–46. Springer, 2005.

[9] R. Bloem, S. J. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and
M. Weiglhofer. Interactive presentation: Automatic hardware synthesis
from specifications: a case study. In DATE’07, pages 1188–1193, 2007.

[10] Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, Naiyong Jin, and
Jean-François Raskin. Acacia+, a tool for ltl synthesis. In Computer
Aided Verification, pages 652–657. Springer, 2012.

[11] S. Boroday, A. Petrenko, and R. Groz. Can a model checker generate
tests for non-deterministic systems? Electronic Notes in Theoretical
Computer Science, 190(2):3–19, 2007.

[12] E. M. Clarke and E. A. Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Workshop on
Logics of Programs, LNCS 131, pages 52–71. Springer, 1981.

[13] A. David, K. G. Larsen, S. Li, and B. Nielsen. A game-theoretic
approach to real-time system testing. In DATE’08. ACM, 2008.

[14] G. De Giacomo, R. De Masellis, and M. Montali. Reasoning on LTL
on finite traces: Insensitivity to infiniteness. In AAAI’14, 2014.

[15] G. De Giacomo and M. Y. Vardi. Linear temporal logic and linear
dynamic logic on finite traces. In IJCAI’13. IJCAI/AAAI, 2013.

[16] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test
data selection: Help for the practicing programmer. IEEE Computer,
11(4):34–41, 1978.

[17] M. Faella. Games you cannot win. In Workshop on Games and Automata
for Synthesis and Validation, Lausanne, Switzerland, September 2007.

[18] M. Faella. Admissible strategies in infinite games over graphs. In
MFCS’09, LNCS 5734, pages 307–318. Springer, 2009.

[19] B. Finkbeiner and S. Schewe. Bounded synthesis. STTT, 15(5-6):519–
539, 2013.

[20] G. Fraser and P. Ammann. Reachability and propagation for LTL
requirements testing. In QSIC’08, pages 189–198. IEEE, 2008.

[21] G. Fraser and F. Wotawa. Test-case generation and coverage analysis
for nondeterministic systems using model-checkers. In ICSEA’07, 2007.

[22] G. Fraser, F. Wotawa, and P. Ammann. Issues in using model checkers
for test case generation. Journal of Systems and Software, 82(9):1403–
1418, 2009.

[23] G. Fraser, F. Wotawa, and P. Ammann. Testing with model checkers: a
survey. Softw. Test., Verif. Reliab., 19(3):215–261, 2009.

[24] K. Havelund and G. Rosu. Monitoring programs using rewriting. In
ASE’01, pages 135–143. IEEE, 2001.

[25] R. M. Hierons. Applying adaptive test cases to nondeterministic
implementations. Information Processing Letters, 98(2):56–60, 2006.

[26] Y. Jia and M. Harman. An analysis and survey of the development of
mutation testing. IEEE Trans. Software Eng., 37(5):649–678, 2011.

[27] A. Khalimov, S. Jacobs, and R. Bloem. PARTY: Parameterized synthesis
of token rings. In CAV’13, LNCS 8044, pages 928–933. Springer, 2013.

[28] R. Könighofer, G. Hofferek, and R. Bloem. Debugging formal specifi-
cations using simple counterstrategies. In FMCAD’09. IEEE, 2009.

[29] O. Kupferman and M. Y. Vardi. Synthesis with incomplete informatio.
In ICTL’97, pages 91–106, 1997.

[30] O. Kupferman and M. Y. Vardi. Vacuity detection in temporal model
checking. STTT, 4(2):224–233, 2003.

[31] G. Luo, G. von Bochmann, and A. Petrenko. Test selection based on
communicating nondeterministic finite-state machines using a general-
ized Wp-method. IEEE Trans. Software Eng., 20(2):149–162, 1994.

[32] D. A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–
371, 1975.

[33] A. P. Mathur. Foundations of Software Testing. Addison-Wesley, 2008.
[34] L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann, and

W. Grieskamp. Optimal strategies for testing nondeterministic systems.
In ISSTA’04, pages 55–64. ACM, 2004.

[35] A. J. Offutt. Investigations of the software testing coupling effect. ACM
Trans. Softw. Eng. Methodol., 1(1):5–20, 1992.

[36] A. Petrenko, A. da Silva Simão, and N. Yevtushenko. Generating
checking sequences for nondeterministic finite state machines. In
ICST’12, pages 310–319. IEEE, 2012.

[37] A. Petrenko and A. Simão. Generalizing the DS-methods for testing
non-deterministic FSMs. Computer Journal, 58(7):1656–1672, 2015.

[38] A. Petrenko and N. Yevtushenko. Conformance tests as checking
experiments for partial nondeterministic FSM. In FATES’05, LNCS
3997, pages 118–133. Springer, 2005.

[39] A. Petrenko and N. Yevtushenko. Adaptive testing of nondeterministic
systems with FSM. In HASE’14, pages 224–228. IEEE, 2014.

[40] A. Pnueli. The temporal logic of programs. In FOCS’77. IEEE, 1977.
[41] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In

POPL’89, pages 179–190. ACM, 1989.
[42] J.-P. Queille and J. Sifakis. Specification and verification of concurrent

systems in CESAR. In International Symposium on Programming,
LNCS 137, pages 337–351. Springer, 1982.

[43] L. Tan, O. Sokolsky, and I. Lee. Specification-based testing with linear
temporal logic. In IRI’04, pages 493–498. IEEE, 2004.

[44] M. Yannakakis. Testing, optimizaton, and games. In LICS’04, 2004.

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

24

Reducing Interpolant Circuit Size by Ad-Hoc Logic

Synthesis and SAT-Based Weakening

G. Cabodi, P. E. Camurati, M. Palena, P. Pasini, D. Vendraminetto

Dipartimento di Automatica ed Informatica

Politecnico di Torino - Turin, Italy

Email: {gianpiero.cabodi, paolo.camurati, marco.palena, paolo.pasini, danilo.vendraminetto}@polito.it

Abstract—We address the problem of reducing the size of
Craig interpolants used in SAT-based Model Checking. Craig
interpolants are AND-OR circuits, generated by post-processing
refutation proofs of SAT solvers. Whereas it is well known that
interpolants are highly redundant, their compaction is typically
tackled by reducing the proof graph and/or by exploiting stan-
dard logic synthesis techniques. Furthermore, strengthening and
weakening have been studied as an option to control interpolant
quality.

In this paper we propose two interpolant compaction tech-
niques: (1) A set of ad-hoc logic synthesis functions that, revisiting
known logic synthesis approaches, specifically address speed and
scalability. Though general and not restricted to interpolants,
these techniques target the main sources of redundancy in
interpolant circuits. (2) An interpolant weakening technique,
where the UNSAT core extracted from an additional SAT query
is used to obtain a gate-level abstraction of the interpolant. The
abstraction introduces fresh new variables at gate cuts that must
be quantified out in order to obtain a valid interpolant. We show
how to efficiently quantify them out, by working on an NNF
representation of the circuit.

The paper includes an experimental evaluation, showing the
benefits of the proposed techniques, on a set of benchmark
interpolants arising from both hardware and software model
checking problems.

I. INTRODUCTION

Craig interpolants (ITPs) [1], introduced by McMillan [2]

in the Unbounded Model Checking (UMC) field, have shown

to be effective on difficult verification instances.

From a Hardware Model Checking perspective, Craig in-

terpolation is an operator able to compute over-approximated

images. The approach can be viewed as an iterative refinement

of proof-based abstractions, to narrow down a proof to relevant

facts. Over-approximations of the reachable states are com-

puted from refutation proofs of unsatisfied Bounded Model

Checking–like runs, in terms of AND-OR circuits, generated

in linear time and space, w.r.t. the proof.

From the perspective of Software Model Checking, instead,

interpolants are used to strengthen the results of predicate

abstraction [3]. In case the inductive invariant representing a

program is insufficient to prove a given property, interpolants

can be used as predicates to refine such an abstraction [4].

The most interesting features of Craig interpolants are

their completeness and the fact can be used as an automated

abstraction mechanism, whereas one of their major drawbacks

is the inherent redundancy of interpolant circuits, as well

as the need for fast and scalable techniques to compact

them. Improvements over the base method [2] were proposed

in [5], [6], [7], [8] and [9], in order to push forward applica-

bility and scalability of the technique.

Craig interpolants can be computed as AND-OR circuits,

generated by post-processing refutation proofs of SAT solvers.

Modern SAT solvers are capable, without incurring into large

additional cost, to generate a resolution proof from unsatisfi-

able runs [10]. Due to the nature of the algorithms employed

by SAT solvers, a resolution proof may contain redundant parts

and a strictly smaller resolution proof can be obtained.

Although a Craig interpolant is linear in the proof size, the

proof itself may be large and highly redundant. SAT solvers

are not usually targeted to produce proofs of minimal size,

therefore they may be deemed ultimately responsible for Craig

interpolant size and redundancy. This is the main reason why

most efforts on interpolant size reduction have been addressed

as SAT solver improvement and/or proof reduction.

A. Contributions

In this paper we propose a fast and scalable logic syn-

thesis approach, as well as a novel interpolant weakening

(and strengthening) technique that also addresses circuit com-

paction. The main contributions are thus two interpolant

compaction techniques:

• A set of ad-hoc logic synthesis functions specifically

addressing speed and scalability. Though general and not

limited to interpolants, they target the main sources of

redundancy int interpolant circuits;

• An interpolant weakening technique, where an additional

SAT query is performed in order to obtain a gate-

level abstraction of the interpolant. Although fresh new

variables are introduced at gate cuts, clearly outside the

set of shared symbols, we show how to quantify them

out by working on an NNF encoding of the circuit.

B. Related works

Interpolant compaction has been addressed in [11] and [12].

With respect to [11], we present additional techniques ad-

dressing scalability and interpolant compaction by weaken-

ing/strengthening. Interpolant weakening/strengthening is the

subject of many papers, with little relation with our work.

Among them, we consider [13] for an interesting discussion

on the relationship between interpolant strength and quality.

25

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

The notion of dominance between nodes of a directed graph

is central in this work. Dominators have been used in the

context of logic synthesis before, such as [14], [15].

C. Outline

Section II introduces background notions and notation about

Boolean circuits, Craig interpolants, gate-level abstraction

and circuit compaction techniques. Section III describes the

proposed ad-hoc logic synthesis functions, whereas our in-

terpolant weakening technique is illustrated in Section IV.

Section V presents and discusses the experiments we per-

formed. Finally, Section VI concludes with some summarizing

remarks.

II. BACKGROUND

A. Combinational Boolean Circuits

Definition 1. A Boolean circuit (or network) is a directed

acyclic graph G = (V,E), where a node v ∈ V represents

either a logic gate, a primary input (PI) or a primary output

(PO) of the circuit and each directed edge (u, v) ∈ E

represents a signal in the circuit connecting the output of node

u to an input of node v. The fanin (fanout) of a node is the

set of incoming (outgoing) edges of that node. Primary inputs

are nodes with no fanin, whereas primary outputs are nodes

with no fanout. Every logic gate v ∈ V is associated with

a Boolean function fv : Bn → B, where n is its number of

inputs.

The fanin (fanout) sets are typically represented by lists.

With abuse of notation we use the terms fanin and fanout to

identify both edges and the related sets of adjacent nodes.

Given a gate node v, type(v) is used to indicate the type of

logic function associated with v (AND, OR, NOT, etc.).

Definition 2. Given a circuit G = (V,E), a node u dominates1

a node v iff every path from v to any of the primary outputs

of G contains u. A node u that dominates a node v is called

a dominator of v.

Definition 3. Given a circuit G = (V,E) and a node r, a

cone C = (VC , EC) rooted in r is a sub-graph of G consisting

of r and some of its non–primary input predecessors such that

any node in C has a path to r that lies entirely in C. The fanin

(fanout) of a cone is the number of nodes u not in C that are

inputs (outputs) of a node t in C.

Node r is called root of the cone C, and denoted by root(C),
non-root nodes of the cone are called internal nodes, whereas

nodes in the fanin of the cone are called cut nodes of C and

denoted by cut(C). Nodes of C that have at least one cut

node v in their fanin are called entry points in C for v. The

Boolean function fv associated with the cone root is called

cone function. With abuse of notation we sometimes use v ∈ C
to mean that v ∈ VC .

1Note that the notion of dominance as defined here corresponds to the dual
notion of post-dominance from graph theory. For the sake of conciseness, we
herein use the term dominance, with the definition provided above, to refer
to the actual notion of post-dominance.

Definition 4. A cluster is a cone C rooted in r such that, for

each node v in C, v has unit fanout and is dominated by r in

G.

Note that cut nodes of a cluster C are either a PI or fanout

branches, and the root r of C is either a PO or a fanout stem.

Note also that the sub-graph of the circuit that defines a cluster

C is a tree. Given a node v ∈ C, every successor u of v in C
is a dominator of v in G.

Definition 5. A macrogate is a cluster M such that every node

v in M represents the same associative Boolean function. An

OR-macrogate (AND-macrogate) is a macrogate composed of

logical disjunction (conjunction) nodes.

The definitions provided for cones are naturally extended to

clusters and macrogates. An example of clusters and macro-

gates appears in Figure 1, where one cluster includes one OR-

and two AND-macrogates.

l

h

b

c

d

a

m

n

o

p

f

j

k

Fig. 1: A subcircuit partitioned in clusters (enclosed by a blue

dashed line) and macrogates (enclosed by a dotted red line).

Definition 6. Given a cone C rooted in r and a variable a ∈
cut(C), variable a is not observable on fr iff fr(X,⊥) ≡
fr(X,⊤), with X = cut(C) \ a.

A literal is either a Boolean variable or its negation. A

clause is a disjunction of literals. A Boolean formula F is

in Conjunctive Normal Form (CNF) if it is a conjunction of

clauses. Given a Boolean formula F , we denote with supp(F)
the set of Boolean variables over which F is defined.

A Boolean formula F is in Negation Normal Form (NNF)

if the negation operator (¬) is only applied to its variables,

and the only other operators allowed are conjunction (∧) and

disjunction (∨). Any formula can be transformed to NNF in

linear time through direct application of De Morgan’s laws

and the elimination of double negations. In the worst case, the

size of the circuit implementing a formula F might double

when F is transformed into NNF.

B. Craig Interpolants

Let A and B be two inconsistent Boolean formulas, i.e.,

such that A ∧ B ≡ ⊥. A Craig interpolant I for (A, B)

is a formula such that: (1) A ⇒ I , (2) I ∧ B ≡ ⊥, and

(3) supp(I) ⊆ supp(A) ∩ supp(B).

We use ITP to denote the interpolation operation. An inter-

polant I = ITP(A,B) can be derived, as an AND-OR circuit,

from the refutation proof of A∧B. Most modern SAT solvers

26

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

are capable of producing resolution proofs. A resolution proof

provides evidence of unsatisfiability for a CNF formula F as

a series of applications of the binary resolution inference rule.

Given two clauses C1 = (l∨ l1 ∨ ...∨ ln) and C2 = (¬l∨ l′1 ∨
...∨l′m), a resolvent C is computed using a resolution operator,

defined as: C = Res(C1, C2) = (l1 ∨ ... ∨ ln ∨ l′1 ∨ ... ∨ l′m).
Starting from the clauses of F , such a rule is applied until the

empty clause is derived.

Craig interpolants are generated from resolution proofs as

described in [2]. The resulting ITP circuit is isomorphic to

the proof: where original clauses are translated as either OR

gates or constants and resolutions steps are translated as either

AND or OR gates. Interpolants in the range between A and

¬B depend on SAT solver decisions, thus their resulting

strength/weakness is not under user control. This motivated

research on ex-post interpolant strengthening/weakening.

C. Combinational Circuit Compaction

This subsection briefly overviews, without any claim of

completeness and generality, some combinational synthesis

techniques our circuit compaction approach is based upon.

Redundancies affecting non canonical combinational cir-

cuits are removed by structural hashing, cut-based [16], BDD-

based [17] and SAT-based [18] sweeping. The above methods

basically rely on finding and merging classes of functionally

equivalent circuit nodes. Other reduction efforts exploit various

decomposition, rewriting and balancing strategies. In [19]

a mix of locally canonical transformations and DAG-aware

rewritings on technologically independent circuits have been

first proposed. [14] introduces a technique for preprocess-

ing combinational logic before technology mapping. We fol-

low [14] in its use of And-Inverter Graphs (AIGs), composed

of two-input ANDs and inverters2. Scalability is achieved by

making all operations local, and moving to a global scope by

iterated application of local reductions. The result is that the

cumulative effect of several rewriting steps is often superior

to traditional synthesis in terms of quality.

Redundancy removal under Observability Don’t Cares

(ODCs) is a powerful variant of redundancy removal, where

node equivalences are established taking into account their ob-

servability at circuit outputs. All ODC-based approaches rely

on a computation of don’t care conditions for nodes involved

in redundancy checks. As exact computation is prohibitively

expensive, approximate techniques have been proposed. BDD-

based Compatible Observability Don’t Care (CODC) sets were

computed in SIS [21]. Approximated ODCs (by “windowing”)

were introduced in [22], where scalability was achieved by

restricting the sub-circuit environment to a locality. SAT-based

quantifier elimination [23], augmented with random sampling,

is a further attempt to exploit the power of SAT solvers.

D. Gate-Level Abstraction

Abstraction techniques are a well known area of research in

Model Checking. Our paper is related to a form of localization

2Another motivation for our choice is the fact that AIGER is the netlist
interchange format chosen for Hardware Model Checking Competitions [20].

abstraction [24] called Gate-Level Abstraction [25]. Abstrac-

tion by localization is based on removing circuit components

(i.e. cutting wires) not necessary for a proof. Detection of

unnecessary parts has been proposed following two main

schemes:

• Counterexample-Based Abstraction-refinement (CBA)

[26], where an initially weak abstraction is iteratively

refined (strengthened) based on spurious counterexample

analysis;

• Proof Based Abstraction (PBA), exploiting the ability of

modern SAT solvers to generate proofs of unsatisfiability,

is a more recently followed variant, investigated in stand-

alone mode or combined with CBA, as in [27].

In most model checkers, localization is done at register

boundaries. Gate-Level Abstraction [25] is a particular abstrac-

tion scheme (compatible in principle with both CBA and PBA

strategies), where localization is done at gate nodes.

III. INTERPOLANTS COMPACTION BY AD-HOC LOGIC

SYNTHESIS

In this section we present a set of procedures to reduce

the size of Boolean circuits, based on local simplification

techniques arising from logic synthesis. Although applicable

to any Boolean circuit, our approach specifically targets the

main sources of redundancy of interpolant circuits: gates that

can be replaced by a constant value, or sub-circuits that can

be merged being functionally equivalent (though topologically

distinct). We consider an interpolant as a single-output circuit

G. Starting, from an AIG representation of the circuit, we:

• Identify AND and OR gates;

• Partition G into a set of maximal clusters;

• Group trees of AND (resp. OR) gates in macrogates.

Our target is to address gate redundancies by fast operations,

where circuit transformations are performed within clusters.

The reason for limiting our scope to clusters is related to the

fact that fanout stems propagate shared subformulas through

different paths within the circuit graph. Simplifications affect-

ing multiple fanout paths are both complex and of limited

impact.

The circuit G is partitioned into a maximal set of clusters,

each of which is in turn partitioned into a set of macrogates.

This is done by means of a depth-first visit of G starting

from its root node r. Each node v is associated with two

pieces of information: its cluster dominator, domC(v), and its

macrogate dominator, domG(v). As long as the visited nodes

have unit fanout, cluster dominator information in propagated.

As long as the visited nodes have unit fanout and are of the

same type, macrogate dominator information in propagated.

Performing such an operation requires O(|E|) time.

We thus propose a procedure based on two kinds of local

simplifications:

• Redundancy removal (gates equivalent to a constant)

based on ODC-like implications within clusters.

• Enforcement of sub-formula sharing (equivalent gates

merging) through macrogate refactoring.

27

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

A. ODC Implications Removal

The first simplification technique we propose aims at finding

local ODC implications that can be exploited to replace a gate

with a constant. Such a technique relies on the following two

identities:

f(X, a) = a ∧ g(X, a) ≡ a ∧ g(X,⊤)

f(X, a) = a ∨ g(X, a) ≡ a ∨ g(X,⊥)

Let us consider a Boolean function f(X, a) expressed as the

conjunction (resp. disjunction) of a variable a and a function

g of a. Then a can be replaced by the ⊤ (resp. ⊥) constant in

g. Note that the instance of variable a in the support of g is

not observable on f . From a circuit graph perspective, given

G implementing f , a is an input variable and g is a subcircuit

of G with a in its fanin. There are at least two re-convergent

paths from node a to the output node of f .

We call such cases ODC implications for f , as the impli-

cations f → a and ¬a → ¬f (resp. ¬f → ¬a and a → f)

dually hold in each of the two respective cases.

We exploit the notion of ODC implications to perform local

simplification of functions in the Boolean circuit. This is done

by detecting cones C in the circuit whose function can be

expressed as either a∧ g(X, a) or a∨ g(X, a). In these cases,

C can be simplified by disconnecting the redundant edge from

a to its entry point in C and injecting a constant. Detection

of ODC implications is restricted at macrogate and/or cluster

boundaries in order to avoid problems arising from shared

elements.

We consider both direct ODC implications and transitive

ODC implications. Direct ODC implications arise when the

input of a function f is directly implied by f . Figure 2

exemplifies a direct ODC implication. Input b is a direct

ODC implication for ft since ft(a, b, c) = b ∧ g(a, b, c) with

g(a, b, c) = c ∧ (a ∨ b), and therefore ft → b. Transitive

ODC implications occur when the input of a function f is

transitively implied by f through another of its inputs. Figure 3

provides an example of transitive ODC implication. Input b is

a transitive ODC implication for ft, in fact, d is a direct ODC

implication for ft and b is a direct ODC implication of fd,

therefore, ft → d → b.

a c

b

v u

t

a ⊤ b c

v u

t

bb c

t

Fig. 2: Example of direct ODC implication.

The DIRECTODCSIMPLIFY procedure (Algorithm 1) tries

to identify cluster inputs that are made redundant by direct

ODC implications. Given a cluster C rooted in r and one of

its inputs v, the algorithm tries to find a node d in C such that

a

b

c
d

h

v u

t

a ⊤ c
d

hb

v u

t

c

b h

t

d

Fig. 3: Example of transitive ODC implication.

v is a direct ODC implication for fd. Considering the cluster

as a tree of macrogates, this corresponds to finding a common

successor d for two of the entry points of v in C, called u and

t, so that d is a direct successor of either u or t. Since we are

considering a tree of macrogates, d being a direct successor of

t means that t is connected to d through either a chain of only

AND or OR gates. For each cluster Ci, the algorithm scans

each of its cut nodes. For each v ∈ cut(Ci), every pair u, t of

distinct entry points of v in Ci is considered. In order to find a

common successor for u and t, first each macrogate dominator

of u is marked by the procedure MARKDOMINATORS. Then,

the algorithm checks if the macrogate dominator of t is

marked. If that is the case, being d = domG(t), we have

either fd(X, v) = v ∧ g(X, v) or fd(X, v) = v ∨ g(X, v)
for some g. Therefore, v in g is not observable on fd and

the circuit can be simplified by calling function SIMPLIFY.

Such a function takes a couple of nodes and a gate type

as arguments, removes the edge (v, u) from the circuit and

injects an appropriate constant value in the newly created free

input. The injected constant is ⊤ if the gate type passed as

argument is AND, ⊥ if is OR. After injecting the constant,

the circuit is simplified accordingly. Otherwise, if domG(t)
is not marked, the algorithm proceeds with the next pair of

entry points. Time complexity of DIRECTODCSIMPLIFY is

O(|V |max
Ci∈G

{|cut(Ci)|}).

DIRECTODCSIMPLIFY(G)
1: for all clusters Ci ∈ G do
2: for all nodes v in cut(Ci) do
3: for all pair (u, t) in fanout(v) ∩ Ci with u 6= t do
4: MARKDOMINATORS(u)
5: if domG(t) is marked then
6: SIMPLIFY(v,u, type(t))
7: UNMARKDOMINATORS(u)

Algorithm 1. DIRECTODCSIMPLIFY(G)

The TRANSITIVEODCSIMPLIFY procedure (Algorithm 2)

tries to identify cluster inputs that are made redundant by

transitive ODC implications. Two lists are maintained for each

cluster: a direct implication list and a transitive implication list.

Given a cluster C rooted in r, its direct implication list, denoted

as Impl(C), contains all cluster inputs v for which at least one

of the entry points of v in C has r as macrogate dominator.

Therefore, for each v ∈ Impl(C) either fr → v, if type(r) is

28

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

AND, or ¬fr → ¬v, if type(r) is OR. Direct implication lists

are provided as an argument to TRANSITIVEODCSIMPLIFY.

Transitive implication lists, denoted as Trans(C), are used to

collect those nodes v for which there exists a sequence of

clusters C0, . . . , Cn such that the following conditions hold:

• C0 = C;

• Ci+1 ∈ Impl(Ci) for each 0 ≤ i < n;

• type(Ci+1) = type(Ci) for each 0 ≤ i < n;

• v 6∈ Impl(Ci) for 0 ≤ i < n;

• v ∈ Impl(Cn).

Transitive implication lists are computed while TRANSI-

TIVEODCSIMPLIFY runs and used to detect transitive ODC

implications w.r.t. the root of each cluster.

In TRANSITIVEODCSIMPLIFY clusters are scanned in topo-

logical order. For each cluster Ci, its transitive implication

list is first computed. This is done by conjoining the current

Trans(Ci) with every node that is either in the transitive or

direct implication list of the clusters that are in Impl(Ci) and

are of the same type of Ci. Once the transitive implication

list for Ci has been computed, the procedure scans each node

v ∈ cut(Ci) that is in Trans(Ci). These nodes are inputs

of Ci for which a transitive ODC implication exists (through

some of the other inputs of Ci). Therefore, each entry point u

of these nodes can be simplified by calling SIMPLIFY. Time

complexity of Algorithm 2 depends on the size of the transitive

lists: O(|V |max
Ci∈G

{|Trans(Ci)|}). Although the sizes of such

lists, in the worst case, could be quadratic in the number of

nodes, experimentally it is possible to notice that in our context

of application the size of these lists stays within O(|V |).

TRANSITIVEODCSIMPLIFY(G, Impl)
1: for all clusters Ci ∈ G in topological order do
2: Trans(Ci)← ∅
3: for all clusters Ck in Impl(Ci) do
4: for all v in Trans(Ck) ∪ Impl(Ck) do
5: if type(Ck) = type(Ci) then
6: Trans(Ci)← Trans(Ci) ∪ {v}
7: for all nodes v in cut(Ci) do
8: if v in Trans(Ci) then
9: for all node u in fanout(v) ∩ Ci do

10: SIMPLIFY(v,u, type(Ci))

Algorithm 2. TRANSITIVEODCSIMPLIFY(G, Impl)

B. Macrogate Refactoring

The second simplification approach we propose tries to

refactor portions of the circuit implementing the same type

of Boolean function in order to explicit sub-functions imple-

mented by nodes already present in the circuit. If successful,

sharing can be enforced to reduce the overall size of the circuit.

This technique is applied to macrogates in order to guarantee

that each node removed by means of refactorization has unit

fanout and thus the size of the circuit actually decreases.

As an example, consider an AND-macrogate in Figure 4,

implementing the function ft(a, b, c, d) = (a ∧ b) ∧ (c ∧ d).
The idea is to identify a couple of inputs (i, j), such that

the node realizing i ∧ j does not appear in the macrogate but

it exists in a different point of the circuit. Suppose a node m

implementing fm = c∧b exists, the macrogate function ft can

be refactored as ft(a, b, c, d) = m ∧ (a ∧ d) so that the gate

m can be shared. The final result of such a step of refactoring

is a reparenthesization of the original macrogate function, for

which the number of nodes decreases by one, one being now

shared. A similar reasoning applies to OR-macrogates as well.

a b c d

v u

t

m

b c a d

n

t

m

Fig. 4: Example of macrogate refactoring.

Note that refactoring a macrogate may change the current

circuit partitioning as a previously non-shared node becomes

shared.

The MACROGATEREFACTOR procedure (Algorithm 3) tries

to refactor macrogates of the circuit in order to enforce better

sharing. For each macrogate Mi, first its cut nodes are marked.

Then, for each input node of Mi, the procedure scans all

the nodes in its fanout list that do not appear in Mi but

are of the same type. Those nodes u are gates of the same

type of Mi that share an input with Mi. For each of those

nodes, the algorithm checks whether its other input node is

shared with Mi, by testing if such a node is marked. In

such a case, Mi can be refactored to enforce sharing with

u. Function REFACTOR handles macrogate refactoring. It also

updates any other macrogate that could have been affected by

the refactoring. Time complexity of MACROGATEREFACTOR

is O(|V |max
v∈V

{|fanout(v)|}).

MACROGATEREFACTOR(G)
1: for all macrogate Mi ∈ G do
2: Mark nodes in cut(Mi)
3: for all v in cut(Mi) do
4: for all u in fanout(v) do
5: if domG(v) 6= domG(u) and type(v) = type(u)

then
6: if left(u) 6= v and left(u) is marked then
7: REFACTOR(Mi, u, left(u))
8: else if right(u) 6= v and right(u) is marked then
9: REFACTOR(Mi, u, right(u))

10: Unmark nodes in cut(Mi)

Algorithm 3. MACROGATEREFACTOR(G)

IV. SAT-BASED WEAKENING

Previously described reductions follow the trend of fast

circuit-based optimizations. We now present a novel approach

combining the ideas of interpolant compaction and weakening.

Given an interpolant I = ITP(A,B), a weaker (resp.

stronger) interpolant Iw (resp. Is) is another interpolant, such

29

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

that I → Iw (Is → I). Interpolant weakness and strength are

dual concepts. Considering an interpolant I for A,B, its com-

plement ¬I is an interpolant for B,A. A weaker interpolant

for A,B corresponds to a stronger interpolant for B,A. As

mentioned in section I, interpolant strength and/or weakness

can be related to the quality of the interpolant itself [13]. State-

of-the-art approaches to interpolant strengthening/weakening

are based on SAT proof transformations [28]. Interpolant

re-computation is another straightforward and practical way

to compact an interpolant and change its strength. Given

I = ITP(A,B), we can generate a weaker interpolant Iw =
ITP(I, B) or a stronger one Is = ITP(A,¬I). Empirically,

we spend extra time, performing an additional interpolant

computation, in order to obtain a better interpolant, where bet-

ter could mean weaker/stronger and possibly more compact.

Unfortunately, compaction is not guaranteed, as the size of the

final interpolant depends on a SAT solver run. Experimentally,

we have observed both increases and decreases in terms of

interpolant size.

Our strategy is to spend extra time by re-running a SAT

solver query (either A ∧ ¬I or I ∧ B), while computing the

new interpolant in a different way, that guarantees compaction.

In the following, we outline the main steps of our weakening

approach (strengthening is dual):

• I is encoded as NNF , producing INNF

• A Gate-Level Abstraction of INNF is performed, using

a PBA approach:

– SAT query INNF ∧B, guaranteed UNSAT, is solved

and used to generate the UNSAT core C(INNF ∧B),
the full proof is not necessary

– Using the UNSAT core, a proof-based abstraction of

INNF is computed: Ipba = PBA(INNF , C)

• As a result of PBA, fresh new variables ∆ at all cut (ab-

straction) points are introduced. So, supp(Ipba) = Γ∪∆,

with Γ = supp(A) ∩ supp(B). The presence of these

extra variables prevents Ipba from being a correct inter-

polant. Efficient existential quantification of ∆ variables

can be performed exploiting NNF encoding. In particular,

∃∆ Ipba is performed by replacing all variables in ∆ with

a ⊤ constant: Iw,NNF = Ipba|
∆={⊤,⊤,...⊤}.

• The compacted interpolant Iw,NNF is converted back to

the (non NNF) AIG encoding.

Encoding a circuit as NNF implies a certain cost in terms of

size. However, we experimentally observed (see section V) that

this cost is negligible for interpolants, since they originate as

pure AND-OR circuits with negations limited at input bound-

aries. Conversely, we have the advantage of quantification

by substitution. Given a Boolean function f(X,∆) in NNF

form, with ∆ appearing only in non-negated form, ∆ can be

existentially (resp. universally) quantified by substitution:

∃δ f(X,∆) = f(X,⊤)

∀δ f(X,∆) = f(X,⊥)

The top-level procedure is described in Algorithm 4. Given

a node v, the function CNF (v) is used to retrieve the CNF

representation of fv.

ITPWEAKEN(I,B)
1: INNF ←AIG2NNF(I)
2: C ← SATWITHUNSATCORE(INNF ∧B)
3: for all nodes v in INNF do
4: if CNF (v) 6∈ C then
5: REPLACE(v,⊤)
6: Iw,NNF ← RECOMPUTECIRCUIT(INNF)
7: Iw ←NNF2AIG(Iw,NNF)

Return Iw

Algorithm 4. ITPWEAKEN(I, B)

The algorithm shows weakening of I w.r.t. B, being

strengthening with A dual. Furthermore, we use PBA-based

abstraction, whereas a CBA-based approach is possible as

well. The proposed code unifies GLA (Gate-Level Abstrac-

tion) with existential quantification, as, given the UNSAT core

(C), circuit nodes with a corresponding CNF variable not in C

are immediately abstracted and replaced with the ⊤ constant.

V. EXPERIMENTAL RESULTS

We implemented a prototype version of our interpolant

compaction procedures on top of the PdTRAV tool [29], a

state-of-the-art verification framework. Experimental data in

this section provide an evaluation of the techniques proposed.

Experiments were run on an Intel Core i7−3770, with 8 CPUs

running at 3.40 GHz, 16 GBytes of main memory DDR III

1333, and hosting a Ubuntu 12.04 LTS Linux distribution. We

set memory limits to 900 seconds (3600 for the weakening

experiments) and 8 GB, respectively.

We performed an extensive experimentation on a selected

subset of interpolants used in [11]. These interpolants are

extracted from publicly available benchmarks from the past

HWMCC [20] suites and are represented as AIGs. We took

into account also interpolants derived from software verifi-

cation problems [12]. The former set is composed of 2472
instances, ranging from 1.1 × 105 to 8.5 × 106 nodes. The

latter set is composed of 1872 instances, ranging from 4×102

to 6× 104 nodes3.

We gathered initial data from the first set of interpolants

in order to purge easy instances. We considered easy those

instances with less than 1.5 × 104 nodes and for which our

logic synthesis procedure was able to reach a fix-point within

150 seconds. The purged set of benchmarks, comprising 87
instances ranging from 4× 105 to 8.5× 106 nodes, was used

to conduct a more in-depth experimentation.

Figures 5 and 6 show the results obtained for compaction

with logic synthesis (section III) and GLA-based weakening

(section IV), respectively. Compaction techniques are applied

incrementally, i.e., we always apply simplifications described

in [11]4, followed by the techniques described in this paper.

3The interpolant circuits are available at
http://fmgroup.polito.it/index.php/download.

4With the exception of the most time-consuming, and less scalable, ITE-
based decomposition.

30

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

A. Compaction by Logic Synthesis

In our experiments, we evaluated techniques of section III

by applying them as follows. First the circuit is partitioned into

clusters and macrogates. A trivial simplification is performed

by removing each duplicated input from macrogates. Then

DIRECTODCSIMPLIFY, MACROGATEREFACTOR and TRAN-

SITIVEODCSIMPLIFY are iterated in this order, recomputing

the circuit partition between each call, until two consecutive

iterations reduce the circuit size for less than 1%.

For each benchmark, we first apply the AIG balancing

procedure of ABC prior to applying any of the aforementioned

techniques. We consider the size of interpolants after balancing

as baseline for the following experimentation. In order to

test individual contributions of the proposed techniques we

performed an initial run with all simplifications enabled, we

call this run ITPSIMPLIFY, followed by a set of runs in

which we selectively disabled them one at a time: NODIREC-

TODCSIMPLIFY, NOMACROGATEREFACTOR and NOTRAN-

SITIVEODCSIMPLIFY respectively. As a last test, we disabled

our techniques altogether and performed ITP compaction using

only standard logic synthesis (rewriting/refactoring, using the

state-of-the-art ABC [30] tool).

Figures 5a and 5b illustrate the cumulative size and execu-

tion time, respectively, over all the benchmarks. In both cases,

the closer a line is to the x axis, the better the result.

The two figures easily illustrate the compromise between

execution time and potential size reduction obtained. On the

one hand the purely ABC-based simplification is the best

performing one, but it requires a significant amount of time.

Different compaction rates are achievable with less computa-

tional effort adopting less aggressive approaches. We excluded

timeouts from the visual representation.

As mentioned in section II-D, the size of implication lists

could be a limit to the scalability of the proposed methods,

as well. Although such lists could theoretically grow quadrat-

ically in the number of nodes, experimentally we noticed at

worst a multiplicative factor of 20.

B. Compaction by Weakening

In order to characterize the rate of ITP compaction achiev-

able through SAT-based weakening/strengthening, we raised

the time limits to 3600 seconds. Such an approach is conceived

to be used when ITP size reduction is crucial, and/or weak-

ening/strengthening are actually the target, which motivates a

bigger effort in terms of total execution time.

A preliminary step for all the proposed techniques requires

to convert a given interpolant into NNF form. This step could

lead to an increase in circuit size up to a factor of 2, in the

general case. Given the nature and structure of interpolants

themselves the increase in size is almost negligible. Taking

into account all the experiments conducted, the biggest ex-

perienced increase was below 0.5%, confirming the intuitive

arguments in section IV.

We conducted a set of experiments taking into account the

same subset of 87 interpolants, iterating sequences of weak-

ening (labelled B) and/or strengthening (labelled A) steps in

different patterns. We propose an experimental evaluation for

six different sequences: A, B, AB, BA, ABAB and BABA.

We run our logic synthesis compaction procedure before any

weakening/strengthening attempt (baseline). Figures 6a and 6b

illustrate the cumulative size and execution time, respectively,

over all the benchmarks. It is fairly noticeable the impact on

the choice of the first kind of chosen compaction: starting with

B tends to produce better results, related to the fact that most

of the interpolants proposed have more room for weakening

than strengthening.

Overall, it is fairly clear that SAT-based abstraction leads to

dramatic compaction, though paid in terms of time.

VI. CONCLUSIONS

We addressed the problem of optimizing interpolants size

for SAT-based UMC. Our main contribution is to provide

an integrated approach, that targets interpolation compaction,

providing different tradeoffs between time and memory ac-

cording the proper context of application. We work both at the

level of logic synthesis and at SAT level, proposing different

techniques aimed at interpolant size reduction. Overall, our

main target is to increase the scalability of existing UMC

approaches, taking into account resource limitations and com-

promising between optimal results and applicability of the

proposed methods. We experimentally observed that the pro-

posed optimizations can be beneficial to existing reachability

schemes, based on interpolation.

VII. ACKNOWLEDGEMENTS

We thank prof. Natasha Sharygina, dr. Antti E. J. Hyvärinen

and Leonardo Alt from Università della Svizzera Italiana

(USI), Switzerland, for the benchmarks generated from soft-

ware verification problems.

REFERENCES

[1] W. Craig, “Three Uses of the Herbrand-Gentzen Theorem in Relating
Model Theory and Proof Theory,” The Journal of Symbolic Logic,
vol. 22, no. 3, pp. 269–285, 1957.

[2] K. L. McMillan, “Interpolation and SAT-Based Model Checking,” in
Proc. of CAV, ser. LNCS, vol. 2725, Boulder, USA, 2003, pp. 1–13.

[3] S. Graf and H. Saı̈di, “Construction of abstract state graphs with pvs,”
in Proc. of CAV, London, UK, UK, 1997, pp. 72–83.

[4] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan, “Abstrac-
tions from proofs,” SIGPLAN Not., vol. 39, pp. 232–244, Jan. 2004.

[5] J. Marques-Silva, “Improvements to the implementation of Interpolant–
Based Model Checking,” in Proc. of CHARME, ser. LNCS, vol. 3725.
Edinburgh, Scotland, UK: Springer, 2005, pp. 367–370.

[6] V. D’Silva, M. Purandare, and D. Kroening, “Approximation Refine-
ment for Interpolation-Based Model Checking,” in Verification, Model

Checking and Abstract Interpretation, vol. 4905, 2008, pp. 68–82.
[7] G. Cabodi, M. Murciano, S. Nocco, and S. Quer, “Boosting Interpolation

with Dynamic Localized Abstraction and Redundancy Removal,” ACM

Transactions on Design Automation of Electronic Systems, vol. 13, no. 1,
pp. 309–340, Jan. 2008.

[8] G. Cabodi, P. Camurati, and M. Murciano, “Automated Abstraction by
Incremental Refinement in Interpolant-based Model Checking,” in Proc.

of ICCAD. San Jose, California: ACM Press, Nov. 2008, pp. 129–136.
[9] B. Li and F. Somenzi, “Efficient Abstraction Refinement in

Interpolation-Based Unbounded Model Checking,” in Tools and Algo-

rithms for the Construction and Analysis of Systems, vol. 3920, 2006,
pp. 227–241.

[10] L. Zhang and S. Malik, “Validating sat solvers using an independent
resolution-based checker: Practical implementations and other applica-
tions,” in Proc. of DATE, Washington, DC, USA, 2003.

31

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 10 20 30 40 50 60 70 80 90

C
u
m
u
l
a
t
i
v
e

s
i
z
e

Benchmark

Balance
ITPsimplify

NoDirectODCsimplify
NoMacrogateRefactor

NoTransitiveODCsimplify
ABCsimplify

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 10 20 30 40 50 60 70 80 90

C
u
m
u
l
a
t
i
v
e

t
i
m
e

Benchmark

Balance
ITPsimplify

NoDirectODCsimplify
NoMacrogateRefactor

NoTransitiveODCsimplify
ABCsimplify

(b)

Fig. 5: Cumulative results of ITP compaction based on logic synthesis, in terms of size and execution time.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 10 20 30 40 50 60 70

C
u
m
u
l
a
t
i
v
e

s
i
z
e

Benchmark

A
AB

ABAB
B

BA
BABA

Baseline

(a)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 10 20 30 40 50 60 70

C
u
m
u
l
a
t
i
v
e

t
i
m
e

Benchmark

A
AB

ABAB
B

BA
BABA

Baseline

(b)

Fig. 6: Cumulative results of ITP compaction based on SAT, in terms of size and execution time. Sizes are plotted on a log

scale given the higher ratio of compaction achieved.

[11] G. Cabodi, C. Loiacono, and D. Vendraminetto, “Optimization tech-
niques for craig interpolant compaction in unbounded model checking,”
Formal Methods in System Design, vol. 46, no. 2, pp. 135–162, 2015.

[12] L. Alt, G. Fedyukovich, A. E. J. Hyvärinen, and N. Sharygina, “A
proof-sensitive approach for small propositional interpolants,” in Verified

Software: Theories, Tools, and Experiments - Revised Selected Papers,
San Francisco, CA, USA, Jul. 2015, pp. 1–18.

[13] V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher, “In-
terpolant strength,” in Proc. of VMCAI, vol. 5944, January 2010, pp.
129–145.

[14] R. K. Brayton and S. Chatterjee and A. Mishchenko, “DAG-Aware AIG
Rewriting: A Fresh Look at Combinational Logic Synthesis,” in Proc.

of DAC, 2006, pp. 532–536.

[15] D. B. neres, J. Cortadella, and M. Kishinevsky, “Dominator-based
partitioning for delay optimization,” in Proceedings of the 16th ACM
Great Lakes Symposium on VLSI, ser. GLSVLSI ’06. New York, NY,
USA: ACM, 2006, pp. 67–72.

[16] N. Eén, “Cut Sweeping,” Cadence Research Labs, Berkeley, USA, Tech.
Rep., May 2007.

[17] A. Kuehlmann and F. Krohm, “Equivalence Checking Using Cuts and
Heaps,” in Proc. of DAC, Anaheim, California, Jun. 1997, pp. 263–268.

[18] A. Kuehlmann, “Dynamic Transition Relation Simplification for
Bounded Property Checking,” in Proc. of ICCAD, San Jose, California,
Nov. 2004, pp. 50–57.

[19] P. Bjesse and A. Boralv, “DAG-Aware Circuit Compression For Formal
Verification,” in Proc. of ICCAD, San Jose, California, Nov. 2004.

[20] A. Biere and T. Jussila, “The Model Checking Competition Web Page,
http://fmv.jku.at/hwmcc.”

[21] H. Savoj, R. K. Brayton, and H. J. Touati, “Extracting local don’t cares
for network optimization.” in Proc. of ICCAD, 1991, pp. 514–517.

[22] A. Mishchenko and R. K. Brayton, “Sat-based complete don’t-care com-
putation for network optimization,” CoRR, vol. abs/0710.4695, 2007.

[23] K. L. McMillan, “Applying sat methods in unbounded symbolic model
checking.” in Proc. of CAV, vol. 2404, 2002, pp. 250–264.

[24] R. P. Kurshan, “Computer Aided Verification of Coordinating Pro-
cesses,” in Princeton University Press, Princeton, NJ, 1994.

[25] A. Mishchenko, N. Een, R. Brayton, J. Baumgartner, H. Mony, and
P. Nalla, “Gla: Gate-level abstraction revisited,” in Proc. of DATE, ser.
DATE ’13, San Jose, CA, USA, 2013, pp. 1399–1404.

[26] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in Proc. of CAV, 2000,
pp. 154–169.

[27] N. Een, A. Mishchenko, and N. Amla, “A single-instance incremental sat
formulation of proof- and counterexample-based abstraction,” in Proc.
of FMCAD, Oct 2010, pp. 181–188.

[28] K. L. McMillan and R. Jhala, “Interpolation and SAT-Based Model
Checking,” in Proc. of CAV, ser. LNCS, vol. 3725, Edinburgh, Scotland,
UK, 2005, pp. 39–51.

[29] G. Cabodi, S. Nocco, and S. Quer, “Benchmarking a model checker for
algorithmic improvements and tuning for performance,” Formal Methods

in System Design, vol. 39, no. 2, pp. 205–227, 2011.

[30] R. K. Brayton and A. Mishchenko, “Abc: An academic industrial-
strength verification tool,” in CAV, 2010, pp. 24–40.

32

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Extracting Behaviour from an Executable
Instruction Set Model

Brian Campbell and Ian Stark
Laboratory for Foundations of Computer Science

School of Informatics
University of Edinburgh, UK

Email: Brian.Campbell@ed.ac.uk, Ian.Stark@ed.ac.uk

Abstract—Presenting large formal instruction set models as
executable functions makes them accessible to engineers and
useful for less formal purposes such as simulation. However,
it is more difficult to extract information about the behaviour
of individual instructions for reasoning. We present a method
which combines symbolic evaluation and symbolic execution
techniques to provide a rule-based view of instruction behaviour,
with particular application to automatic test generation for large
MIPS-like models.

I. INTRODUCTION

It is a common practice to construct large formal models
of instruction set architectures in the form of executable
functions. Recent examples include an x86 model with system
calls in ACL2 by Goel et al. [1] and the models constructed in
Fox’s L3 domain specific language [2], which can be translated
into several systems. We have been using the latter in this work
in the HOL4 theorem proving system.

There are several appealing aspects to such models. They
can be used as simulators, existing tests suites can be run
through them for validation, and they are in a form familiar
to engineers. Indeed, L3 models are usually written in a
form close to the pseudocode found in architecture reference
manuals. However, they do not expose the structure normally
found in a rule-based operational semantics, such as stating
the conditions required for an instruction to have well-defined
behaviour as explicit hypotheses.

Our goal is to extract this type of structure from the
executable model for individual instructions, and use it to
extend our previous automated test generation work [3] to new
models. The core of that work used an existing verification
support library [4] to provide a rule-based view of instructions
and so obtain the constraints required to execute a randomly
chosen sequence successfully, then express them in terms of
the initial state and use an SMT solver to find such a state.

These step libraries have been constructed for several archi-
tectures and we have successfully used them for test generation
with a model for the ARM Cortex-M0 microcontroller and
a simple MIPS model. However, each library requires a
considerable amount of effort, typically over 1000 lines of
code per target, and ongoing maintenance when the model is
altered.

We wanted to extend our MIPS testing to a much more
complete model of the experimental CHERI processor [5].

CHERI features a hybrid capability system which can improve
security by limiting access to resources while maintaining
compatibility with existing code. The model includes a large
number of new instructions for the additional security features,
more complex representations of state and memory, and full
memory management. It is over twice as large as the plain
MIPS model and no step library has been written for it1.
Moreover, we also wished to have the option of testing
processor exception handling, which these libraries do not
currently support.

We have constructed a new library to extract rules for
individual instructions similar to those from the step libraries,
but with much greater automation. To achieve this, and to
deal with such a large model, we combine standard symbolic
evaluation with a form of symbolic execution. The symbolic
evaluation provides general computation using rewriting from
the normal HOL4 libraries. The symbolic execution explores
the different possible paths of execution, recording in the
hypotheses the path condition which describes when each can
be reached, and it treats the large state record carefully for
reasonable performance.

Our contributions are to present our new library for ex-
tracting instruction behaviour from these executable models
while maintaining a close, formal, connection to the model;
to discuss its application to automatic test case generation; to
demonstrate that a theorem proving system such as HOL is
a practical setting for symbolic execution; and to show that
these perform well enough for practical use on a realistic
processor model, producing high test coverage. The close
connection between the formal model and the generated tests
is particularly important for CHERI, where some colleagues
are now proving security properties about the model. Our code
is available online2.

In Section II we outline the form of the models, the desired
form for expressing the extracted behaviour, and the testing
process. Section III presents our combination of symbolic
evaluation and symbolic execution, followed by a discussion
of how sound and complete the process is in Section IV.
Then Section V describes the application of the process to

1A basic step library for a simplified version of the model was produced
after this paper was written, but it only covers a fraction of the behaviour that
we are interested in testing.

2https://bitbucket.org/bacam/m0-validation

33

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

https://bitbucket.org/bacam/m0-validation

dfn’ADDI (rs,rt,immediate) =
(λstate.

(let s =
if NotWordValue (FST (GPR rs state)) then

SND
(raise’exception

(UNPREDICTABLE "ADDI: NotWordValue")
state)

else state
in
let v = (32 >< 0) (FST (GPR rs s))

+ sw2sw immediate
in

if word_bit 32 v 6= word_bit 31 v
then SignalException Ov s
else write’GPR (sw2sw ((31 >< 0) v),rt) s))

Fig. 1. HOL4 version of 32-bit signed immediate add MIPS instruction

testing, and in particular with the MIPS and CHERI models.
We discuss related work in Section VI and possible further
work in Section VII.

II. BACKGROUND

Fox’s L3 domain specific language [2] provides a natural
environment for writing instruction set architecture specifica-
tions in the form of a function to compute successive states.
The language features support for working with data at the
bit level, including pattern matching for decoding and bit-
field records for registers, exceptions to indicate undefined
behaviour, incrementally defined global processor state and
an instruction abstract syntax datatype automatically derived
from the instruction definition functions. The L3 tool translates
the language into the logics of several proof tools and also
the SML programming language for simulation. L3 models
have been constructed for a number of architectures, including
ARMv7-A, ARMv6-M, MIPS, CHERI and partial models of
ARMv8-A and x86-64, and there are several external users of
these models.

The translation to HOL4 must transform several of L3’s
language features into the logic. Figure 1 shows the HOL4
translation of the MIPS 32-bit signed immediate addition
instruction, where the global state has been implemented by
threading a state record throughout the definition, in the state

and s variables. The undefined behaviour when the value of
the rs register cannot be represented in 32 bits is modelled
by the raise’exception function which records the failure in
the state record. Failures are then detected at the end of the
instruction execution rather than using an exception monad to
simplify certain types of reasoning (see [4, §2] for discussion
about this design). The SignalException function is a normal
function to set up a processor exception, rather than an L3
exception to indicate undefined behaviour. In this case it is
for an arithmetic overflow, which is detected by performing
a 33-bit addition (where the (32 >< 0) operator extracts the
bottom 33 bits of the 64-bit register). The use of the sw2sw

function in the last line extends the result to 64 bits, ready to
be written to the destination register.

[s.CP0.Config.BE, ¬s.CP0.Status.RE,
¬s.exceptionSignalled,
¬if word_bit 31 (s.gpr 2w)
then (63 >< 32) (s.gpr 2w) 6= 0xFFFFFFFFw
else (63 >< 32) (s.gpr 2w) 6= 0w,

s.MEM s.PC = 36w, s.MEM (s.PC + 1w) = 65w,
s.MEM (s.PC + 3w) = 3w, s.MEM (s.PC + 2w) = 0w,
(1 >< 0) s.PC = 0w, s.exception = NoException,
s.BranchDelay = NONE, s.BranchTo = NONE]

` NextStateMIPS s =
SOME (s with
<|BranchDelay := NONE; BranchTo := NONE;
CP0 := s.CP0 with Count := s.CP0.Count + 1w;
PC := s.PC + 4w;
exceptionSignalled := F;
gpr := (1w =+ sw2sw ((31 >< 0) (s.gpr 2w) + 3w))

s.gpr|>)

Fig. 2. Step theorem for MIPS 32-bit unsigned immediate addition

Each model has a main function which computes the
next state, combining the parts of the model that perform
instruction fetch, decoding and execution (such as the function
in Figure 1). The return value of the main function is an option:
either the next state is returned, or nothing is returned if the
model is undefined on the input state.

A. L3 Support Libraries

In our previous work we used pre-existing libraries by Fox
that are part of a system for verifying machine code with
respect to an L3 model [4]. The main interface for this system
is a program logic in the style of separation logic, but we are
interested in the intermediate step library which provides a
more equational view. This library presents the behaviour of
instructions as theorems providing the result of the main next
state function as a series of state updates when a number of
hypotheses hold, roughly:

flags set correctly in state s
s contains instruction in memory

s contains data to be read
Next s = SOME (s with sequence of state updates)

These theorems cut across the model, including decoding,
execution and memory accesses. A MIPS example is shown
in Figure 2, which is a 32-bit immediate addition, but unlike
Figure 1 it is unsigned to avoid showing the complexity of
a potential processor exception. Some of the less relevant
details are shown in light grey. The hypotheses include the
processor flags, the unfolded NotWordValue test to avoid
undefined behaviour, and the presence of the instruction in
memory. The conclusion updates the state, and in particular
the (1w =+ . . .) s.gpr updates register 1 with the result.

In general, there may be multiple theorems for an instruction
when there are several branch choices. This MIPS instruction
actually has three variants due to the use of branch delay slots
in the MIPS architecture.

The step libraries are primarily based around symbolic
evaluation under sets of assumptions for each case of a class
of instructions. The main evaluation procedure, which includes

34

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

setting up appropriate rewrites for the model’s datatypes and
definitions, and some specialised conversions, is in a common
library used for all architectures. However, the per-model parts
must still contain a substantial amount of information about
the different classes of instruction present in the model, the
different cases of each, and how to combine results about
fetching, decoding and running instructions into a single result.

B. Test generation process

Our automatic test generation system [3] starts with random
sequences of instructions, typically chosen to be long enough
to exercise the pipeline. It finds an initial state which will
run the sequence, avoiding undefined behaviour and (when
undesired or unsupported) processor exceptions, by solving
constraints derived from the step library information. It then
compares the model’s predicted final state with the result of
an actual execution from the initial state. The process can be
summarised as:

1) Generate instruction sequence
2) Extract instruction behaviour from model
3) Calculate sequence’s constraints and behaviour in terms

of the initial state
4) Solve constraints to build test with an SMT solver
5) Add test harness

The hypotheses from the extracted behaviour are the source
of the constraints, while the conclusions are used to rewrite
them in terms of the initial state of the whole sequence. We
do not need there to be precisely one rule per branch choice
to do this, so we can accept any reasonable partitioning of
instruction behaviour into rules so long as the conclusion is
in the form of a sequence of state updates.

We solve the constraints using an off-the-shelf SMT solver
through an existing translation of a subset of HOL4 terms [6].
To adapt the testing to a new architecture the instruction
generation, behaviour extraction and harness code must be
adapted. This is routine for targets with a suitable step library,
but for new targets such as CHERI we need a replacement for
the behaviour extraction phase.

The step libraries have a few features that the testing does
not require: there is support for partial instructions (where
some operands are left as variables), it is compatible with the
separation logic library which we do not use, and there is
support for caching the resulting theorems.

III. EXTRACTING BEHAVIOUR

One of our goals is to reduce the amount of user effort
needed to extract instruction behaviour on a new target, so the
new library must require much less model-specific informa-
tion. Thus our replacement library discovers the different cases
for each instruction rather than being provided with them,
using the structure present in the model’s definitions. This
also removes the need to know about the different instruction
classes. To increase automation we process the entire next state
function at once, rather than building up a result from separate
lemmas about the model’s functions for fetching, decoding and
executing instructions.

The threading of the global state record through the defini-
tions by the L3 translation tool provides the structure used to
discover the different cases of each instruction. To get results
like Figure 2 which conclude with a sequence of state updates
we need to break up any conditionals or pattern matches
encountered in this threaded computation, producing a separate
theorem for each path.

Symbolic execution techniques fit this view of the model;
they follow the imperative structure of a program (in our case,
the threaded state) and consider each path in the program
independently, producing a separate result for each one. The
parts of the computation which do not directly modify the
state, such as the calculation of v in Figure 1, are left to
symbolic evaluation, by which we mean rewriting the term
under a set of assumptions producing a single equivalent term
rather than a set of possible terms.

We avoid undesirable interactions between the evaluation
and the execution by restricting the evaluation of let terms.
There are beneficial interactions where conditionals and pat-
tern matches can be simplified. For example, if we choose
the always-zero register for rs in Figure 1 then evaluation
will dispose of the NotWordValue test before execution even
considers it. The implementation interleaves the symbolic
evaluation and execution in a single recursive function.

A. Symbolic evaluation

For most of the symbolic evaluation of the model we use
the computeLib call-by-value evaluation library included
in HOL4 [7], appealing to rules for evaluating terms on
bitvectors, arithmetic, pairs and other definitions from standard
HOL4 theories. It also deals with operations on the model’s
datatypes and certain functions from the model, reusing some
of the utility functions from Fox’s libraries that can generate
rewrites for any model. This is combined with some limited
use of HOL4’s simplifier for more complex rewrites, for
example those which require higher-order matching.

In addition to avoiding evaluation of the let terms that
the symbolic execution will explore, the evaluation must
avoid expensive expansion of terms before there is sufficient
information to reduce them properly. For example, the L3
translator uses a FOR combinator for loops, but if the number of
iterations is not yet known (because some symbolic execution
of the state is required first) then the standard evaluation rule
will never terminate. We solved this by replacing the FOR rule
by a restricted conversion that requires a concrete number for
the loop bound. Similarly, most of the model definitions are
only unfolded by the symbolic execution because they cannot
be usefully evaluated before the state at the point of application
is known.

Our symbolic evaluation also uses the current set of hy-
potheses as rewrite rules, including general user-specified
assumptions about the particular target, such as the processor’s
endianness. The user can provide more specialised rewrite
rules which introduce extra assumptions during evaluation. For
example, we use this to restrict memory accesses to the small
region of the address space that is used by our tests.

35

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

B. Symbolic execution

Traditional symbolic execution [8] requires a symbolic set
of values, symbolic evaluation of expressions, a symbolic
store, and a path condition to record the circumstances which
lead to the part of the program currently being executed so
that incompatible paths later in the execution can be avoided.
The values and evaluation we get ‘for free’ by working in
HOL with the evaluation procedure outlined above. Our initial
treatment of the state was to substitute the entire symbolic
value for the state record every time it was updated. However,
we discovered that the performance was unacceptably poor for
models with large state records such as CHERI. Instead, we
maintain a rewrite for each field of the state which expresses
its current value in terms of the initial state, and add these
rewrites to the symbolic evaluation. In principle we could go
further by using a separate rewrite for each entry of subrecords
and maps in the state, for example, having one rewrite per
register rather than the entire register map, but this has not
been necessary in practice.

To maintain the path condition we add the appropriate
assumption for each branch taken at a case split to the list
of hypotheses. The symbolic evaluation will then use these
assumptions to automatically eliminate incompatible branches
later in the execution, and they may also be used for other
simplification. For example, if a conditional takes one branch
when a variable is zero, then in the execution which takes that
branch the variable will be rewritten to zero throughout.

The symbolic execution procedure is summarised in Fig-
ure 3, where judgements of the form

H,S ` t ; (H ′, t′)

mean that under the set of hypotheses H and the per-field state
rewrites S, the execution of term t results in a set of terms
t′ paired with hypotheses H ′, which may extend H with path
conditions and assumptions from special rewrite rules (such as
limiting the range of memory addresses used). We also write
u and v for terms, x for variables, and c for the names of
constants in the rules.

The L3 translator always places the state record in the
rightmost position of a tuple, so the PAIR and SND rules
merely follow the state, then reconstruct the surrounding
context. The LET rule propogates state updates: for each state
s′i found by executing t, we form a new set of rewrites, denoted
S /s′i, which updates the rewrites in S with the changes in s′i.
This new set is then used for the symbolic execution of u.

Case splits are handled by the COND and CASE rules. In
each branch we add a new hypothesis corresponding to the
guard or pattern match, and then proceed with that branch
in isolation. The actual implementation also replaces the
variables which are bound in patterns with fresh ones to
prevent clashes. In principle, case splitting at every conditional
or pattern match would lead to an explosion in the number of
cases to consider. In practice, many of the cases are eliminated
by the symbolic evaluation due to existing assumptions or the
path condition, and from the remainder most lead to some

H,S ` u ; (H ′, u′)

H,S ` (t, u) ; (H ′, (t, u′))
PAIR

H,S ` t ; (H ′, t′)

H,S ` SND t ; (H ′,SND t′)
SND

H,S ` t ; (H ′, (t′, s′))

∀i. H ′
i, S / s′i ` u[t′i/x] ; (H ′′

i , u
′
i)

H,S ` let (x, s) = t in u ;
⋃
i

(H ′′
i , u

′
i)

LET

(H, t), S ` u ; (H ′, u′)

(H,¬t), S ` v ; (H ′′, v′)

H,S ` if t then u else v ; (H ′, u′) ∪ (H ′′, v′)
COND

∀i. (H, pti = t), S ` ui ; (H ′
i, u

′
i)

H,S ` case t of pt1 ⇒ u1| . . . ;
⋃
i

(H ′
i, u

′
i)

CASE

H,S ` raise’exception t u ; ∅
UNDEF

c x1 . . . xn+1 := t H, S ` v ; (H ′, v′)

∀i. H ′
i, S ` t[u1/x1, . . . , un/xn, v

′
i/xn+1] ; (H ′′

i , t
′
i)

H,S ` c u1 . . . un v ;
⋃
i

(H ′′
i , t

′
i)

APP

Fig. 3. Rules used in symbolic execution

form of undesirable behaviour which is discarded. The UNDEF
rule does this for the L3 exceptions which indicate undefined
behaviour. Extra rules can be added for any other function
in the model; for example, when we are not interested in the
handling of processor exceptions we discard paths where we
reach the SignalException function.

Other functions involving the state are handled by the APP
rule. The state is always passed in the final argument, so we
process it first then unfold the function’s definition. Functions
which do not involve the state are unfolded by the symbolic
evaluation.

Any term that does not fit one of the rules is only run
through the symbolic evaluation.

C. Example

To illustrate the procedure we consider the main definition
for a single instruction on fixed operands,
dfn’ADDI (2w,1w,3w) s

which is the 32-bit signed addition of 3 to the contents of
register 2, placing the result in register 1. The APP rule unfolds
the definition, which we saw in Figure 1. The first part of the
let,
if NotWordValue (FST (GPR 2w state))
then SND (raise’exception

(UNPREDICTABLE "ADDI: NotWordValue")
state)

else state

36

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

is processed recursively, and COND examines each of the
branches separately. The first is discarded by SND and UNDEF
because the processor’s behaviour on a value that cannot be
represented in 32 bits is undefined. The second case is trivial,
except that we now have an extra hypothesis,

¬if word_bit 31 (s.gpr 2w)
then (63 >< 32) (s.gpr 2w) 6= 0xFFFFFFFFw
else (63 >< 32) (s.gpr 2w) 6= 0w

which is the result of evaluating the guard, NotWordValue (

FST (GPR 2w state)). The same hypothesis is present in the
unsigned case in Figure 2.

In the second part of the let the computation of v cannot
change the state, so it is evaluated, leaving us with the final
conditional:

if word_bit 32 ((32 >< 0) (s.c_gpr 2w) + 3w) 6=
word_bit 31 ((32 >< 0) (s.c_gpr 2w) + 3w)

then SignalException Ov s else
write’GPR

(sw2sw
((31 >< 0) ((32 >< 0) (s.c_gpr 2w) + 3w)),
1w) s

Again, COND considers each branch. For the sake of brevity,
we will not consider the overflow processor exception. In the
second branch, the write’GPR definition is unfolded and it
continues to the result

dfn’ADDI (2w,1w,3w) s =
((),
s with c_gpr :=

(1w =+ sw2sw
((31 >< 0) ((32 >< 0) (s.c_gpr 2w) + 3w)))

s.c_gpr))]

which updates register 1 with the sum, under the two hypothe-
ses,

¬if word_bit 31 (s.gpr 2w)
then (63 >< 32) (s.gpr 2w) 6= 0xFFFFFFFFw
else (63 >< 32) (s.gpr 2w) 6= 0w

¬word_bit 32 ((32 >< 0) (s.c_gpr 2w) + 3w) 6=
word_bit 31 ((32 >< 0) (s.c_gpr 2w) + 3w)

which ensure the argument can be represented in 32 bits and
that there is no overflow, respectively.

To illustrate how the state updates S / s are calculated,
suppose that we start out with an unchanged initial state, s0,
and want to update it with the result above. The initial set of
field rewrites S will be:

s.c_gpr = s0.c_gpr
s.c_state = s0.c_state
. . .

The new set of rewrites reflects the updates to each field. In
our case only the register field c_gpr is affected:

s.c_gpr = (1w =+ sw2sw (. . .)) s0.c_gpr
s.c_state = s0.c_state
. . .

Note that the previous rewrite is applied, replacing s.c_gpr

with s0.c_gpr, so that it is expressed in terms of the initial
state.

IV. SOUNDNESS, INCOMPLETENESS AND COMPLETENESS

The correctness of the extracted behaviour with respect to
the model is ensured by construction because every stage of
the process produces a theorem witnessing it. In particular, for
each rule of the symbolic execution

H,S ` t ; (H ′, t′)

the system generates a theorem for each result:

H ′
i ` t = t′i.

However, these theorems are generated dynamically, so any
bug in the implementation will only be detected during sym-
bolic execution.

This shows that the results will be sound, but we also
wish to know whether they will be complete, that is whether
the procedure finds all of the relevant behaviour. It must be
incomplete in the sense that some behaviour is intentionally
excluded; undefined behaviour is not useful for testing, the
tests must respect restrictions on endianness and memory
layout to run on the test system, and we only wish to explore
processor exceptions in a controlled manner.

In principle we could codify all of the undesirable behaviour
and construct an additional overall theorem stating that under
only basic assumptions either one of the conclusions from the
extracted behaviour will be reached, or one of the undesirable
situations will. We believe it would be feasible to construct
such a theorem because the intermediate results required
would be of a similar size and number to the actual results
we already compute. However, it would require considerable
effort to add the code to compute this theorem, and, as before,
it would only detect failure at runtime.

Less formally, we can compare our method with the step
libraries. These are primarily intended for verification, and
some of them deliberately restrict the supported behaviours
even further. For example, the ARMv7-A step library requires
all word loads to be aligned, even though the architecture
permits unaligned loads in some circumstances. This is added
by an explicit assumption in the model-specific part of the step
library. While such restrictions can be useful for simplifying
verification they also illustrate how easily behaviour can be
accidentally excluded. In contrast, our library systematically
explores the model with fewer user-provided assumptions, so
accidentally missing behaviour is less likely. Thus we believe
the procedure is complete for a model specialised to any
particular processor, fixing details such as endianness and
available memory.

V. APPLICATION TO TESTING

To use the library with an instruction set model we still
need to provide some model-specific information, such as
identifying the functions which raise L3 exceptions and pro-
cessor exceptions, the standard set of assumptions, specialised
rewrites, and the definitions which should not be unfolded
(typically to enable a rewrite). For example, one use of model-
specific rewrites is to avoid accessing hardware resources that
are present in the model for simulation, such as serial ports.

37

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

There is a bootstrapping problem for the more complex
models. In simple models such as the M0 microcontroller
that we previously worked with, instructions can be injected
into memory by adding hypotheses for each byte of each
instruction. More complex models feature address translation
and different memory representations. For example, in the
CHERI model memory is represented in chunks that contain
either a capability record or a raw capability-sized bitvector.
Rather than writing a function to generate suitable assumptions
for each model by hand, we use the procedure above to
generate a theorem about the behaviour of the model’s Fetch

function, then build a rewrite from it which will ensure
that the desired instruction is loaded. The behaviour of the
instruction can then be extracted from the Next function if we
add the rewrite to the set used by the symbolic evaluation.
This approach has the advantage that it is relatively robust to
changes in the model.

The first model the procedure was applied to was the plain
MIPS model. This has a step library which we could use
for comparison during development and for the performance
comparisons below. We then moved on to our main target of
interest, the large CHERI model. We had already tested the
plain MIPS model against the CHERI hardware design, but
CHERI has a considerable number of new instructions without
a corresponding step library. Moreover, the instructions have
a large number of security checks that result in processor
exceptions, so in addition to checking fault-free instruction
sequences we also generated tests where one of the instructions
in the middle of the sequence exercised one of its exceptional
behaviours, extracted in the same way.

Testing with the plain MIPS model had already detected
bugs in the model and the hardware design. Extending testing
to CHERI using our library not only produced tests that would
detect those bugs, but also found problems in areas that were
not supported by the step library; in particular, in the model
store conditional instructions did not check enough of the
supplied address, and several instructions wrote back results
incorrectly when a processor exception was signalled.

We have been able to track changes to the model with very
few adjustments. For example, a new instruction will need to
be added to the instruction generator, but not the behaviour
extraction library. Moreover, when we first targeted the test
system at CHERI the most labour intensive model-specific
work was adapting the test harness construction code which
initialises the test state, because the model-specific part of our
behaviour extraction library is so small.

A. Performance

Our main goal is the batch production of tests, so we could
accept a large increase in the test generation time. We have
not yet explored opportunities to accelerate the process, such
as replicating the feature in the step libraries to extract the
general behaviour of an instruction and cache it for future use
with a range of different operands. Nonetheless, we generated
500 8-instruction tests for the plain MIPS model using both
the step library and our library to compare the libraries and to

0 500 1000 1500 2000 2500
0

500
1000
1500
2000
2500
3000

Number of 13-instruction tests

B
ra

n
ch

es
 c

ov
er

e
d

Fig. 4. Cumulative coverage graph

determine whether behaviour extraction is a bottleneck in test
generation.

While the median behaviour extraction time increased con-
siderably from 0.23 seconds to 3.16 seconds, it still represents
a small fraction of the overall time for test generation, whose
median increased from 16.98 seconds to 19.15 seconds. Thus
improving our library would not make a huge difference to the
rate of test generation unless substantial improvements were
made elsewhere. Moreover, the model-specific code for plain
MIPS for our library is an order of magnitude smaller than
that for the original step library.

This is still true with the larger CHERI model. While the
median behaviour extraction times are much greater, around
30 seconds for 8-instruction tests, they are still only a third
of the total test generation time, and sufficient for batch test
generation.

B. Coverage

Following the production of a large batch of CHERI tests
for use against the hardware design, we wished to check
how much of the model’s instruction behaviour was actually
exercised and whether any bugs in the behaviour extraction
were causing cases to be missed. The testing system was set
to produce 13 instruction tests, where the middle instruction
raises a processor exception and all other instructions do not.

We measured the branch coverage by building the SML sim-
ulator version of the L3 model and using the MLton compiler’s
coverage support. To see if we had generated enough tests
to demonstrate the available coverage we produced a graph
showing the cumulative branch coverage of the model, shown
in Figure 4. The flattening of the curve suggests that additional
random tests would add little to the overall coverage.

To get a more qualitative idea of how good the coverage
is we manually examined the branches in the instruction def-
initions that were not covered after 2000 tests3. The branches
that were not covered fell into two groups: those which are
impossible due to undefined behaviour or an unnecessary
default case in a complete pattern match; and those which

3Examining the model as a whole is not appropriate due to the amount of
code that is outside of the scope of the tests, such as serial ports, interrupts,
full address translation, instruction encoding, and disassembly.

38

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

testing did not reach by pure chance, which were almost all
due to the very large number of security checks in the new
CHERI instructions. We know that the latter group were due
to chance because the same checks in other instructions were
tested; if we made the random test generation more targeted
it should be possible to cover these cases without greatly
increasing the number of tests. There was one other case
amongst the branches that were not covered: a trap instruction
that had accidentally been omitted in the instruction generation
phase, which was easily corrected.

VI. RELATED WORK

Automated conversions between functional semantics and
more structured operational semantics has been studied in
many forms. Note that the output of our system is not
structured to the same extent as a Plotkin-style structured
operational semantics [9]; while we do produce rules with
stylised conclusions, separate hypotheses, and where we have
one rule for each behaviour, we do not break the execution
down into a set of intuitive judgements and build up behaviour
in derivation trees. Instead, we provide monolithic rules where
everything is described in basic terms, slicing across the entire
model. For our automated testing this is quite reasonable
because we will eventually present constraints derived from
the rules to an SMT solver which has no direct knowledge of
the model.

General purpose tools for converting or reasoning about
functional semantics are more structured. The Function mech-
anism for Coq [10] generates an inductive relation for the
graph of a function, together with induction and inversion
principles. The relation does split out the different behaviours
of the function, but there is a relation for every function,
which would be difficult to use on a model with hundreds of
definitions. Similarly, Owens et al. [11] recently advocated us-
ing functional definitions for programming language semantics
when suitable induction principles are generated. In their case
their principles came from HOL4’s mechanism for defining
recursive functions.

There are other functional semantics for instruction sets
where rules have been manually specified for each instruction,
and proved as lemmas. Srivas and Miller [12] did this when
verifying the microcode for the AAMP5 processor, staying
close to the pseudocode initially, then deciding to derive rules,
saying:

They were more readable, simpler to validate, and
were closer to what a user wanted to know in the first
place. They also made it possible to specify a small
portion of the next_macro_state function, i.e.,
to specify one instruction or part of an instruction at
a time.

However, this is exactly the type of work we wish to automate.
Similarly, Jensen et al. [13] formalised a subset of the x86
architecture in Coq for verifying machine code programs
where they proved manually specified separation logic rules.

Fox’s libraries [4], which we described in Section II, fit
in between these completely manual rules and our almost

automatic system. The results differ from ours in several ways:
they must correspond closely to the accompanying program
logic library, work with partially specified operands, cache
results, and produce one rule per branching choice, rather than
partitioning the behaviour according to the structure of the
definition. It may be possible to adapt our library to cover
some of these points, but we leave that to future work.

There is also a body of work on translating from rule-based
relational semantics to functions, such as Isabelle’s predicate
compiler [14] and a similar feature for Coq by Tollitte et
al. [15]. This is an attractive way to animate semantics which
have been presented relationally, as is common for many
programming languages. Indeed, Lochbihler and Bulwahn
have done this for a Java-like language [16]. However, if we
were to rewrite our model like this we would lose the close
correspondence to the designers’ pseudocode. Transformations
in this direction do have the advantage that they can produce
several functions, depending on which parameters of the
relation are chosen as inputs and outputs of the generated
function.

Turning our attention to the techniques involved, symbolic
evaluation is widely used with executable models. Fox’s li-
braries provide one example. Moore [17] advocates the use
of symbolic evaluation of a machine model for exploring the
behaviour of assembly programs, which he calls symbolic
simulation. Having demonstrated that an example program
can be simulated in ACL2 despite only partially specifying
the input, Moore suggests that this is reasonably accessible to
engineers and that a special purpose user interface would aid
adoption.

Symbolic execution has a long history of use in testing,
early work by King [8] used it for interactive testing, while
Boyer et al. [18] primarily generated test cases. It is now
commonly used for automatic test case generation on large
programs using concolic testing [19], where the symbolic
execution follows the same path as the concrete execution
of a test case, and part of the resulting path condition is
negated to force the solver to find a test case which explores
a new branch without searching through the full space of
paths. Our library is closer to Boyer et al. because we explore
all of the well-defined paths for a single instruction during
symbolic execution, but leave the test case generation to a later
phase of the testing process that uses the entire instruction
sequence. In contrast, concolic methods have been used for
single instruction simulator testing by Wagstaff et al. [20] for
high coverage, and similar methods by Martignoni et al. [21]
for cross-testing.

VII. FURTHER WORK

The most straightforward area of possible work is to use the
library in test generation for other L3 models; partly to test
these models, and partly to identify any remaining aspects of
the library that are too reliant on the particular models above.
This would still require some manual effort for each model
to construct the instruction generator and the production of
harness code.

39

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

One danger with other L3 models is that they may make
greater use of looping constructs. The plain MIPS and CHERI
models use no recursion, have FOR loops with statically
known iteration counts, and do not have more than one well-
defined path inside a loop (which prevents the number of cases
exploding). While other models may be similar, it is possible
that difficult loops may appear occasionally. In fact, there is
one in the CHERI model’s address translation but it does not
affect our testing because it is not used for the parts of memory
that our tests run in. The loop tests each TLB entry, resulting in
an exponential number of paths, although the surrounding code
restricts the well-defined paths to one per entry. To tackle these
issues we could manually prove that the loop can be replaced
with a simpler form, or attempt a general solution, perhaps by
analysing the loop body separately and adding more structure
to the output.

We could also investigate adding more of the features from
Fox’s library, as described above. The exact requirements for
interfacing with his program logic libraries are unclear, and
it may be that our results are not sufficiently idiomatic to
be compatible. Support for partially specified instructions and
caching seem more feasible, and would improve performance.

A more ambitious task would be to apply the same approach
to an instruction set modelling language which supports some
weak memory model, both to test the sequential behaviour of
such models, and to investigate automatic test generation for
multicore architectures.

VIII. CONCLUSION

We have constructed a library which uses symbolic execu-
tion in a theorem prover to extract rule-based descriptions of
processor behaviour from L3 executable instruction set models
with minimal user-provided information about the model. The
structure of the results can be used to drive an automatic
test generation system, and the soundness of the procedure is
ensured by the HOL4 theorem proving system. The resulting
system has been successfully used with a large model of the
CHERI experimental MIPS-like processor.

ACKNOWLEDGMENT

This work was supported by the Engineering and Physical
Sciences Research Council [grant number EP/K008528/1],
Rigorous Engineering for Mainstream Systems (REMS).

REFERENCES

[1] S. Goel, W. A. Hunt, M. Kaufmann, and S. Ghosh, “Simulation and
formal verification of x86 machine-code programs that make system
calls,” in Proceedings of the 14th Conference on Formal Methods in
Computer-Aided Design, ser. FMCAD ’14. Austin, TX: FMCAD Inc,
2014, pp. 18:91–18:98.

[2] A. Fox, “Directions in ISA specification,” in Interactive Theorem Prov-
ing (ITP 2012), ser. LNCS, L. Beringer and A. Felty, Eds. Springer,
2012, vol. 7406, pp. 338–344.

[3] B. Campbell and I. Stark, “Randomised testing of a microprocessor
model using SMT-solver state generation,” Science of Computer Pro-
gramming, vol. 118, pp. 60–76, March 2016.

[4] A. Fox, “Improved tool support for machine-code decompilation in
HOL4,” in Interactive Theorem Proving, ITP 2015, Nanjing, China,
August 24-27, 2015, Proceedings, 2015, pp. 187–202.

[5] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
CHERI capability model: Revisiting RISC in an age of risk,” in
ACM/IEEE 41st International Symposium on Computer Architecture,
ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014, 2014, pp. 457–
468.

[6] T. Weber, “SMT solvers: New oracles for the HOL theorem prover,”
International Journal on Software Tools for Technology Transfer, vol. 13,
no. 5, pp. 419–429, 2011.

[7] B. Barras, “Programming and computing in HOL,” in Theorem Proving
in Higher Order Logics, 13th International Conference, TPHOLs 2000,
Portland, Oregon, USA, August 14-18, 2000, Proceedings, 2000, pp.
17–37.

[8] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, Jul. 1976.

[9] G. D. Plotkin, “A structural approach to operational semantics,” Com-
puter Science Department, Aarhus University, Tech. Rep. DAIMI FN-19,
1981.

[10] G. Barthe, J. Forest, D. Pichardie, and V. Rusu, “Defining and reasoning
about recursive functions: A practical tool for the Coq proof assistant,” in
Functional and Logic Programming (FLOPS 2006), ser. Lecture Notes
in Computer Science, M. Hagiya and P. Wadler, Eds., vol. 3945, 2006,
pp. 114–129.

[11] S. Owens, M. O. Myreen, R. Kumar, and Y. K. Tan, “Functional big-step
semantics,” in Programming Languages and Systems - 25th European
Symposium on Programming, ESOP 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings, 2016, pp. 589–615.

[12] M. K. Srivas and S. P. Miller, “Applying formal verification to the
AAMP5 microprocessor: A case study in the industrial use of formal
methods,” Formal Methods in System Design, vol. 8, no. 2, pp. 153–188,
1996.

[13] J. B. Jensen, N. Benton, and A. Kennedy, “High-level separation
logic for low-level code,” in The 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’13, Rome,
Italy - January 23 - 25, 2013, 2013, pp. 301–314.

[14] S. Berghofer, L. Bulwahn, and F. Haftmann, “Turning inductive into
equational specifications,” in Theorem Proving in Higher Order Logics,
ser. Lecture Notes in Computer Science, S. Berghofer, T. Nipkow,
C. Urban, and M. Wenzel, Eds. Springer Berlin / Heidelberg, 2009,
vol. 5674, pp. 131–146.

[15] P. Tollitte, D. Delahaye, and C. Dubois, “Producing certified functional
code from inductive specifications,” in Certified Programs and Proofs -
Second International Conference, CPP 2012, Kyoto, Japan, December
13-15, 2012. Proceedings, 2012, pp. 76–91.

[16] A. Lochbihler and L. Bulwahn, “Animating the formalised semantics
of a Java-like language,” in Interactive Theorem Proving, ser. Lecture
Notes in Computer Science, M. van Eekelen, H. Geuvers, J. Schmaltz,
and F. Wiedijk, Eds. Springer Berlin / Heidelberg, 2011, vol. 6898,
pp. 216–232.

[17] J. Strother Moore, “Symbolic simulation: An ACL2 approach,” in
Formal Methods in Computer-Aided Design, ser. Lecture Notes in
Computer Science, G. Gopalakrishnan and P. Windley, Eds. Springer
Berlin / Heidelberg, 1998, vol. 1522, pp. 530–530.

[18] R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT—a formal system for
testing and debugging programs by symbolic execution,” in Proceedings
of the International Conference on Reliable Software. New York, NY,
USA: ACM, 1975, pp. 234–245.

[19] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in Proceedings of the 10th European Software Engineer-
ing Conference Held Jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. ESEC/FSE-
13, M. Wermelinger and H. C. Gall, Eds. ACM, 2005, pp. 263–272.

[20] H. Wagstaff, T. Spink, and B. Franke, “Automated ISA branch coverage
analysis and test case generation for retargetable instruction set simula-
tors,” in Proceedings of the 2014 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, ser. CASES ’14, K. S.
Chatha, R. Ernst, A. Raghunathan, and R. Iyer, Eds. ACM, 2014, pp.
15:1–15:10.

[21] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and P. Maniatis,
“Path-exploration lifting: hi-fi tests for lo-fi emulators,” in Proceedings
of the 17th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS 2012, London,
UK, March 3-7, 2012, 2012, pp. 337–348.

40

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Categorical Semantics of Digital Circuits
Dan R. Ghica

University of Birmingham, UK
Achim Jung

University of Birmingham, UK

Abstract—This paper proposes a categorical theory of digital
circuits based on monoidal categories and graph rewriting. The
main goal of this paper is conceptual: to fill a foundational gap
in reasoning about digital circuits, which is currently almost
exclusively semantic (simulations). The level of abstraction we
target is circuits with discrete signal levels, discrete time, and
explicit delays, which is appropriate for modelling a range of
components such as boolean gates or transistors working in
saturation mode.

We start with an algebraic signature consisting of the basic
electronic components of a given class of circuits and extend
it gradually (and in a free way) with further algebraic structure
(representing circuit combinations, delays, and feedback), while
quotienting it with a notion of equivalence corresponding to
input-output observability. Using well-known results about the
correspondence between free monoidal categories and graph-
like structures we can develop, in a principled way, a graph
rewriting system which is shown to be useful in reasoning about
such circuits. We illustrate the power of our system by reasoning
equationally about a challenging class of circuits: combinational
circuits with feedback.

Index Terms—Digital circuits, circuit topology, feedback circuits,
multivalued logic, category theory, monoidal categories

I. INTRODUCTION

A. Syntactic vs. semantic modelling

Theories of programming languages can be either syntactic,
formulated equationally, or semantic, formulated via transla-
tion into a mathematical domain. The former is commonly
known as operational semantics [1] and the latter as deno-
tational semantics [2]. Even though denotational models are
attractive conceptually, the difficulties of producing precise
(“fully abstract”) models of realistic programming languages
led to a prevalence of operational reasoning methods in
practice, for example, when proving compilers correct [3].

In contrast, formal models of digital circuits are virtually ex-
clusively of a denotational nature, where circuits are translated
into an executable model (e.g. automata [4]) so that their
behaviour can be simulated. As far as denotational models go,
such translations tend to obscure the structure of the circuit
and are more akin to compilation than genuine modelling.
This is not to say such models are not effective in reasoning
about circuits, in fact they are the foundation of a thriving
industry which places a premium on correctness. However, the

contrast between hardware and software in terms of reasoning
techniques is striking.

Our primary motivation is to address a surprising method-
ological and conceptual gap, the paucity of syntactic models
for digital circuits. Our methodology is heavily influenced
by developments, in the last decade, in diagrammatic reason-
ing for a variety of computational models such as quantum
computing [5], signal flow [6] or asynchronous circuits [7].
The basic insight of this approach is that the same algebraic
structures (“monoidal categories”) which are very helpful in
describing the structure of systems in general [8] also occur
in certain diagrams [9]. This approach formalises the intuitive
connection between systems and diagrams, also reflected in
the rich diversity of graphical environments for circuits and
systems (e.g. structural HDLs, Simulink).

B. Methodology and contribution

In terms of level of abstraction we will simply consider digital
circuits as broadly construed, i.e. processing a finite number
of discrete input and output levels, with explicit and discrete
delays down to a smallest observable delay (δ). This level of
abstraction applies to Boolean circuits but also to transistor-
level modelling, if the transistor operates in non-linear mode.

We will start from a basic algebraic signature meant to
represent abstractly the basic components (e.g. transistors)
used in the construction of a circuit. Then we will follow
a sequence of free categorical constructions and quotientings
which will systematically lead to models of digital circuits
with delays and feedback. The free constructions represent
step-by-step expansions of the algebraic language with new
features, whereas the quotientings represent cutting down the
model by imposing a notion of observability. The free con-
structions have well-known diagrammatic equivalents which
will facilitate reasoning and calculations via diagrammatic
graph rewriting.

Our most important guiding principle is the use of “small”
axioms, i.e. axioms describing the local interactions of com-
ponents, rather than “coherences” describing the interplay of
complex sub-circuits. We believe this approach to be more
physically realistic and more promising for a potential efficient
implementation. Coherences, wherever needed, will need to be
derived as theorems. The main technical result of the paper is
that diagrams of circuits with feedback (trace, categorically)

41

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Fig. 1. Combinational circuit with (false) feedback ([10, Fig. 1])

have products and therefore feedback can be treated as itera-
tion.

This work was inspired by Berry et. al.’s semantic treatment
of cyclic combinational circuits [10], a class of circuits which
straddles the combinational-sequential boundary. We aim to
provide an equational counterpart to their approach.

C. A motivating class of examples

A particularly intriguing class of circuits are combinational cir-
cuits with feedback, as identified by Malik [11]. The presence
of feedback suggests that these circuits are not combinational
yet their behaviour does not lead to any latching effects.
Moreover, the feedback loop in purely combinational circuits
is banned by the usual synchronous design methodology
and cannot be handled by conventional tools. A semantic
characterisation of such circuits is given in [10]. Our aim is
provide an equational method to complement the designer’s
toolkit of reasoning methodologies.

A simple such circuit is presented in Fig. 1, where a (false)
feedback loop is used to create shared data-path resources. The
circuit computes z = if c then F (G(x)) else G(F (x)),
which could also be implemented in a cycle-free fashion by
duplicating the sub-circuits F and G. Being able to handle
such circuits with zero-delay cycles directly has many benefits,
as explained in loc. cit., but we target them not particularly
for their benefit but for the technical challenge they pose to
conventional modelling frameworks.

II. COMBINATIONAL DIGITAL CIRCUITS

Our formal language of circuits is based on category theory,
and in general requires two sorts of variables: object variables
for labelling (collections of) wires and morphism variables for
labelling boxes (e.g., gates and circuits). Since we use only one

kind of wire we can do away with wire labels and, instead,
use just natural numbers to indicate the width of the wire
collection (bus). We obtain what is usually called a category
of PROducts and Permutations, or PROP for short [12].

Definition 1. Let Circ be a categorical signature with objects
the natural numbers N and a (typically finite) set of morphisms
which may be grouped into the following three classes:

• levels v : 0 → 1;
• gates k : m → 1; and
• the special morphisms join j : 2 → 1, fork f : 1 → 2, and

stub w : 1 → 0.

We further assume that there are only finitely many levels and
that they form a lattice (V,⊑). Instead of “level” we will also
use “value”.

All circuit signatures include combinators for joining two
outputs (join) and duplicating an input (fork), as well as the
ability to discard an output (stub). What varies from signature
to signature is the number of signal levels we consider, as
well as the sets of gates we want to model. Since they form
a lattice, the levels must always include a smallest element
(⊥), corresponding to a disconnected input, and a top element
(⊤) corresponding to an illegal output (“short circuit”). In the
simplest and most common instance, the set of level has two
other elements, high and low, but it can go beyond that. For
example, in the case of metal-oxide-semiconductor field-effect
transistors (MOSFET) it makes sense, in certain designs, to
model the diode properties of the transistor by taking into
account four levels (strong and weak high and low voltage).

Circuits, in the sense of this paper, are the morphisms of a free
categorical construction over their signature. Beginning with
combinational circuits, the free construction is as follows:

Definition 2. Let CCirc be the free symmetric monoidal cate-
gory over Circ, subject to the following additional equations:

Input-output characterisation of gates (extensional
completeness): For any gate k : m → 1, for any values
vi, 1 ≤ i ≤ m, there exists a unique value v′ such that
k ◦

⊗
i=1,m vi = v′.

Monotonicity: For any gate k : m → 1, for any values
vi, v

′
i, 1 ≤ i ≤ m, if vi ⊒ v′i then

k ◦
⊗

i=1,m vi ⊒ k ◦
⊗

i=1,m v′i.

We also require the following equations:

Fork: f ◦ v = v ⊗ v.
Join: j ◦ (v ⊗ v′) = v ⊔ v′.
Stub: w ◦ v = 0.

The last three encapsulate the understanding that a fork dupli-
cates a value, a join coalesces two values, and a stub discards

42

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

anything it receives (0 being the identity on the object 0,
representing an absence of a wire).

It is known that, in a formal sense, the equality of morphisms
in a free symmetric monoidal category (SMC) corresponds to
graph isomorphisms in the diagrammatic language [13], where
diagrams are created by the operations of sequential compo-
sition (◦), parallel composition (⊗) and symmetry (xm,n, the
swapping of two buses with m and n wires, respectively),
governed by coherence equations. We will usually write com-
position in diagrammatical order f · g = g ◦ f . We write the
identity (bus of width m) idm : m → m as simply m. For
simplicity we also write

⊗
i=1,m f = fm,

⊗
i=1,m fi = f and⊗

i=1,m vi = v.

Without enumerating them, the equations of SMCs reflect
either the fact that the same diagram can be described in two
ways or the fact that two diagrams are graph isomorphic. An
example of the first case is the functoriality of ⊗, which gives
two equal ways of describing the diagram below.

g

f

g'

f'

(f · f ′)⊗ (g · g′) = (f ⊗ g) · (f ′ ⊗ g′).

An example of the second kind is the fact that bus-swapping
is involutive:

=

xm,m · xm,m = 2m

The extensional completeness principle states that in a circuit
the behaviour of a gate must be determined by its input
values only. This means that we will deliberately ignore global
interactions between components such as electromagnetic in-
terference or quantum tunnelling. Monotonicity says that gates
must behave monotonically with respect to the ordering of the
levels.1

We shall see later the importance of these equations. Finally,
the last equation represents our commitment to an input-output
based notion of equivalence: no matter what value we plug into
an unobserved output (stub) we get equivalent circuits, so that
all circuits with no inputs and no outputs end up being equal.

By simple inductive arguments on the structure of morphisms
we can establish that all circuits are extensionally complete,
i.e. for any circuit (not just gates) f : m → n, for any values
vi, 1 ≤ i ≤ m, there exists unique values v′j , 1 ≤ j ≤ n

1Regarding the earlier example of the four values {⊥, low,high,⊤}, note
that we would not order low below high; both are valid levels on an equal
footing.

such that f ◦
⊗

i=1,m vi =
⊗

i=1,n v
′
i. We can further say

that two circuits with the same input-output behaviour are
extensionally equivalent, and we can easily prove, also by
structural induction, that this is a congruence, i.e. it is an
equivalence preserved by sequential and parallel composition.
Therefore it makes sense to quotient our category CCirc and
create a new category ECCirc in which equivalent circuits
are made equal.

ECCirc has interesting additional categorical properties
which aid reasoning, but two are of particular importance.
The first one is that ECCirc is Cartesian, i.e. it has a notion
of product. The diagonal circuit is defined by ∆0 = 0 and
∆n+1 = (∆n ⊗ f) · (n ⊗ x(1,n) ⊗ 1) and it represents the
forking of a bus of width n. The diagonal has two important
coherences represented by the following diagram equalities
valid for any diagram f : n → m.

f

f
f= f =

⟨f, f⟩ = ∆n · (f ⊗ f) = f ·∆m f · wm = wm.

These coherences are immediate by structural induction over f
using extensionality. Also using extensionality we can easily
show that (f, j,w,⊥) forms what is known as a Frobenius
monoid, i.e. an algebraic structure in which (j,⊥) is a
commutative monoid, (f,w) is a co-commutative co-monoid,
interacting subject to the following law:

=

j · f = f2 · (1⊗ x1,1 ⊗ 1) · j2.

In a special context, which will prove to be useful, join and
fork behave as if they are inverses.

Proposition 1. For any f : m → n+ 1.

f

f
=

f

f

∆m · f2 · (n⊗ (j · f)⊗ n) = ∆m · f2 · (n⊗ 1)2.

Of course, composed the other way round, fork and join are
always inverses of each other:

43

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

=
f · j = 1.

Finally, it will be useful to use a co-diagonal which is the
joining of two buses of width n, defined as ∇0 = 0 and
∇n+1 = (n⊗ x1,n ⊗ 1) · (∇n ⊗ j). Note that ∇1 = j.

III. CIRCUITS WITH DISCRETE DELAYS

The next step is the free introduction of delays which we
represent diagrammatically as an elongated oval.

Definition 3. Let CCircδ be the category obtained by freely
extending ECCirc with a Z-indexed family of morphisms δt :
1 → 1 such that δ0 = 1, δt+t′ = δt · δt′ and:

Timelessness: For any gate or structural morphism k : m →
n and delay t ∈ Z, δt · k = k · δt:

k k=t t

Streaming: For any levels v = v ⊗ v′ and gate k, (δ2 ⊗ v) ·
∇2 · k = ((δ2 · k)⊗ (v · k)) · ∇1.

k
v

v'

k

k

=
v

v'

Disconnect: ⊥ · δ = ⊥.
Unobservable delay: δ · w = w.

Timelessness means that for any idealised, instantaneous gate
or structural morphism (i.e. wire, fork, join, swap, etc.) de-
laying the inputs by some value t can be compensated by
“anti-delaying” the output, by −t [14]. An immediate conse-
quence is that delays can be propagated through combinational
circuits, akin to retiming [15]. For simplicity we write δ1 = δ.
Note that any circuit with negative delays, which are not
realistic, can be retimed into a realistic circuit by delaying
the output:

Theorem 2. For any circuit f : m → n, there exists t ∈ Z
such that f · δnt has no negative delays.

The proof is immediate by induction on the structure of f
and using retiming. We will call the sub-category of circuits
without negative delays CCirc+

Streaming is used to handle waveforms equationally. A wave-
form of length n is a sequence of n levels vn :: vn−1 :: · · · :: v1
created using delays and joins, so they always have the form
s1 = v1, sn+1 = (sn·δ⊗vn)·j. The streaming axiom states that
to process a waveform we can create two separate instances
of a gate, to process the “head” and the “tail” separately, then
join the outputs. As far as we know this is a new axiom.

The final two axioms describe the (trivial) interaction between
delays and dangling inputs or outputs.

Circuits with delays can also be described extensionally in
terms of their input-output behaviour. Because of the presence
of delays, now we must use finite waveforms, described above
and ranged over by s. As before, we write

⊗
i=i,m s = sm

and
⊗

i=i,m si = s.

Theorem 3 (Extensionality of waveforms). For any morphism
f in CCirc+ we have that for any input waveform s there
exists a unique output waveform s′ such that s · f = s′.

The proof is by induction on the structure of f and uses routine
calculations and the following lemma.

Lemma 4. For any waveform s of size n and for any m ≥ n
there exists a waveform s′ of size m such that s = s′.

The larger waveform s′ is constructed by adding delayed ⊥
values wherever required. sn+1 = (sn⊗(⊥·δn)) · j = sn from
monoid axioms and the disconnect axiom.

As in the case of circuits without delays, we can show
that extensionality is a congruence and we can quotient by
it, creating an extensional category of circuits with delays,
ECCirc+.

It is a routine exercise to show ECCirc+ is Cartesian,
with the diagonal and terminal object defined the same as in
ECCirc, imitating the proof from the previous section.

IV. CIRCUITS WITH FEEDBACK

We can now introduce feedback.

Definition 4. Let CCirc∗δ (and CCirc∗+, respectively) be the
category obtained from ECCircδ (ECCirc+, respectively)
by freely adding a trace operator.

Diagrammatically, the trace operator applied to a diagram
f : m + k → n + k corresponds to a feedback loop of
width k, written Trk(f) : m → n. Symmetric traced monoidal
categories (STMC) satisfy a number of equations (coherences)
which we will not enumerate for lack of space [16]. As
before, their interpretation coincides with equality of diagrams
(with feedbacks) up to graph isomorphism. For example, of
particular interest is the axiom “yanking” a loop into a straight
line:

=

Trm(xm,m) = m.

44

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

This is indeed an axiom that indicates that, conceptually, we
are on the right track. The swapping of two wires is a trivial
combinational circuit, and applying a trace creates a (false)
feedback loop which can be simply eliminated.

As before, we are committed to an extensional view of circuits
where the only observable is the input-output behaviour.
In combinational circuits, with or without delays, the only
way we can create a circuit with 0 outputs is by explicitly
composing a circuit f : m → n with wn. However, 0-output
circuits can arise in more complicated ways in the presence of
feedback, whenever all the outputs are fed back. For example,
the diagram on the left can be reduced to just three unobserved
inputs:

k"

k'
k =

Such equalities cannot be proved out of local interactions,
so we will simply impose the equivalence of all 0-output
circuits, an equivalence which is trivially a congruence. The
new quotient category is called OCirc∗δ . In this category all
diagrams of shape f : m → 0 are therefore equal which,
categorically speaking, makes 0 a “terminal object”.

We are now approaching the main result of our paper: rea-
soning equationally about circuits with feedback. In general,
in programs feedback corresponds to recursion and iteration,
and syntactic models (operational semantics) of such programs
involve creating two copies of the code recursed over. For
example, the operational semantics of the Y-combinator as
applied to some G is Y G = G(Y G).

A similar rule does not exist in general for SMTCs unless
the category is also Cartesian. Such categories, also called
control-flow categories [17], admit an iterator defined for any
f : m+ n → n:

f
itern(f) = Trn(f · (∆n ⊗ n)) : m → n

which satisfies the following equations:

Iteration: iter(f) = ⟨m, iter(f)⟩ · f

f ff =

Diagonal: itern(itern(f)) = itern((⟨n, n⟩ ⊗m) · f).

f = f

g f' h = g f' h

Fig. 2. Global trace form

To use this essential axiom we need to first establish that the
SMTC of circuits with feedback is Cartesian. This will be the
main technical result of this paper. Before we do that we will
establish the following result which holds in general about
SMTCs and can be proved by diagrammatic reasoning. Each
diagram with feedbacks can be constructed from a feedback-
free diagram and one single global trace.

Lemma 5 (Global trace). For any morphism f in a SMTC
PROP there exists a trace-free morphisms f̂ such that f =
TrA(f̂) for some object A.

In the case of a PROP the object A = m ∈ N. The diagram
f̂ is constructing by “pulling out” any internal feedback loop
and applying to the whole diagram in a process similar to
lambda-lifting. Pictorially, this construction looks is illustrated
in Fig. 2.

Theorem 6. The category OCirc∗+ is Cartesian with diagonal
∆n.

Proof. We need to prove the naturality of the diagonal, i.e.
for all f : m → n, f ·∆n = ∆m · (f ⊗ f). We use induction
on the structure of the diagram f . For all gates and structural
morphisms the equation holds because it holds in the category
of combinational circuits with delays ECCircδ . Tensor and
composition are immediate by induction and simple algebraic
calculations.

The most interesting case is that of the trace, where we need
to show that assuming f ·∆m = ∆n · (f ⊗ f) we have that
Tr(f) ·∆m = ∆n · (Tr(f)⊗ Tr(f)):

f
f

f
=

Using the Global Trace Lemma, we can assume that f is trace-
free otherwise we can simply incorporate all the internal traces
into the global trace. Since f · j = 1 we have the following
equality of diagrams:

f f=

45

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Using coherences (graph isomorphisms) of the SMTC we can
rearrange the diagram as follows:

f=f

Note that now in the greyed diagram we have the trace-free
morphism f ·∆n = ∆m · (f ⊗ f), so by induction hypothesis:

f

f
=f

We note the following circuits are graph-isomorphic so they
represent equal diagrams in the SMTC:

f

f

f

f
=

Noting that the grey sub-diagram is still trace-free we can
apply Prop. 1 and obtain the following equal diagram:

f

f
=

f

f

The final step is again purely diagrammatic, involving two
graph-isomorphic circuits:

f

f

f

f
=

V. EQUATIONAL REASONING

We have established a comprehensive equational theory which
allows us to reason purely syntactically about digital circuits
with feedback and discrete delays. We will now apply it to
reason about circuits such as the one in Fig. 1. Since that
circuit is built using only multiplexers as constants (gates,
as broadly construed) we are going to consider a categorical
signature consisting of one gate (m) and two levels, high (h)
and low (l) in addition to the low-impedance (⊥) and illegal
(⊤) values. This is for the sake of simplicity, as we could
go down to standard boolean gates or even transistors. The
equations describing the multiplexer are the standard ones.

In our categorical notation, the circuit diagram is represented
by the following term: M = Tr1

(
(x1,1⊗ f) ·(f⊗x1,1⊗1) ·(f⊗

(m·G·f)⊗1)·(3⊗x1,1)·(1⊗(m·F)⊗i)·(x1,1⊗1)
)
·(x1,1⊗1)·m.

We will also consider that each wire segment has some delay
δt. By applying retiming we can reduce the number of required
delays and obtain the diagram in Fig. 3 (the delays may all
be different).

We will prove that if we apply high or low to the input that
connects to the control port of the MUX, the resulting circuit
is combinational. Given a value v let us define the constant
waveform vω = Tr((1⊗ f) · (δ ⊗ 1)).

Example 1. If s ∈ {hω, lω}, and F , G are combinational
circuits then (v ⊗ 1) ·M is combinational.

Proof. The two cases to consider are all similar. We only show
v = l, which is more interesting. We will not show the detailed
algebraic calculations but emphasise the diagrammatic reason-
ing, which is mathematically equivalent and more intuitive.
Diagrammatically, we write the constant low (lω) as a small
diamond.

First we use the axioms for fork and swap several times, so
the diagram reduces to that in Fig. 4.

At this stage we would like to reason extensionally about the
MUXs which receive a low (lω) waveform on the control port,
but the presence of the delay stops us. We need to use the
timelessness of the MUX, and reason as follows:

(lω ⊗ 2) · (δt ⊗ δt′ ⊗ δt′′) ·m
=(lω ⊗ 2) · (δt−t ⊗ δt′−t ⊗ δt′′−t) ·m · δt
=(1⊗ δt′−t ⊗ δt′′−t) · (lω ⊗ 2) ·m · δt

The second step is by functoriality. (lω ⊗ 2) ·m = w2 ⊗ 1 by
extensional reasoning about trace-free circuits (ECCirc+). So
the above is further equal to

=(1⊗ δt′−t ⊗ δt′′−t) · (w2 ⊗ 1) · δt
=δt′′−t · δt = δt′′ .

Note that above we may have strayed temporarily outside the
safe confines of circuits without negative delays as t′ − t and
t′′ − t may be negative! This is not a problem so long as we
carefully avoid using properties which only apply to circuits
with no negative delays.

Applying this equation for all the MUXs, the diagram becomes
as in Fig. 5.

From here on, using the unobservability of delays on blocked
outputs, the fact that (f,w) is a co-monoid, and combining
delays we get the diagram on the left which can be “yanked”
using the STMC coherences is shown in Fig. 6.

This is a combinational circuit. The fact that the feedback loop
was false is confirmed by the fact that we yanked rather than

46

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

MUX G
MUX F

MUX
c
1
o

c
1
o c

1
o

Fig. 3. Diagrammatic representation of the circuit in Fig. 1

MUX G
MUX F

MUX
c
1
o

c
1
o c

1
o

Fig. 4. Reduced representation of the circuit in Fig. 1

G
F

Fig. 5. Further reduced representation of the circuit in Fig. 1

FG F G=

Fig. 6. Final representation of the circuit in Fig. 1

iterate the trace.

A stronger version of this result is possible, where the input
waveforms are arbitrary, but the proof is more complex.

VI. RELATED AND FURTHER WORK

The structured style of presenting digital circuits and some of
the equations (e.g. re-timing) have been prefigured by the pio-
neering work of Sheeran [18], further developed by Luk [19].
Our work represents a categorical systematisation of their
approach. Otherwise, there is a dearth of syntactic reasoning
methods for digital circuits, but semantic or simulation-based
reasoning is extremely broadly studied and very useful.

One interesting point of contrast between our approach and
more standard approaches is that we introduce the joining
of two wires j : 2 → 1 as an explicit combinator, which

is unusual in Boolean designs but technically essential for
us in proving the fact that circuits with feedback have a
product and therefore satisfy the iteration equation. Joins are
also used in formalising waveforms. The natural interpretation
of the wire-join is the value-join in the lattice of logical
levels. Thus, for interesting circuits we require at least four
values: ⊥ (disconnected), h (logical high), l (logical low),
⊤ (illegal). Combining high and low produces an illegal
value: (h ⊗ l) · j = ⊤. Models of digital circuits requiring
ternary logic (unknown, true, false) have been used for a long
time [20], but we need the full lattice of values. Having a
join combinator offers the additional benefit that it allows
the representation of sub-logical circuits such as pass-through
gates, or even transistors operating in saturation mode. This
will be developed in forthcoming papers.

The ternary logic approach is also used by Mendler et. al. [10].
It would be interesting to study whether their semantic model

47

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

is in fact an alternative (syntax-independent) concrete category
of digital circuits, satisfying the same axiom and coherences
as ours.

From a mathematical point of view our work is inspired
by the deep connections between monoidal categories and
diagrams [9] which have been also used in the modelling
of quantum protocols [5] and signal-flow graphs [6]. Some
contrasts are quite interesting. Unlike in quantum protocols, all
digital circuits with no inputs and no outputs are equal whereas
in quantum computing they correspond to scalars, which allow
quantitative aspects to be expressed. Should we have taken a
similar direction we could have included quantitative aspects
such as power consumption in our formalism, but we would
have lost the diagonal property. Obviously, two copies of a
circuit will at least sometimes consume more power than one
copy!

The signal-flow graph model in [6] is essentially linear and
reversible, which is not the case for sequential circuits. With-
out elaborating the mathematics too much, a key difference
between their model and ours can be illustrated by the fol-
lowing equality, involving the interaction between fork, join,
and disconnected wires, as a trace can be created out of a fork
and a join:

f f=

Of course, by comparison, in our setting the directionality of
the wires never changes, so the correct equality is:

f = f

An even broader connection exists between this work and
model-checking languages such as NuSMV2. One would
expect that the waveforms produced by digital, finite-state
circuits can be made to correspond to the languages of finite-
state transducers. However, proving this connection is not as
easy as it might seem because possible lack of productivity in
circuits such as true · iter(and), which can be unfolded any
number of time without creating any sub-terms that could be
reduced. Such a circuit should output just ⊥, but this cannot
be established without induction principles we do not provide
yet. Once this connection is fully established it would indeed
be reasonable to view our paper not only as a way to reason
syntactically (or axiomatically) about circuits, but about finite
state transducers in general. This remains as future work.

A more immediate development is moving from the algebraic
reasoning which we expose here towards a fully automated
rewriting system that can serve as an “operational semantics”
for digital circuits. We can do this by exploiting connections

2http://nusmv.fbk.eu/

between monoidal categories and graph-like structures, which
we adapt to deal with traces and delays in an efficient
fashion [21].

Acknowledgements: This work was motivated by initial dis-
cussions with Michael Mendler. Alex Smith and George Con-
stantinides provided useful comments on preliminary work.
Ross Duncan and Peter Selinger helped with technical advice
on monoidal categories.

REFERENCES

[1] G. D. Plotkin, “A structural approach to operational semantics,” J. Log.
Algebr. Program., vol. 60-61, pp. 17–139, 2004.

[2] M. Hennessy, The Semantics of Programming Languages. Wiley, 1990.
[3] R. Krebbers, X. Leroy, and F. Wiedijk, “Formal C semantics: Compcert

and the C standard,” in 5th Int. Conf. Thm. Prov., 2014, pp. 543–548.
[4] R. P. Kurshan and K. L. McMillan, “Analysis of digital circuits through

symbolic reduction,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 10, no. 11, pp. 1356–1371, 1991.

[5] S. Abramsky and B. Coecke, “A categorical semantics of quantum
protocols,” in 19th IEEE Symp. Logic in Comp. Sci., 2004, pp. 415–
425.

[6] F. Bonchi, P. Sobocinski, and F. Zanasi, “Full abstraction for signal flow
graphs,” in 42nd Ann. ACM Symp. on Princ. of Prog. Lang., 2015, pp.
515–526.

[7] D. R. Ghica, “Diagrammatic reasoning for delay-insensitive asyn-
chronous circuits,” in Computation, Logic, Games, and Quantum Foun-
dations. The Many Facets of Samson Abramsky, 2013, pp. 52–68.

[8] J. Baez and M. Stay, Physics, topology, logic and computation: a Rosetta
Stone. Springer, 2010.

[9] P. Selinger, “A survey of graphical languages for monoidal categories,”
in New structures for physics. Springer, 2010, pp. 289–355.

[10] M. Mendler, T. R. Shiple, and G. Berry, “Constructive boolean circuits
and the exactness of timed ternary simulation,” Form. Meth. Syst. Des.,
vol. 40, no. 3, pp. 283–329, 2012.

[11] S. Malik, “Analysis of cyclic combinational circuits,” in Proc.
IEEE/ACM Int. Conf. on Comp. Aided Design, 1993, pp. 618–625.

[12] S. Lack, “Composing PROPs,” Theory and App. of Categories, vol. 13,
no. 9, pp. 147–163, 2004.

[13] A. Joyal and R. Street, “The geometry of tensor calculus, i,” Adv. in
Math., vol. 88, no. 1, pp. 55–112, 1991.

[14] G. Jones and M. Sheeran, “Timeless truths about sequential circuits,” in
Concurrent Computations. Springer, 1988, pp. 245–259.

[15] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,”
Algorithmica, vol. 6, no. 1-6, pp. 5–35, 1991.

[16] A. Joyal, R. Street, and D. Verity, “Traced monoidal categories,” in
Math. Proc. of the Cambridge Phil. Soc., vol. 119, no. 03. Cambridge
Univ. Press, 1996, pp. 447–468.

[17] V. E. Căzănescu and G. Ştefănescu, “Towards a new algebraic foundation
of flowchart scheme theory,” Fund. Inf., vol. 13, no. 2, pp. 171–210,
1990.

[18] M. Sheeran, “muFP, A language for VLSI design,” in LISP and Func.
Prog., 1984, pp. 104–112.

[19] W. Luk, “Pipelining and transposing heterogeneous array designs,” J. of
VLSI Sig. Proc. Sys., vol. 5, no. 1, pp. 7–20, 1993.

[20] M. A. Breuer, “A note on three-valued logic simulation,” IEEE Trans.
Comp., vol. 21, no. 4, pp. 399–402, 1972.

[21] D. R. Ghica, A. Jung, and A. Lopez, “Diagrammatic operational
semantics for digital circuits,” submitted.

48

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

http://nusmv.fbk.eu/

Equivalence Checking By Logic Relaxation
Eugene Goldberg

email: eu.goldberg@gmail.com

Abstract—We introduce a new framework for Equivalence
Checking (EC) of Boolean circuits based on a general technique
called Logic Relaxation (LoR). LoR is meant for checking if a
propositional formula G has only ”good” satisfying assignments
specified by a design property. The essence of LoR is to relax
G into a formula Grlx and compute a set S that contains all
assignments that satisfy Grlx but do not satisfy G. If all bad
satisfying assignments are in S, formula G can have only good
ones and the design property in question holds. Set S is built by
a procedure called partial quantifier elimination.

The appeal of EC by LoR is twofold. First, it facilitates
generation of powerful inductive proofs. Second, proving inequiv-
alence comes down to checking the existence of some assignments
satisfying Grlx i.e. a simpler version of the original formula. We
give experimental evidence that supports our approach.

1. INTRODUCTION

A. Motivation

Our motivation for this work is threefold. First, Equivalence
Checking (EC) is a crucial part of hardware verification.
Second, more efficient EC enables more powerful logic syn-
thesis transformations and so strongly impacts design quality.
Third, intuitively, there should exist robust and efficient EC
methods meant for combinational circuits computing values
in a “similar manner”. Once discovered, these methods can be
extended to EC of sequential circuits and even software.

B. Proving equivalence by induction

Fig. 1. Equivalence checking of
N ′ and N ′′

Let N ′(X ′, Y ′, z′) and
N ′′(X ′′, Y ′′, z′′) be single-
output circuits to be checked
for equivalence. Here X ′ and
Y ′ specify the sets of input
and internal variables of N ′

respectively and z′ specifies
the output variable of N ′. The
same applies to X ′′, Y ′′, z′′ of
circuit N ′′. A traditional way
to verify the equivalence of N ′

and N ′′ is to form a two-output circuit shown in Fig. 1 and
check if z′ 6= z′′ for some input assignment (x′,x′′) where
x′=x′′. Here x′ and x′′ are assignments to variables of X ′

and X ′′ respectively. (By saying that p is an assignment to
a set of variables V , we will assume that p is a complete
assignment unless otherwise stated. That is every variable of
V is assigned a value in p.)

Formula EQ(X ′, X ′′) relating inputs of N ′ and N ′′ in
Fig. 1 evaluates to 1 for assignments x′ and x′′ to X ′ and
X ′′ iff x′=x′′. Usually, N ′ and N ′′ are just assumed to share
the same set of input variables. In this paper, for the sake of

convenience, we separate input variables of N ′ and N ′′ but
assume that N ′ and N ′′ must be equivalent only for input
assignments satisfying EQ(X ′, X ′′).

Fig. 2. An inductive proof of equiv-
alence

A natural way to prove
equivalence of N ′ and N ′′ is
to build a sequence of cuts as
shown in Fig. 2 and compute
relations between cut points
of N ′ and N ′′ [3], [11], [17].
A straightforward method of
computing relations between
cut points is to build for-
mulas Img i specifying cut
images. The image of i-th

cut is the set of all assignments to Cut i that can be produced
in N ′, N ′′ by input assignments satisfying EQ(X ′, X ′′). Here
Cut0 = X ′∪X ′′, Img0 = EQ(X ′, X ′′) and Cutk = {z′, z′′}.
Circuits N ′ and N ′′ are equivalent iff Imgk(z

′, z′′) →
(z′ ≡ z′′). Formula Img i+1 can be derived from formula Img i
and formula specifying the gates located between i-th and
(i+ 1)-th cuts. For that reason we will refer to the proofs
employing a sequence of cuts as proofs by induction.

EC based on computing cut images is inefficient because
the size of formulas Img i is, in general, prohibitively large. In
EC by logic relaxation, cut image formulas are replaced with
formulas that, for structurally similar circuits, are dramatically
simpler than the former.

C. EC by logic relaxation

Fig. 3. A cut in N ′ and N ′′

Let Imgcut be a cut image
formula built for the cut shown
in Fig. 3. A cut assignment can
be represented as (q′,q′′) where
q′ and q′′ are assignments to cut
variables of N ′ and N ′′ respec-
tively. We will say that formula
Imgcut excludes cut assignment
(q′,q′′) if the latter falsifies the

former. The set of all cut assignments excluded by Imgcut

can be represented as a union of sets S cut
N ′ , S cut

N ′′ and Srlx .
Assignment (q′, q′′) is in
• set S cut

N ′ if no input x′ of N ′ can produce q′

• set S cut
N ′′ if no input x′′ of N ′′ can produce q′′

• set Srlx if there is an input (x′,x′′), x′ 6= x′′ for which
(q′,q′′) is produced but the latter cannot be produced if
inputs are constrained by EQ(X ′, X ′′).

Informally, set Srlx specifies the cut assignments that can be
produced only when inputs are relaxed i.e. are not constrained

49

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

by formula EQ(X ′, X ′′).
The essence of EC by Logic Relaxation (LoR) is to replace

computation of cut image formulas with that of so-called
boundary formulas. A boundary formula Hcut is implied by
Imgcut and excludes only a small subset of cut assignments
excluded by Imgcut . Namely, only exclusion of assignments of
Srlx is mandatory for Hcut . If (q′, q′′) ∈ S cut

N ′ ∪S cut
N ′′ , the value

of Hcut can be arbitrary. This means that Hcut depends on the
relation between N ′ and N ′′ (specified by Srlx) rather than
their individual functionality (specified by S cut

N ′ and S cut
N ′′ .) We

call formula Hcut boundary because it describes the difference
i.e. a “boundary” between original and relaxed EC problems.

Computing a boundary formula Hcut for the cut {z′, z′′}
either immediately solves EC of N ′ and N ′′ or requires
a few simple SAT-checks to finish it. Suppose Hcut(z

′, z′′)
evaluates to 0 for assignment z1 = (z′ = 0, z′′ = 1) and
assignment z2 = (z′ = 1, z′′ = 0). Then z1 and z2 cannot
be produced when inputs are constrained by EQ(X ′, X ′′)
because Imgcut → Hcut entails H cut → Imgcut . So N ′ and
N ′′ are equivalent. If Hcut(z

′, z′′) evaluates to 1, say, for z1
above, one needs to check if (z′ = 0, z′′ = 1) can be produced
when inputs are relaxed. This comes down to checking that
N ′ is not constant 1 and N ′′ is not constant 0. If this is the
case, i.e. N ′ and N ′′ can produce outputs 0 and 1 respectively,
then assignment z1 can also be produced when inputs are
constrained by EQ(X ′, X ′′). (Otherwise, Hcut would evaluate
to 0 under z1.) So N ′ and N ′′ are inequivalent.

D. The appeal of EC by LoR

The appeal of EC by LoR is threefold. First, boundary for-
mulas are much smaller and easier to compute than cut image
formulas. Generation of Imgcut requires solving the quantifier
elimination problem whereas boundary formula Hcut can be
found by partial quantifier elimination (PQE). In PQE, only
a part of the formula is taken out of the scope of quantifiers.
So PQE can be much more efficient than complete quantifier
elimination.

Second, similarly to cut image formulas, boundary formulas
can be computed by induction for a sequence of cuts starting
with cut X ′∪X ′′ and ending with cut {z′, z′′}. So EC by LoR
facilitates generation of inductive proofs. These proofs do not
require the existence of particular relations like equivalence
between internal points of N ′ and N ′′. So they are much more
robust than inductive proofs generated in existing approaches
(see, for example, [11], [12], [17]).

Third, the machinery of boundary formulas facilitates prov-
ing inequivalence. Let FN ′(X

′, Y ′, z′) and FN ′′(X
′′, Y ′′, z′′)

be formulas specifying N ′ and N ′′ respectively. We will say
that a Boolean formula FN specifies circuit N if every assign-
ment satisfying FN is a consistent assignment to variables
of N and vice versa. (An assignment to variables of N is
called consistent if, for every gate g of N , the value assigned
to the output of g is implied by the values assigned to its
input variables.) We will assume that all formulas mentioned
in this paper are Boolean formulas in Conjunctive Normal
Form (CNF) unless otherwise stated.

Fig. 4. Using a boundary formula for
bug hunting

Circuits N ′ and N ′′ are
inequivalent iff formula
EQ(X ′, X ′′)∧FN ′ ∧FN ′′ ∧
(z′ 6≡ z′′) is satisfiable.
Denote this formula as
α. As we show in this
paper, α is equisatisfiable
with formula β equal to
Hcut∧FN ′∧FN ′′∧(z′ 6≡ z′′).
Here Hcut is a boundary
formula computed with

respect to a cut (see Fig. 4.) In general, formula β is easier to
satisfy than α for the following reason. Let p be an assignment
satisfying formula β . Let x′ and x′′ be the assignments to
variables of X ′ and X ′′ respectively specified by p. Since
variables of X ′ and X ′′ are not constrained by EQ(X ′, X ′′)
in formula β, in general, x′ 6= x′′ and so p does not satisfy
α. Hence, neither x′ nor x′′ are a counterexample. They are
just inputs producing cut assignments q′ and q′′ (see Fig. 4)
such that a) Hcut(q

′, q′′) = 1 and b) N ′ and N ′′ produce
different outputs under cut assignment (q′,q′′). To turn p into
an assignment satisfying α one has to do extra work. Namely,
one has to find assignments x′ and x′′ to X ′ and X ′′ that
are equal to each other and under which N ′ and N ′′ produce
cut assignments q′ and q′′ above. Then x′ and x′′ specify a
counterexample. So the equisatisfiability of α and β allows
one to prove N ′ and N ′′ inequivalent (by showing that β is
satisfiable) without providing a counterexample.

E. Contributions and structure of the paper
Our contributions are as follows. First, we present a generic

method of EC based on LoR. This method is formulated in
terms of a new technique called PQE that is a “light” version
of quantifier elimination. Showing the potential of PQE for
building new verification algorithms is our second contri-
bution. Third, we provide a theoretical proof that boundary
formulas computed in EC by LoR are small for a broad class
of structurally similar circuits. Fourth, we give experimental
evidence in support of EC by LoR.

The structure of this paper is as follows. In Section 2, we
show the correctness of EC by LoR and relate the latter to
PQE. Boundary formulas are discussed in Section 3. Section 4
presents an algorithm of EC by LoR. Section 5 describes how
one can apply EC by LoR if the power of a PQE solver is not
sufficient to compute boundary formulas precisely. Section 6
provides experimental evidence in favor of our approach. In
Section 7, some background is given. We make conclusions
in Section 8.

2. EQUIVALENCE CHECKING BY LOR AND PQE
In this section, we prove the correctness of Equivalence

Checking (EC) by Logic Relaxation (LoR) and relate the latter
to Partial Quantifier Elimination (PQE).

A. Complete and partial quantifier elimination
In this paper, by a quantified formula we mean one

with existential quantifiers. Given a quantified formula

50

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

∃W [A(V,W)], the problem of quantifier elimination is to
find a quantifier-free formula A∗(V) such that A∗ ≡ ∃W [A].
Given a quantified formula ∃W [A(V,W) ∧B(V,W)], the
problem of Partial Quantifier Elimination (PQE) is to find a
quantifier-free formula A∗(V) such that ∃W [A ∧B] ≡ A∗ ∧
∃W [B]. Note that formula B remains quantified (hence the
name partial quantifier elimination). We will say that formula
A∗ is obtained by taking A out of the scope of quantifiers
in ∃W [A ∧B]. Importantly, there is a strong relation between
PQE and the notion of redundancy of a subformula in a
quantified formula. In particular, solving the PQE problem
above comes down to finding A∗(V) implied by A ∧ B that
makes A redundant in A∗ ∧∃W [A ∧B]. Indeed, in this case,
∃W [A ∧B] ≡ A∗ ∧ ∃W [A ∧B] ≡ A∗ ∧ ∃W [B].

Importantly, redundancy in a quantified formula is much
more powerful than that in a quantifier-free formula [9]. For
instance, if formula F (V) is satisfiable, every clause of F
is redundant in formula ∃V [F]. (A clause is a disjunction of
literals. We will use the notions of a CNF formula C1∧ ..∧Cp
and the set of clauses {C1, . . . , Cp} interchangeably.) On the
other hand, a clause C is redundant in a quantifier-free formula
F only if C is implied by F \ {C}.

Let G(V) be a formula implied by B. Then ∃W [A ∧B] ≡
A∗∧G∧∃W [B] entails ∃W [A ∧B] ≡ A∗∧∃W [B]. In other
words, clauses implied by the formula that remains quantified
are noise and can be removed from a solution to the PQE
problem. So when building A∗ by resolution it is sufficient to
use only the resolvents that are descendants of clauses of A.
For that reason, in the case formula A is much smaller than
B, PQE can be dramatically faster than complete quantifier
elimination. Describing how PQE is solved is beyond the
scope of this paper. A brief discussion of a PQE algorithm and
recall of the necessary background is given in the technical
report [7] presenting a complete version of this paper. The
relevant results are described in [8], [9], [10] in more detail.

B. Proving equivalence/inequivalence by LoR

Proposition 1 below shows how one proves1 equiva-
lence/inequivalence of circuits by LoR. Let formula G de-
note EQ ∧ FN ′ ∧ FN ′′ and formula Grlx denote FN ′ ∧
FN ′′ . Recall from Subsection 1-D that FN ′(X ′, Y ′, z′) and
FN ′′(X

′′, Y ′′, z′′) specify circuits N ′ and N ′′ respectively.
Formula EQ(x′,x′′) evaluates to 1 iff x′=x′′ where x′ and
x′′ are assignments to variables of X ′ and X ′′ respectively.

Proposition 1: Let H(z′, z′′) be a formula such that
∃W [EQ ∧Grlx] ≡ H ∧ ∃W [Grlx] where W = X ′ ∪ X ′′ ∪
Y ′ ∪ Y ′′. Then formula G ∧ (z′ 6≡ z′′) is equisatisfiable with
H ∧Grlx ∧ (z′ 6≡ z′′).

Note that finding formula H(z′, z′′) of Proposition 1 re-
duces to taking formula EQ out of the scope of quantifiers i.e.
to solving the PQE problem. Proposition 1 implies that proving
inequivalence of N ′ and N ′′ comes down to showing that for-
mula Grlx is satisfiable under assignment (z′ = b′, z′′ = b′′)
(where b′, b′′ ∈ {0, 1}) such that b′ 6= b′′ and H(b′, b′′) = 1.

1The proofs of propositions are given in [7].

Recall that the input variables of N ′ and N ′′ are independent
of each other in formula Grlx . Hence the only situation where
Grlx is unsatisfiable under (z′ = b′, z′′ = b′′) is when N ′ is
constant b′ and/or N ′′ is constant b′′. So the corollary below
holds.

Corollary 1: If neither N ′ nor N ′′ are constants, they are
equivalent iff H(1, 0) = H(0, 1) = 0.

Reducing EC to an instance of PQE also provides valuable
information when proving equivalence of N ′ and N ′′. Formula
Grlx remains quantified in ∃W [EQ ∧Grlx] ≡ H∧∃W [Grlx].
This means that to obtain formula H , it suffices to generate
only resolvents that are descendants of clauses of EQ . The
clauses obtained by resolving solely clauses of Grlx are just
“noise” (see Subsection 2-A). This observation is the basis
of our algorithm for generating proofs of equivalence by
induction.

3. BOUNDARY FORMULAS

In this section, we discuss boundary formulas, a key notion
of EC by LoR. Subsection 3-A explains the semantics of
boundary formulas. Subsection 3-B discusses the size of
boundary formulas. In Subsection 3-C, we describe how
boundary formulas are built.

A. Definition and some properties of boundary formulas

Let M be the subcircuit consisting of the gates of N ′, N ′′

located below a cut as shown in Fig. 5. As usual, G denotes
EQ(X ′, X ′′) ∧ FN ′ ∧ FN ′′ and Grlx does FN ′ ∧ FN ′′ .

Definition 1: Let formula Hcut depend only on variables
of a cut. Let q be an assignment to the variables of this cut.
Formula Hcut is called boundary if2

a) G→ Hcut holds and
b) for every q that can be extended to satisfy Grlx but cannot

be extended to satisfy G, the value of Hcut (q) is 0.

Fig. 5. Building boundary formula
Hcut

A cut assignment q can be
represented as (q′,q′′) where
q′ and q′′ are assignments to
cut variables of N ′ and N ′′

respectively. Note that Defi-
nition 1 does not specify the
value of Hcut (q) if q cannot
be extended to satisfy Grlx

(and hence G). This means
that Hcut does not have to
exclude (q′,q′′) if, say, no
input x′ of N ′ produces q′.

This means that Hcut does not depend on the individual
complexity of N ′ and N ′′.

Formula EQ(X ′, X ′′) and formula H(z′, z′′) of Proposi-
tion 1 are actually boundary formulas with respect to cuts
X ′∪X ′′ and {z′, z′′} respectively. We will refer to H(z′, z′′)

2Since formula (z′ 6≡ z′′) constraining the outputs of N ′ and N ′′ is not
a part of formulas Grlx and G, a boundary formula of Definition 1 is not
“property driven”. This can be fixed by making a boundary formula specify
the difference between Grlx ∧ (z′ 6≡ z′′) and G ∧ (z′ 6≡ z′′) rather than
between Grlx and G. In this paper, we explore only boundary formulas of
Definition 1 leaving property-driven ones for future research.

51

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

as an output boundary formula. Proposition 2 below reduces
building Hcut to PQE.

Proposition 2: Let Hcut be a formula depending only on
variables of a cut. Let Hcut satisfy ∃W [EQ ∧ FM] ≡ Hcut ∧
∃W [FM]. Here W is the set of variables of FM minus those
of the cut. Then Hcut is a boundary formula.

Proposition 3 below extends Proposition 1 to an arbitrary
boundary formula.

Proposition 3: Let Hcut be a boundary formula with respect
to a cut. Then G ∧ (z′ 6≡ z′′) is equisatisfiable with Hcut ∧
Grlx ∧ (z′ 6≡ z′′).

B. Size of boundary formulas

The proposition below estimates the size of a boundary
formula computed for a cut if every cut variable of N ′ can be
expressed as a function of cut variables of N ′′. If the number
of arguments in the functions relating cut points of N ′ and N ′′

is small, these circuits can be viewed as structurally similar.
Proposition 4: Let circuits M ′ and M ′′ consist of the gates

of N ′ and N ′′ located below a cut as shown in Fig. 5. Let
Cut ′,Cut ′′ specify the outputs of M ′ and M ′′ respectively.
Assume that for every variable v′i of Cut ′ there is a set S(v′i) =
{v′′i1 , . . . , v

′′
ip
} of variables of Cut ′′ that have the following

property. Knowing the values of variables of S(v′i) produced
in N ′′ under input x one can determine the value of v′i of N ′

under the same input x. We assume here that S(v′i) has this
property for every possible input x. Let Max (S(v′i)) be the
size of the largest S(v′i) over variables of Cut ′. Then there
is a boundary formula Hcut where every clause has at most
Max (S(v′i)) + 1 literals.

Proposition 4 gives an example of boundary formulas whose
complexity is exponential in the value of Max (S(v′i)) + 1
rather than the cut size. This means that these boundary
formulas depend only on similarity of N ′ and N ′′ and do
not depend on how complex N ′ and N ′′ are.

Corollary 2: Let circuits M ′ and M ′′ of Fig. 5 be func-
tionally equivalent. Then for every variable v′ ∈ Cut ′ there
is a set S(v′) = {v′′} where v′′ is the variable of Cut ′′

that is functionally equivalent to v′. In this case, formula
EQ(Cut ′,Cut ′′) stating equivalence of corresponding output
variables of M ′ and M ′′ is a boundary formula for the cut
in question. Note that v′ ≡ v′′ can be represented as a CNF
formula (v′∨v′′)∧(v′∨v′′). So EQ(Cut ′,Cut ′′) can be repre-
sented by 2∗p two-literal clauses where p = |Cut′| = |Cut′′|.

C. Computing Boundary Formulas

The key part of EC by LoR is to compute an output
boundary formula H(z′, z′′). In this subsection, we show how
to build formula H inductively by constructing a sequence of
boundary formulas H0, . . . ,Hk computed with respect to cuts
Cut0, . . . ,Cutk of N ′ and N ′′ (see Fig. 2). We assume that
Cut0 = X ′ ∪ X ′′ and Cutk = {z′, z′′} (i.e. H = Hk) and
Cut i ∩ Cutj = ∅ if i 6= j.

Boundary formula H0 is set to EQ(X ′, X ′′) whereas for-
mula Hi, i > 0 is computed from Hi−1 as follows. Let Mi

be the circuit consisting of the gates of N ′ and N ′′ located

EC LoR(N ′, N ′′){
1 (N ′, N ′′) := Bufferize(N ′, N ′′);
2 Cut0 = X ′ ∪X ′′;
3 Cut1, ..,Cutk−1 :=BldIntermCuts(N ′, N ′′);
4 Cutk := {z′, z′′};
5 H0 := EQ(X ′, X ′′);
−−−−−−−−−−−−−−−−
6 for(i := 1; i ≤ k; i++) {
7 FMi := SubForm(Grlx ,Cut i);
8 Wi := Vars(FMi) \Vars(Cut i);
9 Hi :=PQE(∃Wi[Hi−1∧FMi]); }
− −−−−−−−−−−−−−−−
10 if (Hk(0, 1) = 1)
11 if (Sat(Grlx ∧ z′ ∧ z′′)) return(No);
12 if (Hk(1, 0) = 1)
13 if (Sat(Grlx ∧ z′ ∧ z′′)) return(No);
14 return(Yes); }

Fig. 6. EC by LoR

below i-th cut. Let FMi
be the subformula of Grlx specifying

Mi. Let Wi consist of all the variables of FMi
minus those of

Cut i. Formula Hi is built to satisfy ∃Wi[Hi−1 ∧ FMi] ≡ Hi∧
∃Wi[FMi] and so make the previous boundary formula Hi−1
redundant in Hi∧∃Wi[Hi−1 ∧ FMi

]. The fact that H1, . . . ,Hk

are indeed boundary formulas follows from Proposition 5.
Proposition 5: Let Wi where i > 0 be the set of

variables of FMi minus those of Cut i. Let Hi−1, i > 1
satisfy ∃Wi−1[H0 ∧ FMi−1

] ≡ Hi−1 ∧ ∃Wi−1[FMi−1
]. (So

Hi−1 is a boundary formula due to Proposition 2.) Let
∃Wi[Hi−1 ∧ FMi

] ≡ Hi ∧ ∃Wi[FMi
] hold. Then ∃Wi[H0 ∧

FMi] ≡Hi∧∃Wi[FMi] holds and so, Hi is a boundary formula
too.

4. ALGORITHM OF EC BY LOR

In this section, we introduce an algorithm called
EC LoR that checks for equivalence two single-output circuits
N ′ and N ′′. The pseudo-code of EC LoR is given in Fig. 6.
EC LoR builds a sequence of boundary formulas H0, . . . ,Hk

as described in Subsection 3-C. Here H0 equals EQ(X ′, X ′′)
and Hk(z

′, z′′) is an output boundary formula. Then, accord-
ing to Proposition 1, EC LoR checks the satisfiability of
formula Hk ∧Grlx ∧ (z′ 6≡ z′′) where Grlx = FN ′ ∧ FN ′′ .

EC LoR consists of three parts separated by the dotted
lines in Figure 6. EC LoR starts the first part (lines 1-5) by
calling procedure Bufferize. This procedure eliminates non-
local connections of N ′ and N ′′ i.e. those that span more than
two consecutive topological levels. (The topological level of
a gate g of a circuit K is the longest path from an input
of K to g measured in the number of gates on this path.)
The presence of non-local connections makes it hard to find
cuts that do not overlap. To avoid this problem, procedure
Bufferize replaces every non-local connection spanning d
topological levels (d > 2) with a chain of d − 2 buffers.
(A more detailed discussion of this topic is given in [7].)
Then EC LoR sets the initial cut to X ′ ∪X ′′, computes the
intermediate cuts (line 3), sets the final cut to {z′, z′′} and
formula H0 to EQ(X ′, X ′′).

52

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Fig. 7. An example of EC by LoR

Boundary formulas Hi,
1 ≤ i ≤ k are computed
in the second part (lines
6-9) that consists of a for
loop. In the third part (lines
10-14), EC LoR uses the
output boundary formula
Hk(z

′, z′′) computed in
the second part to decide

whether N ′, N ′′ are equivalent. If Hk(b
′, b′′) = 1 where

b′ 6= b′′ and Grlx is satisfiable under z′ = b′, z′′ = b′′, then
N ′, N ′′ are inequivalent. Otherwise, they are equivalent (line
14).

Boundary formulas are computed in the for loop as follows.
Formula Hi, i > 0 is obtained by taking Hi−1 out of
the scope of quantifiers in ∃Wi[Hi−1 ∧ FMi] (line 9) i.e.
∃Wi[Hi−1 ∧ FMi

] ≡ Hi∧∃Wi[FMi
]. Here FMi

is the formula
specifying the gates of N ′ and N ′′ below i-th cut and Wi

consists of all the variables of FMi
but cut variables.

Example 1: Let us explain the operation of EC LoR by
the example of Fig. 7 showing two different implementations
of function XOR(x1, x2). EC LoR starts by executing the
first part specified by lines 1-5 of Fig. 6. Since circuits
N ′ and N ′′ do not have no-local connections, no buffers
are inserted. EC LoR sets the initial cut Cut0 to {X ′, X ′′}
where X ′ = {x′1, x′2}, X ′′ = {x′′1 , x′′2}, generates an in-
termediate cut Cut1 = {y′1, y′2, y′′1 , y′′2} and the final cut
Cut2 = {z′, z′′}. EC LoR concludes the first part by setting
H0 to EQ(X ′, X ′′) i.e. to (x′1 ≡ x′′1) ∧ (x′2 ≡ x′′2).

In the second part (lines 6-9 of Fig. 6), EC LoR computes
boundary formulas for Cut1 and Cut2. A boundary formula
for Cut1 is obtained by taking H0 out of the scope of
quantifiers in ∃W1[H0 ∧ FM1

] i.e. by finding formula H1

such that ∃W1[H0 ∧ FM1
] ≡ H1 ∧ ∃W1[FM1

]. Here FM1

specifies the gates located below cut Cut1 and so FM1 =
Fg′1 ∧Fg′2 ∧Fg′′1 ∧Fg′′2 where Fg specifies gate g. For instance,

Fg′1 = (x′1 ∨ x′2 ∨ y′′1) ∧ (x′1 ∨ y′1) ∧ (x′2 ∨ y′1). Set W1

consists of all variables of FM1 minus the variables of Cut1
i.e. W1 = X ′ ∪ X ′′. Formula H1 obtained by a PQE-solver
implementing the algorithm of [10] consists of five clauses:
C1 = y′1 ∨ y′2 ∨ y′′1 ∨ y′′2, C2 = y′1 ∨ y′′1, C3 = y′1 ∨ y′′2 ,
C4 = y′2 ∨ y′′2 , C5 = y′2 ∨ y′′1.

A boundary formula for cut Cut2 is obtained by taking H1

out of the scope of quantifiers in ∃W2[H1 ∧ FM2]. Here FM2

specifies the gates located below cut Cut2, so FM2 = FM1 ∧
Fg′3∧Fg′′3 . Set W2 consists of the variables of FM2

minus those
of Cut2 , so W2 =W1∪{y′1, y′2, y′′1 , y′′2}. Formula H2 obtained
by the PQE-solver mentioned above is equal to (z′ ∨ z′′) ∧
(z′ ∨ z′′). This means that H(0, 1) = H(1, 0) = 0. So after
executing its last part (lines 10-14 of Fig. 6), EC LoR reports
that N ′ and N ′′ are equivalent.

Let us take a closer look at formula H1. On one hand, as a
boundary formula, H1 excludes every assignment to Cut1 that
can be produced by applying an input (x′,x′′) where x′ 6= x′′

but cannot be produced if input assignments are constrained

by EQ(X ′, X ′′). For instance, input (x′1 = 0, x′2 = 0, x′′1 =
0, x′′2 = 1) produces cut assignment y′1 = 0, y′2 = 0, y′′1 =
0, y′′2 = 1) that cannot be produced by an input assignment
(x′,x′′) where x′=x′′. This cut assignment falsifies clause
C1 = y′1∨y′2∨y′′1∨y′′2 of H1. On the other hand, H1 is simpler
that formula Img1 that excludes every assignment to Cut1
that cannot be produced by an input (x′,x′′) where x′=x′′.
Formula Img1 is logically equivalent to ∃W1[H0 ∧ FM1

] i.e. it
is obtained from the latter by complete quantifier elimination.
By applying our program of [9], we obtain formula Img1 equal
to H1 ∧ C6 ∧ C7 where C6 = y′1 ∨ y′2, C7 = y′′1 ∧ y′′2 . Note
that C6, C7 do not relate variables of N ′ and N ′′. Instead,
they exclude some cut assignments that cannot be produced
in N ′ or N ′′. For instance, clause C6 excludes cut assignment
(y′1 = 1, y′2 = 1) that cannot be produced in N ′.

5. COMPUTING BOUNDARY FORMULAS BY CURRENT
PQE SOLVERS

To obtain boundary formula Hi, one needs to take Hi−1 out
of the scope of quantifiers in formula ∃Wi[Hi−1 ∧ FMi]. The
size of the latter grows with i due to formula FMi

. So a PQE
solver that computes Hi must have good scalability. On the
other hand, the algorithm of [10] does not scale well yet. The
main problem here is that learned information is not re-used
in contrast to SAT-solvers effectively re-using learned clauses.
Fixing this problem requires some time because bookkeeping
of a PQE algorithm is more complex than that of a SAT-solver.
(In more detail, this topic is discussed in [7].) In this section,
we describe two methods of adapting EC by LoR to a PQE-
solver that is not efficient enough to compute every boundary
formula precisely. Both methods are illustrated experimentally
in Section 6.

One way to reduce the complexity of computing Hi is
to use only a subset of FMi

. For instance, one can discard
the clauses of FMi

specifying the gates located between cuts
Cut0 and Cutp, 0 < p < i. In this case, boundary formula
Hi is computed approximately. A downside of this is that
condition b) of Definition 1 does not hold anymore and so
EC by LoR becomes incomplete. Namely, if Hk(b

′, b′′) = 1
where b′ 6= b′′ and Hk is an output boundary formula, the
fact that Grlx is satisfiable under z′ = b′, z′′ = b′′ does not
mean that N ′ and N ′′ are inequivalent. Nevertheless, even EC
by LoR with approximate computation of boundary formulas
can be a powerful tool for proving N ′ and N ′′ equivalent for
the following reason. If Hk(1, 0) = Hk(0, 1) = 0, circuits N ′

and N ′′ are proved equivalent even if intermediate formulas
Hi are built approximately. Importantly, computing boundary
formulas inductively still provides a powerful way to structure
a proof of equivalence. Formula Hi (i.e. a “sufficient” set of
clauses relating variables of i-th cut) is still obtained by taking
Hi−1 out of the scope of quantifiers in ∃Wi[Hi−1 ∧ FMi

].
Only now formula FMi

is simplified by discarding some
clauses.

Another way to adapt EC by LoR to a PQE solver that
is not efficient enough to compute every boundary formula
precisely is as follows. Suppose that the power of a PQE solver

53

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

TABLE I
Computing cut image and boundary formulas. Time limit = 1 hour

#bits #quan. #free cut image for- boundary for-
vars vars mula (QE) mula (PQE)

result result
size (s.) size (s.)

8 32 84 3,142 4.0 242 0.1
9 36 104 4,937 13 273 0.2
10 40 126 7,243 51 407 0.3
11 44 150 9,272 147 532 0.5
12 48 176 14,731 497 576 0.6
13 52 206 19,261 1,299 674 0.9
14 56 234 ∗ ∗ 971 1.5
15 60 266 ∗ ∗ 1,218 2.0
16 64 300 ∗ ∗ 1,411 3.0

is sufficient to build one intermediate boundary formula Hi

precisely. From Proposition 3 it follows that formula α equal
to G ∧ (z′ 6≡ z′′) is equisatisfiable with formula β equal to
Hcut ∧ Grlx ∧ (z′ 6≡ z′′). So, to show that N ′ and N ′′ are
inequivalent it is sufficient to find an assignment satisfying β.
As we argued in Subsection 1-D, finding such an assignment
for β is easier than for α.

6. EXPERIMENTS

In the experiments, we employed the PQE algorithm pub-
lished in [10] in 2014. We will refer to this algorithm as PQE-
14. As we mentioned in Section 5, PQE-14 does not scale
well yet. So building a full-fledged equivalence checker based
on EC LoR would mean simultaneously designing a new EC
algorithm and a new PQE solver. The latter is beyond the
scope of our paper. On the other hand, PQE-14 is efficient
enough to make a few important points experimentally. In
the experiments described in this section, we used a new
implementation of PQE-14 [6].

The experiment of Subsection 6-A compares computing a
cut image formula and a boundary formula. Recall that a
cut image formula is satisfied by a cut assignment iff the
latter can be produced in N ′ and N ′′ by some input satis-
fying EQ(X ′, X ′′). This experiment also contrasts complete
quantifier elimination (employed to compute a cut image
formula) with PQE. In Subsection 6-B, we apply EC LoR to
a non-trivial instance of equivalence checking that is hard for
ABC, a high-quality synthesis and verification tool [20]. In
Subsection 6-C, we show that computing boundary formulas
is beneficial for proving inequivalence.

In the experiments, circuits N ′ and N ′′ to be checked for
equivalence were derived from a circuit computing a median
output bit of an s-bit multiplier. We will refer to this circuit as
Mlps. Our motivation here is as follows. In many cases, the
equivalence of circuits with simple topology and low fanout
values can be efficiently checked by a general-purpose SAT-
solver. This is not true for circuits involving multipliers. In all
experiments, circuits N ′ and N ′′ were bufferized to get rid of
long connections (see Section 4).

A. Image computation versus building boundary formulas

In the experiment of this subsection, we compared compu-
tation of a boundary formula Hcut and a cut image formula

Imgcut . We used two identical copies of circuit Mlps as
circuits N ′ and N ′′. As a cut of N ′, N ′′ we picked the set
of variables of the first topological level (every variable of
this level specifies the output of a gate fed by input variables
of N ′ or N ′′). Formula Imgcut is logically equivalent to
∃W [EQ(X ′, X ′′) ∧ FM] where W = X ′ ∪ X ′′ and formula
FM specifies the gates of the first topological level of N ′

and N ′′. So, computing Imgcut comes down to solving
the quantifier elimination problem. Computing a boundary
formula reduces to finding Hcut such that ∃W [EQ ∧ FM] ≡
Hcut ∧ ∃W [FM] i.e. solving the PQE problem.

The results of the experiment are given in Table I. Ab-
breviation QE stands for Quantifier Elimination. The value
of s in Mlps is shown in the first column. The next two
columns give the number of quantified and free variables in
∃W [EQ ∧ FM]. To compute formula Imgcut we used our
quantifier elimination program presented in [9]. Formula Hcut

was generated by PQE-14. When computing image formula
Imgcut and boundary formula Hcut we recorded the size of
the result (as the number of clauses) and the run time in
seconds. As Table I shows, formulas Hcut are much smaller
than Imgcut and take much less time to compute.

B. Proving equivalence by LoR

In this subsection, we ran an implementation of EC LoR in-
troduced in Section 4 on circuits N ′ and N ′′ shown in Fig. 8.
(The idea of this EC example was suggested by Vigyan
Singhal [19].) These circuits were derived from Mlps by
adding one extra input h. Either circuit produces the same
output as Mlps when h = 1 and output 0 if h = 0. So N ′

and N ′′ are logically equivalent. Note that the value of every
internal variable of N ′ depends on h whereas this is not the
case for N ′′. So N ′ and N ′′ have no functionally equivalent
internal variables. On the other hand, N ′ and N ′′ satisfy the
notion of structural similarity introduced in Subsection 3-B
to prove Proposition 4. Namely, the value of every internal
variable v′ of N ′ is specified by that of h′′ and some variable
v′′ of N ′′. (So, in this case, for every internal variable v′ of
N ′ there is a set S(v′) defined in Proposition 4 consisting of
only two variables of N ′′.) In particular, if v′ is an internal
variable of Mlp′s, then v′′ is the corresponding variable of
Mlp′′s . Indeed, if h′′ = 1, then v′ takes the same value as v′′.
If h′′ = 0, then v′ is a constant (in the implementation of Mlps
we used in the experiments). The objective of the experiment
below was to show that EC LoR can check for equivalence
structurally similar circuits that have no functionally equivalent
internal points.

Cuts Cut0, . . . ,Cutk used by EC LoR were generated
according to topological levels. That is every variable of Cut i
specified the output of a gate of i-th topological level. Since
N ′ and N ′′ were bufferized, Cut i ∩ Cutj = ∅ if i 6= j. The
version of EC LoR we used in the experiment was slightly
different from the one described in Fig. 6. We will refer to this
version as EC LoR∗. (A detailed description of EC LoR∗ is
given in [7]). The main change was that boundary formulas
were computed in EC LoR∗ approximately. That is formula

54

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Fig. 8. Equivalence checking of N ′ and N ′′ derived from Mlps

TABLE II
EC of N ′ and N ′′ derived from Mlps. Time limit = 6 hours

#bits #vars #clauses #cuts EC LoR∗ ABC
(s.) (s.)

10 2,844 6,907 37 4.5 10
11 3,708 8,932 41 7.1 38
12 4,726 11,297 45 11 142
13 5,910 14,026 49 16 757
14 7,272 17,143 53 25 3,667
15 8,824 20,672 57 40 11,237
16 10,578 24,637 61 70 > 21,600

Hi was obtained by taking Hi−1 out of the scope of quantifiers
in formula ∃Wi[Hi−1 ∧ FMi] where only a subset of clauses of
FMi was used. Nevertheless, EC LoR∗ was able to compute
an output boundary formula Hk(z

′, z′′) that implied (z′ ≡ z′′)
thus proving that N ′ and N ′′ were equivalent.

One more difference between EC LoR and EC LoR∗ was
that the latter built formula Hi by solving a sequence of
small PQE problems rather than one large PQE problem
(line 9 of Fig. 6). Each PQE problem of this sequence was
meant to find clauses relating the output of a gate g′ of N ′

of Cut i to its “siblings” of N ′′ that are in Cut i. A gate
g′′ of N ′′ was considered a sibling of g′ if inputs of g′

and g′′ were related by a clause of Hi−1. After solving the
sequence of small PQE problems above, EC LoR∗ checked
a cut termination condition. That is EC LoR∗ verified that
∃Wi[Hi−1 ∧ FMi

] ≡ Hi∧∃Wi[FMi
] and so the set of clauses

accumulated in Hi was indeed a boundary formula for i-th
cut.

In Table II, we compare EC LoR∗ with ABC [20]. The first
column gives the value of s of Mlps used in N ′ and N ′′. The
next two columns show the size of formulas EQ(X ′, X ′′) ∧
FN ′ ∧ FN ′′ ∧ (z′ 6≡ z′′) specifying equivalence checking of
N ′ and N ′′ to which EC LoR∗ was applied. (N ′ and N ′′

were fed into ABC as circuits in the BLIF format.) Here X =
{h, a1, . . . , as, b1, . . . , bs} denotes the set of input variables of
circuits N ′ and N ′′. The fourth column shows the number of
topological levels in circuits N ′ and N ′′ and so the number
of cuts used by EC LoR∗. The last two columns give the run
time of EC LoR∗ and ABC.

The results of Table II show that equivalence checking
of N ′ and N ′′ derived from Mlps was hard for ABC. On
the other hand, EC LoR∗ managed to solve all instances in

a reasonable time. Most of the run time of EC LoR∗ was
taken by PQE-14 when checking cut termination conditions
mentioned above. So, PQE-14 was also the reason why the run
time of EC LoR∗ grew quickly with the size of Mlps. The
performance of EC LoR∗ with a more efficient PQE-solver
should have a weaker dependency on the value of s.

C. Using boundary formulas for proving inequivalence

In the experiment of this subsection, we checked for equiva-
lence circuits N ′ and N ′′ that were correct and buggy versions
of Mlp16 respectively. Since EC LoR∗ described in the pre-
vious subsection computes boundary formulas approximately,
one cannot directly apply it to prove inequivalence of N ′ and
N ′′. In this subsection, we show that the precise computation
of even one boundary formula corresponding to an interme-
diate cut can be quite useful for proving inequivalence. Let
α and β denote formulas EQ(X ′, X ′′)∧FN ′∧FN ′′∧(z′ ≡ z′′)
and Hi ∧ FN ′ ∧ FN ′′ ∧ (z′ ≡ z′′) respectively. Here Hi is a
boundary formula precisely computed for the cut of N ′ and
N ′′ consisting of the gates with topological level equal to
i. According to Proposition 3, α and β are equisatisfiable.
Proving N ′ and N ′′ inequivalent comes down to showing that
β is satisfiable. Intuitively, checking the satisfiability of β the
easier, the larger the value of i and so the closer the cut to the
outputs of N ′ and N ′′. In the experiment below, we show that
computing boundary formula Hi makes proving inequivalence
of N ′ and N ′′ easier even for a cut with a small value of i.

TABLE III
Sat-solving of formulas α and β by

Minisat. Time limit = 600 s.

formula #solv- total median
type ed time (s.) time (s.)
α 95 > 3,490 4.2
β 100 1,030 1.0

Bugs were introduced
into circuit N ′′ above the
cut (so N ′ and N ′′ were
identical below the cut).
Let M ′i and M ′′i denote
the subcircuits of N ′ and
N ′′ consisting of the gates
located below the cut (like

circuits M ′ and M ′′ in Fig. 5). Since M ′i and M ′′i are identical
they are also functionally equivalent. Then Corollary 2 entails
that formula Hi equal to EQ(Cut ′i ,Cut ′′i) is boundary. Here
Cut ′i and Cut ′′i specify the output variables of M ′i and
M ′′i respectively. Derivation of EQ(Cut ′i ,Cut ′′i) for identical
circuits M ′i and M ′′i is trivial. However, proving that Hi equal
to EQ(Cut ′i ,Cut ′′i) is indeed a boundary formula is non-
trivial even for identical circuits. (According to Proposition 2,
this requires showing that ∃Wi[EQ(X ′, X ′′) ∧ FMi

] ≡ Hi ∧
∃Wi[FMi

] where FMi
specifies the gates of M ′i and M ′′i and

Wi consists of all the variables of FMi but the cut variables.)
In the experiment, we used the cut with i = 3 i.e. the gates
located below the cut had topological level less or equal to 3.
Proving that EQ(Cut ′i ,Cut ′′i) is a boundary formula takes a
fraction of a second for i = 3 but requires much more time
for i = 4.

We generated 100 buggy versions of Mlp16. Table III
contains results of checking the satisfiability of 100 formulas
α and β by Minisat 2.0 [5], [21]. Similar results were observed
for the other SAT-solvers we tried. The first column of Table III
shows the type of formulas (α or β). The second column gives

55

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

the number of formulas solved in the time limit of 600 s. The
third column shows the total run time on all formulas. We
charged 600 s. to every formula α that was not solved within
the time limit. The run times of solving formulas β include
the time required to build H3. The fourth column gives the
median time. The results of this experiment show that proving
satisfiability of β is noticeably easier than that of α. As we
mentioned above, using formula β for proving inequivalence
of N ′ and N ′′ should be much more beneficial if formula Hi

is computed for a cut with a greater value of i. However, this
will require a more powerful PQE solver than PQE-14.

7. SOME BACKGROUND

The EC methods can be roughly classified into two groups.
Methods of the first group do not assume that circuits N ′

and N ′′ to be checked for equivalence are structurally similar.
Checking if N ′ and N ′′ have identical BDDs [4] is an example
of a method of this group. Another method of the first group
is to reduce EC to SAT and run a general-purpose SAT-
solver [15], [18], [5], [2]. A major flaw of these methods is
that they do not scale well with the circuit size.

Methods of the second group try to exploit the structural
similarity of N ′, N ′′. This can be done, for instance, by
making transformations that produce isomorphic subcircuits
in N ′ and N ′′ [1] or make simplifications of N ′ and N ′′ that
do not affect their range [14]. The most common approach
used by the methods of this group is to generate an inductive
proof by computing simple relations between internal points
of N ′, N ′′. Usually, these relations are equivalences [11], [12],
[17]. However, in some approaches the derived relations are
implications [13] or equivalences modulo observability [3].
The main flaw of the methods of the second group is that they
are very “fragile”. That is they work only if the equivalence
of N ′ and N ′′ can be proved by derivation of relations of a
very small class.

The machinery of boundary formulas introduced in this
paper can be related to interpolation [16]. As far as propo-
sitional logic is concerned, interpolation and an interpolant
are a special case of logic relaxation and a boundary formula
respectively [7].

8. CONCLUSIONS

We introduced a new framework for Equivalence Checking
(EC) based on Logic Relaxation (LoR). The appeal of applying
LoR to EC is twofold. First, EC by LoR provides a powerful
method for generating proofs of equivalence by induction.
Second, LoR gives a framework for proving inequivalence
without generating a counterexample. The idea of LoR is
quite general and can be applied beyond EC. LoR is enabled
by a technique called partial quantifier elimination and the
performance of the former strongly depends on that of the
latter. So building efficient algorithms of partial quantifier
elimination is of great importance.

ACKNOWLEDGMENT

I would like to thank the anonymous reviewers of this
paper for their helpful feedback. I am thankful to Harsh Raju
Chamarthi for reading the first version of the manuscript. I
am especially grateful to Mitesh Jain who has read several
versions of this paper and made detailed and valuable com-
ments. This research was supported in part by NSF grants
CCF-1117184 and CCF-1319580.

REFERENCES

[1] H.R. Andersen and H. Hulgaard. Boolean expression diagrams. Inf.
Comput., 179(2):194–212, 2002.

[2] A. Biere. Picosat essentials. JSAT, 4(2-4):75–97, 2008.
[3] D. Brand. Verification of large synthesized designs. In ICCAD-93, pages

534–537, 1993.
[4] R. Bryant. Graph-based algorithms for Boolean function manipulation.

IEEE Transactions on Computers, C-35(8):677–691, August 1986.
[5] N. Eén and N. Sörensson. An extensible sat-solver. In SAT, pages

502–518, Santa Margherita Ligure, Italy, 2003.
[6] E. Goldberg. On efficient methods for partial quantifier elimination. To

be published.
[7] E. Goldberg. Equivalence checking by logic relaxation. Technical Report

arXiv:1511.01368 [cs.LO], 2015.
[8] E. Goldberg and P. Manolios. Quantifier elimination by dependency

sequents. In FMCAD-12, pages 34–44, 2012.
[9] E. Goldberg and P. Manolios. Quantifier elimination via clause redun-

dancy. In FMCAD-13, pages 85–92, 2013.
[10] E. Goldberg and P. Manolios. Partial quantifier elimination. In Proc. of

HVC-14, pages 148–164. Springer-Verlag, 2014.
[11] A. Kuehlmann and F. Krohm. Equivalence Checking Using Cuts And

Heaps. DAC, pages 263–268, 1997.
[12] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai. Robust boolean

reasoning for equivalence checking and functional property verification.
IEEE Trans. CAD, 21:1377–1394, 2002.

[13] W. Kunz. Hannibal: An efficient tool for logic verification based on
recursive learning. In ICCAD-93, pages 538–543, 1993.

[14] H. Kwak, I. MoonJames, H. Kukula, and T. Shiple. Combinational
equivalence checking through function transformation. In ICCAD-02,
pages 526–533, 2002.

[15] J. Marques-Silva and K. Sakallah. Grasp – a new search algorithm for
satisfiability. In ICCAD-96, pages 220–227, 1996.

[16] K. L. Mcmillan. Interpolation and sat-based model checking. In CAV-03,
pages 1–13. Springer, 2003.

[17] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een. Improvements
to combinational equivalence checking. In ICCAD-06, pages 836–843,
2006.

[18] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
engineering an efficient sat solver. In DAC-01, pages 530–535, New
York, NY, USA, 2001.

[19] V. Singhal. Private communication.
[20] ABC . http://www.eecs.berkeley.edu/ alanmi/abc/.
[21] Minisat2.0. http://minisat.se/MiniSat.html.

56

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Minimal unsatisfiable core extraction for SMT
Ofer Guthmann1, Ofer Strichman2, Anna Trostanetski1

1 Computer science, Technion, Haifa, Israel. {ofer.guthmann,annat}@cs.technion.ac.il
2 Information Systems Engineering, IE, Technion, Haifa, Israel. ofers@ie.technion.ac.il

Abstract—Finding a minimal (i.e., irreducible) unsatisfiable
core (MUC), and high-level minimal unsatisfiable core (also
known as group MUC, or GMUC), are well-studied problems
in the domain of propositional satisfiability. In contrast, in the
domain of SMT, no solver in the public domain produces a
minimal or group-minimal core. Several SMT solvers, like Z3,
produce a core but do not attempt to minimize it. The SMT solver
MATHSAT has an option to try to make the core smaller, but does
not guarantee minimality. In this article we present a method and
tool, HSMTMUC, for finding MUC and GMUC for SMT solvers.
The method is based on the well-known deletion-based MUC
extraction that is used in most propositional MUC extractors,
together with several new optimizations such as theory-rotation,
and an adaptive activation strategy based on measurements,
during execution, of the time consumed by various components,
combined with exponential smoothing. We implemented HSMT-
MUC on top of Z3 and MATHSAT, and evaluated its performance
with hundreds of SMT-LIB benchmarks.

I. INTRODUCTION

Given an unsatisfiable formula in conjunctive normal form
(CNF), an unsatisfiable core (UC) is any subset of these
clauses that is still unsatisfiable. In the case of propositional
formulas, the problem of finding a minimum core (or rather,
the decision problem associated with it) is a Σ2-complete
problem [23] and there were several attempts to cope with it in
practice [28], [39]. Given the high-complexity of this problem,
there were several attempts to just find small cores, without
a guarantee of minimality [42], [11], [20]. A large body of
work has been dedicated to finding a minimal (i.e., irreducible)
unsat core (MUC), e.g., [34], [30], [31], [32], which is easier
than finding the minimum core, and at least gives the user the
guarantee that no single constraint can be removed without
making the formula satisfiable. Indeed the only competition
ever held in this domain (as part of the SAT competition
in 2011) focused on MUC extractions, and now there are
several tools that provide this feature, such as MUSER2 [8],
HAIFAMUC [31] and MCS-MUS [3]. Most applications of
core extraction do not rely on the core being minimal or
minimum per-ce, although a small core is desirable; hence
striking a balance between efficiency and size of the core is a
popular strategy.

The applications of minimal/minimum/small cores of propo-
sitional formulas are numerous, including abstraction refine-
ment for model checking [2], [24], [6], formal equivalence ver-
ification [26], [16], decision procedures [12], bounded model-
checking of multi-threaded systems [22] and functional bi-
composition [13] — see [36], [30], [15] for extensive surveys.

When it comes to satisfiability Modulo Theories (SMT),
we are aware of several SMT solvers that produce a core,

including Z3 [18], CVC3 [5] and YICES [19] but do not
attempt to minimize it. A method suggested by Cimatti et
al. [15] and implemented in MATHSAT attempts to make the
core smaller, but still does not guarantee minimality. We will
describe this method in detail and our implementation and
experiments with it in Sec. IV. We are aware of one tool, called
DFS-FINDER [41], [40], for extracting minimal SMT cores.
That tool and the benchmarks it was tested with are not in the
public domain. It is based on a deletion-based strategy, and
was implemented on top of the SMT solver ARGOLIB [29].
Their focus is on the order in which clauses are removed,
which is orthogonal to the techniques we present here.

Whether minimality is important for SMT remains to be
seen. As mentioned above most applications of propositional
MUC do not rely on minimality, but still use a minimal
core extractor, since they aspire to use a small core as a
‘rule of thumb’, namely it is assumed that a small core is
better for the rest of the application. Since SMT is used now
in many applications that require a core it is reasonable to
expect that a tool that finds minimal cores reasonably fast
will be used. Microsoft’s tool YOGI, for example, a software
property-checking tool based on static analysis and testing
technology, uses unsat cores in its refinement process [21]1.
Another example is the UFO software model-checker, which
uses it to generalize the proof before interpolation [1]. More
generally minimality is essential to avoid unnecessary effort
in analyzing constraints that are irrelevant for the conflict.

In the current article we show a method for finding a
minimal core of SMT formulas, based on the popular deletion-
based strategy that is used in several propositional MUC
extractors. The basic idea is illustrated in Fig. 1. Given an
initial core C, in which all the clauses are unmarked, we
remove an unmarked clause c ∈ C and check for satisfiability
of the remaining formula. If the result is SAT, we mark c as
necessary for the minimal core, and introduce it back to C.
Otherwise (the remaining formula is unsat), we remove clauses
outside the new core and continue.

There are many possible optimizations to this basic algo-
rithm, as surveyed in [32], with varying relevance to the case of
SMT. Most of them rely on access to a proof (e.g., resolution)
and cannot be implemented without changing the SMT solver
itself. An exception is Belov and Marques-Silva’s recursive
model rotation technique [7] (from hereon—rotation), which
is both effective and does not require changes to the solver.
Indeed we show in Sect. II a generalization of this technique,

1Private communication with the authors.

57

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Fig. 1. Deletion-based core extraction. C is an inconsistent set of clauses,
all of which are initially unmarked.

which we call theory rotation, to the case of SMT. It turns
out to be not as effective in the SMT case owing to the
cost of checking the T -consistency of assignments, as we
will show in Sec. III, but it still improves the run time by
about 10% on average, depending on the theory. We used a
novel adaptive technique to decide when to activate it based
on measurements, during execution, of the time consumed by
various components.

We implemented our tool on top of Z3, while relying solely
on its API.2 We did not change Z3 itself, with the hope
of supporting other SMT solvers in the future. Z3 has a
large user-base and is one of the best solvers, for a large
number of theories, according to the latest competitions results
of the last few years, and hence is a natural choice. Our
results, which we will present in Sect. III, show that our
tool HSMTMUC, available from [25], reduces the size of the
core by 45% on average. In addition, we support a route via
MATHSAT, which turns out to be even faster. It is based
on MATHSAT’s implementation of Cimatti et al.’s method
mentioned above [15], [14] for finding a small core, and then
minimizing it with HSMTMUC. We will describe this hybrid
approach towards the end of this article, in Sec. IV-E.

II. MINIMIZING SMT UNSATISFIABLE CORES

The standard input language of SMT solvers is that corre-
sponding to the SMT-LIB2 standard [4], which is generally
not clausal. A formula is stated via an assert statement.
Multiple such statements are interpreted as a conjunction
between their respective formulas. Z3 tracks which of the
assertion statements were used in the proof, and this is what
it returns upon a call to (get-unsat-core).

We support two types of core minimizations: minimizing
the set of assertions that are inconsistent, and minimizing the
set of clauses that result from transforming them to CNF. The

2Specifically, we used the following API functions:
Z3 solver check assumptions, Z3 solver get unsat core, Z3 solver reset,
Z3 solver assert, Z3 get app decl, Z3 get app num args, Z3 get app arg,
Z3 mk not, Z3 mk or, and Z3 is eq ast. To translate the input formula
to CNF we apply simplification before and after: tactic t = tactic(ctx,
“simplify”), tactic(ctx, “tseitin-cnf”), tactic(ctx, “simplify”); Z3 mk tactic,
Z3 tactic and then, Z3 tactic apply.

first of these goals can be thought of as an application of
High-level minimal unsatisfiable core [30] (sometimes called
group-MUC), a problem in which the goal is to minimize the
number of high-level constraints in the core, where in this case
each assertion is such a constraint. This variant is more useful
for human-reading of the output, as it maintains the connection
to the original input. The clausal variant can also be useful. For
example, one can think of a refinement process that extracts the
participating variables from the core, or an engine that extracts
the interpolant from the last unsatisfiability proof rather than
from the original one, which is likely to make the interpolant
smaller. In such applications the mapping of the core to the
original formula is not necessary.

Our implementation begins by simplifying the input formula
and transforming it to CNF. This is done with the help of
Z3’s tactics (“simplify” and “tseitin-cnf”). The resulting CNF
C is over theory literals and new auxiliary Boolean variables
resulting from the Tseitin encoding. Each theory literal l is
associated with a propositional variable that encodes whether
this literal is true or false in the current assignment . To
enjoy the incrementality of Z3, we build the formula such
that each clause is guarded with an auxiliary variable, which
is then passed as an assumption to the solver. We introduce the
guard as a negated auxiliary variable, hence deleting a clause
amounts to changing its associated assumption from TRUE to
FALSE.

We follow the basic deletion-based method as explained in
the introduction and illustrated in Fig. 1 (the center rectangle
SAT(C) now corresponds to an SMT call). When solving the
high-level variant, each time we remove the whole set of
clauses that are associated with a single high-level constraint.
On top of that, we implemented an optimization that we call
theory rotation, for both the high-level and clausal variants of
the problem. It does not require any change in Z3 itself. This
optimization is the topic of the next subsection.

A. Theory rotation

Suppose that a set of T -clauses C is unsatisfiable, and
removing an unmarked clause c ∈ C makes the formula
satisfiable. According to Fig. 1 at this point we should now
mark c and put it back in C. In Alg. 1 we show a basic
method by which additional clauses can potentially be marked
without additional SMT calls. This method generalizes the
rotation [37] and recursive model rotation [7] techniques,
which were introduced and proven effective in the domain
of propositional MUC extraction.

The idea is the following: given the (propositional) assign-
ment α that satisfies C\{c}, in line 3 we swap in α the value of
one of the variables in c, and call the new assignment α′. This
necessarily means that α′ |= c. If it happens to be the case that
α′ is T -satisfiable, and contradicts a single unmarked clause
c′ ∈ C \ {c}, then we can conclude that c′ is also necessary
for the core and hence can be marked. The reason is that
while C is unsatisfiable, we found a T -satisfiable assignment
α′ such that α′ |= C \{c′}. Hence in line 5 we mark c′. In the
line that follows we call T-ROTATEb recursively with the new

58

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

assignment α′. The check in line 4 is done lazily, from left
to right. Note that the fact that we check in line 4 that c′ is
unmarked guarantees termination, because 1) each clause can
only be marked once, 2) a clause can never be unmarked, and
3) a recursive call happens only after marking a clause.

We continue by suggesting an improvement to this basic
procedure, based on the observation that T-ROTATEb gives
up once α′ is not T -satisfiable. There is an obvious trade-
off between the time invested in attempting to fix α′ so that
it becomes T -satisfiable and the time it saves by reducing the
number of SMT calls. Algorithm T-ROTATE, which appears in
Alg. 2, gives the user control over the amount of effort through
the bound flipThreshold (see line 6 and the fourth parameter
of FLIP). In our winning strategy we set this threshold to two,
meaning that we allow for flipping one additional variable in
our attempt to make α′ T -satisfiable. This strategy increases
the number of marked clauses by close to 10% on average, as
will be evident in the next section.

The functions T-ROTATE and FLIP in Alg. 2 are mutually
recursive, and FLIP is also self-recursive. T-ROTATE is the one
called from the main core minimization loop when the removal
of c makes C satisfiable. T-ROTATE takes c as input and marks
clauses (including c itself), i.e., mark that they belong to the
MUC. For each literal l ∈ c, it calls FLIP in line 4.

The conditions checked by FLIP in line 8 are different than
those checked in T-ROTATEb, because we want to continue
even if α′ is not T -consistent (note that in such a case it is
possible that UnsatSet(C,α′) ≡ ∅). In such a case we call
FLIP recursively with each of the literals in the core (lines 12
– 13), with the hope that after flipping it the new assignment
will satisfy all the conditions required for reaching line 10.
This invokes FLIP for each literal in the core, which justifies
the low value of flipThreshold mentioned above.

Some implementation details: To compute
UnsatSet(C,α′), we maintain for each literal a set of
clauses in which it appears. Hence if we flip l to ¬l, we
check for (propositional) satisfiability of all the clauses that
contain l, in addition to the clause that was unsatisfiable
at the entrance to FLIP (when called from T-ROTATE, that
clause is guaranteed to become satisfiable after flipping
l, by construction. It is not necessarily the case when
T-ROTATE is called recursively). Furthermore, since each
clause is potentially checked multiple times, under similar
assignments, we maintain a map from each clause cl that we
check, to the literal lit that satisfies it. When revisiting cl, we
first check if lit is still satisfied by the current assignment.
If not, we revert to scanning the clause and update the map
with a new satisfied literal, if one exists.

B. Theory rotation over high-level constraints

Our implementation of theory rotation for high-level the-
ory constraints appears in Alg. 3. It is a generalization of
Alg. 2, based on the propositional high-level rotation that
was described in [35], [33]. If, after removing the clauses
associated with a high-level constraint H , the formula becomes
satisfiable, then we find the set of literals in the intersection

of all the clauses in H that are unsatisfied by the current
assignment α. We then flip the assignment of each of these
literals separately, and check each time if it is both T -
consistent and makes a single high-level constraint H ′ unsat,
and H ′ is unmarked. If both conditions are true, then H ′ is
marked as necessary. The FLIP function that is called in line 8
has the same code as in Alg. 2, except that C is now a set of
high-level constraints.

C. Adaptive activation of theory rotation

Our initial experiments showed that T -rotation is frequently
not cost-effective, despite the fact that it is polynomial and
saves SMT calls which are worst-case exponential. This stands
in contrast to the propositional case, where rotation is gener-
ally very cost-effective. Reasons for this difference include
• the theory check in line 9 is potentially expensive (yet

for most theories still polynomial),
• the success rate is smaller than in the propositional case,

because of the additional requirement that the assignment
α is T -consistent,

• the attempts to fix α so it becomes T -consistent (line 13)
may be expensive if flipThreshold is not small.

Analyzing the logs of our experiments shows that T -rotation
has a large impact in the beginning (by ‘beginning’ we mean
after having the initial core from Z3), when there are still
many unmarked clauses, but it diminishes through time. The
overhead of calling T -rotation while being ineffective at later
steps frequently outweighs the initial gain. To overcome this
problem, we attempt to stop T -rotation when it is no longer
cost-effective. We experimented with two strategies:
• fail bound: when x consecutive activations of T-ROTATE

produce no marked clauses, we stop.
• exponential smoothing: Let tsmt be the average time it

takes to check T -satisfiability of C \ {c}, tr the average
time it takes to run T-ROTATE, and nr the average number
of clauses that it marks (not including the initial clause
c). Had these figures been known and constant throughout
the run, we would use T -rotation only if

tsmt >
tr
nr

. (1)

Since this is not the case, then as a second best choice
we measure these figures at run time, and use them
as the basis for estimating (1). They are not purely
monotonic, however, and hence terminating T -rotation
once (1) does not hold is not a good strategy. On the
other hand the number of marked clauses nr, as hinted
before, has a clear trend: in practice we see that it
is reduced to near 0 after a while, when the set of
unmarked clauses becomes small. The solution we chose
is based on exponential smoothing, a known technique in
statistics that was also used recently in a SAT branching
heuristic [27]. The input data can be seen as a stream
of tuples 〈t0smt, t

0
r, n

0
r〉, 〈t1smt, t

1
r, n

1
r〉, . . ., where the su-

perscript denotes the time index. We define T 0
smt = t0smt

59

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Algorithm 1 A basic theory rotation algorithm.
1: function T-ROTATEb(clause-set C, clause c, assignment α)
2: for each l ∈ c do
3: α′ := α[l← ¬l];
4: if UnsatSet(C,α′) ≡ {c′} and c′ is unmarked and T -SAT(α′) then
5: mark c′;
6: T-ROTATEb (C, c′, α′);

Algorithm 2 Theory rotation, in which certain effort is invested in fixing the assignment α so it becomes T -consistent and
consequently leads to marking of additional clauses.
Require: C is unsat, and α |= C \ c

1: void T-ROTATE(clause-set C, clause c, assignment α)
2: mark c;
3: for each literal l ∈ c do
4: FLIP(C, l, α, 0);

Require: α does not satisfy zero or one clauses from C
5: void FLIP(clause-set C, lit l, assignment α, int depth)
6: if depth ≥ flipThreshold then return ; . User-defined threshold
7: α′ := α[l← ¬l];
8: if (UnsatSet(C,α′) ≡ {c′} and c′ is unmarked) or UnsatSet(C,α′) ≡ ∅ then
9: if (T -SAT(α′)) then . Theory-checking of α′

10: T-ROTATE (C, c′, α′); . c′ must exist here
11: else
12: for each literal l′ in core do . core = unsat core of line 9
13: FLIP(C, l′, α′, depth+ 1);

Algorithm 3 High-level theory rotation, in which certain effort is invested in fixing the assignment α so it becomes T -consistent
and consequently leads to marking of additional clauses.
Require: C is unsat, and α |= C \ c

1: void T-ROTATE(constraint-set C, constraint c, assignment α)
2: mark c;
3: intersection := Lit(c) . Lit(c) is the set of literals that appear in c
4: for each clause cl ∈ c do
5: if α 6|= cl then . at least one such clause exists since α 6|= c
6: intersection := intersection ∩ Lit(cl) . Lit(cl) is the set of literals that appear in cl
7: for each literal l ∈ intersection do
8: FLIP(C, l, α, 0);

and

T i
smt = α · tismt + (1− α) · T i−1

smt , (2)

where α is a parameter in the range [0..1]: the closer it
is to 1, the closer the value of T i

smt is to the current
input tismt. Conversely the closer α is to 0, the more
‘smooth’ T i

smt becomes. Similarly we define T i
r and N i

r,
with respect to the tr and nr sequences, respectively. We
continue with T -rotation while

T i
smt >

T i
r

N i
r

. (3)

In our experiments we used α = 0.1.

III. EXPERIMENTS

We experimented with the same 561 benchmarks used
in [15], which were selected from SMT-LIB, and include
instances from the quantifier-free theories LRA, UF, RDL, LIA
and IDL. From those we removed 63 instances that Z3 cannot
solve in 10 minutes (our timeout), i.e., solve the formula
itself augmented with the auxiliary guard variables. This left
us with 498 benchmarks. All experiments and graphs in this
section were conducted via HBENCH [38], a performance-
benchmarking platform.

For the clausal variant of the problem, Fig. 2 (left) shows
a comparison of the size of the default core given by Z3 and
the minimal core that our tool, HSMTMUC, emits. Overall

60

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

the average reduction in core size is 45%. The plot on the
right shows the impact of theory rotation on the number of
iterations. Overall the average reduction in the number of
iterations is 34%. Although the diagram shows that rotation
always reduces the number of iterations (or at least does not
increase it), in theory a point to the left of the diagonal is
possible. This is because rotation may change the order in
which clauses are chosen for removal. This, in turn, may
impact the run of the SMT solver and produce a different
core if the formula is unsatisfiable.

Table I shows more detailed results for the clausal variant.
The ‘base’ configuration is a simple deletion-based strategy,
and all others include rotation. The ‘b x’ label means that
we activate the ‘fail bound’ strategy with a bound x, and the
‘exp’ label means that we activate the exponential smoothing
strategy, both explained in the previous section. Overall, all
the rotation strategies that we used improve upon the base
configuration, with the ‘exp‘ strategy having the least number
of fails within the 10 min. timeout. The ‘T -conflict resolved’
column presents the number of cases that lines 12–13 in T-
ROTATE led to additional marked clauses. Whereas the avg.
time it takes to compute the minimal core (the Time column)
is close to 30 sec., the avg. time it takes Z3 to compute the
initial core is ≈ 2.5 sec.

A detailed analysis shows that the effect of theory rotation
depends on the theory itself (to the extent that the benchmarks
themselves are representative of the theory). We refer the
reader to [25] for detailed results.

We also experimented with the high-level variant. We
removed benchmarks that have a single assert statement,
which left us with 395 benchmarks, out of which 41 timed-
out. The last line of the table shows our results. Note that
the number of iterations in the high-level variant is an order
of magnitude smaller comparing to the clausal variant, which
is expected given the nature of the problem (i.e., rather than
removing a single clause in each iteration, we remove many).
In our experiments rotation had negligible effect in this variant,
which is expected given the low number of iterations. We again
refer the reader to [25] for detailed results.

Unfortunately we cannot make a full comparison to [41],
[40] because neither the tool nor the benchmarks that were
used to evaluate it are in the public domain. We could only
compare the 15 sample benchmarks for which detailed results
were published in [40]. The results show that our tool is
over two orders of magnitude faster. Detailed results are
available in [25]. We emphasize that [41], [40] is based on
a different, less competitive SMT solver (ARGOLIB), and
that they used different hardware, hence the comparison only
approximates the relation between the tools, not the MUC
extraction algorithms themselves.3

3It seems that they also used a different conversion to CNF, because the
number of clauses that they report is different than ours (to both directions),
despite the fact that we start from the same SMT-LIB benchmark.

IV. A COMPARISON TO A MINIMIZATION OF THE BOOLEAN
ENCODING, AND A HYBRID APPROACH

We now describe in detail our implementation and experi-
ments with a method suggested by Cimatti et. al in [15] that
was implemented in MATHSAT, which finds a small SMT
core, that is not necessarily minimal. As we will show, our
implementation of this method based on Z3 is not competitive
with the one in MATHSAT, but a hybrid approach, in which
we run HSMTMUC to minimize the result of MATHSAT, is
the best configuration we found.

A. Boolean-encoding minimization

Recall that an SMT solver combines a propositional SAT
solver and a decision procedure DPT for a conjunction of T -
terms, for each supported theory T . It begins by associating
with each T -literal l a new propositional variable which we
denote by e(l). Overloading the notation, we denote by e(ϕ)
a T -formula ϕ after all of its literals are encoded this way.
Hence e(ϕ) is a propositional abstraction of ϕ. We call e(ϕ)
the propositional skeleton of ϕ.

Cimatti et al.’s method for extracting a small unsat SMT
core, is based on using a propositional MUC extractor for
minimizing e(ϕ) ∧ e(L), where L denotes the lemmas gen-
erated during the run of the SMT solver. The e(L) clauses
are discarded from the core, because L corresponds to theory
lemmas that are by construction T -valid, and hence can always
be conjoined to the formula. The rest of the core can be
mapped back to a set of clauses ϕ′ ⊆ ϕ, which is guaranteed to
be unsatisfiable. This method has a major practical advantage
as it leverages existing tools for minimizing propositional
cores and is easy to implement if the SMT solver can emit
e(L) (Z3 does not support such an option, but we will explain
how this can be achieved with Z3 later on). Nevertheless,
as noted by the authors, this process does not guarantee
minimality of the SMT core. We demonstrate this fact with
two examples.

Example 1. Quoting example 5 from [15], consider

ϕ
.
= ((x = 0) ∨ (x = 1)) ∧ (¬(x = 0) ∨ (x = 1)) ∧

((x = 0) ∨ ¬(x = 1)) ∧ (¬(x = 0) ∨ ¬(x = 1)) .
(4)

It is clear that e(ϕ) is unsatisfiable, and further that all the
clauses in e(ϕ) are necessary for maintaining unsatisfiability.
Nevertheless the last clause is not necessary and hence this is
not a minimal core of ϕ.

The example above demonstrates the fact that whereas T -
valid clauses cannot be part of a minimal core (because they
are always implied anyway and therefor can be removed), the
information that they are valid is lost once the search for a core
focuses on the propositional abstraction of ϕ. This particular
problem can be easily fixed by removing T -valid clauses from
the resulting core (by calling DPT for each clause separately),
but this still does not guarantee minimality as we show next.

A bigger problem is that once we minimize e(ϕ)∧e(L), we
are restricted to the lemmas in L, which are not necessarily

61

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

50 100 150 200 250 300 350 400 450 500 550 600

50

100

150

200

250

300

350

400

450

500

550

600

minimal core

Z
3
co
re

Core size

0 50 100 150 200 250 300 350 400 450 500 550 600
0

50

100

150

200

250

300

350

400

450

500

550

600

base

ro
ta
ti
on

iterations

Fig. 2. (left) Z3’s default core vs. the minimal core that our tool HSMTMUC emits. (right) The number of iterations with and without theory-rotation.

Config. # fails Time Iterations Rotation Cls. Marked T -Conflicts T -check Init Final
(sec.) Calls By Rotation Resolved Time (Sec.) core core

(base) 108 30.5 559.2 0.0 0.0 0.0 0.0 820.2 454.2
T-ROTATE 108 29.7 372.0 472.2 203.7 20.8 1.4 820.2 454.4
T-ROTATE b 5 108 28.9 435.9 168.8 130.8 10.2 1.0 820.2 454.5
T-ROTATE b 7 109 29.2 417.1 194.4 143.2 12.3 1.2 820.2 454.4
T-ROTATE exp 107 29.6 424.3 244.8 151.8 11.2 1.2 820.2 454.5
HL (base) 41 7.2 45.4 0.0 0.0 0.0 0.0 41.8 26.7

TABLE I
THE TOP FIVE ROWS REFLECT RESULTS WITH DIFFERENT CONFIGURATIONS, OVER 498 SMT BENCHMARKS. OTHER THAN THE # FAILS COLUMN, THE

DATA REFLECTS AVERAGES. THE LAST TWO COLUMNS REFERS ONLY TO BENCHMARKS SOLVED BY ALL CONFIGURATIONS. ‘INIT CORE’ IS THE SIZE OF
THE INITIAL CORE EMITTED BY Z3. THE LAST ROW REFERS TO THE HIGH-LEVEL VARIANT, AND IS ONLY OVER THE (395) BENCHMARKS THAT HAVE

MORE THAN ONE assert STATEMENT.

minimal themselves. The following example demonstrates this
problem.

Example 2. For x1, . . . , x4 ∈ R, let

ϕ
.
= (x1 = x2) ∧ (x2 = x4) ∧ (x1 = x3) ∧

(x3 = x4) ∧ ¬(x1 = x4) .
(5)

Suppose now that the following lemma, which is simply a
negation of ϕ, was learned during the search

L
.
= ¬(x1 = x2) ∨ ¬(x2 = x4) ∨ ¬(x1 = x3)∨
¬(x3 = x4) ∨ (x1 = x4) .

(6)

This is a T -valid statement, although it is not minimal. Now
e(ϕ) ∧ e(L) is unsatisfiable, and a minimal core at the
propositional level, after discarding the e(L) clauses, is all
the clauses of ϕ. This core is not minimal with respect to ϕ,
however, because, e.g., the first two clauses can be removed.
This could have been prevented had the solver inferred the
shorter lemma L′:

L′
.
= ¬(x1 = x3) ∨ ¬(x3 = x4) ∨ (x1 = x4) , (7)

but there is no guarantee for this to happen.

B. Z3’s lemmas and proofs

As described in [14], MATHSAT has a built-in support for
logging all the T -Lemmas produced during ϕ’s satisfiability
check. However, in the case of Z3, this logging is bypassed,

and instead Z3 maintains proof objects during conflict reso-
lution, as described in [17].

A detailed description of Z3’s language and proofs has
been given in [17], [9], [10]. Z3’s language is a many-
sorted FOL based on the SMT-LIB language. Z3’s proof terms
represent natural deduction proof currently using 34 axioms
and inference rules. These inference rules range from simple
rules such as MP (modus ponens), to complex rules that ab-
breviate multiple reasoning steps such as Rewrite for standard
simplification rules, and other theory-specific reasoning, such
as Transitivity.

Given an unsatisfiable formula ϕ, Z3’s proof is a directed
acyclic graph (DAG) with a single root. Each node is labeled
with a formula: leafs are labeled with either a T -valid formula
or one of the original clauses in ϕ, internal nodes are labeled
with a consequent of some T -inference rule, and the root is
labeled with ⊥, i.e., false. In the discussion below we will
not make the distinction between a node and its label. An
edge from a node n to a node n′ in the proof represents the
fact that n′ was used as a premise of an inference rule whose
consequent is n. Hence, if n has k children n1..nk, then

(e(n1) ∧ · · · ∧ e(nk))→ e(n) (8)

represents an encoding of a valid T -implication. Let e(L) be
the set of implications of the form (8) corresponding to the
entire set of internal nodes and the set of T−valid leafs in the
proof graph. Then e(ϕ) ∧ e(L) must be unsatisfiable.

62

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

C. Implementation using Z3’s proof

To implement Cimatti et. el.’s method on top of Z3, we
traverse the proof graph produced by Z34, and replace each
inference with a corresponding propositional lemma (8). Hav-
ing extracted e(L), it is now possible to apply propositional
MUC extraction on e(ϕ) ∧ e(L), as described in Sect. IV-A.
Finally, given the propositional MUC, we translate it back to
the original T -clauses and check whether it is a minimal core
with HSMTMUC. Since we are only interested in the question
whether the core is already minimal, for this experiment we
terminate HSMTMUC early with “not minimal” once we find
a clause that can be removed.

D. Experimental results

We ran our implementation on top of Z3 of the method
of [14], with the same 498 benchmarks that were mentioned
in Sect. III. For the propositional MUC extractor we used
HMUC [32]. We note that the fact that we ask Z3 to log
the proof, has an overhead. In experiments reported in [17], it
was shown that the memory overhead is ×3 to ×40 greater,
with corresponding slowdowns of ×1.1 to ×3. The detailed
results appear in Table II. Overall it is not competitive with
the implementation in MATHSAT, as will be seen next.

E. Experiments with a hybrid solution

We tested two more configurations: the original implemen-
tation of [14] in MATHSAT, and another version in which after
running MATHSAT we invoke HSMTMUC to minimize the re-
sulting core. We refer to the two stages of this hybrid solution
as Hybrid-M (MATHSAT) and Hybrid-H (HSMTMUC). The
number of fails are:

HSMTMUC (base) Hybrid
171 138

Note that those numbers are out of the full set of 561
benchmarks. Hence the 171 fails of HSMTMUC is made of
the 108 fails reported in Table I + 63 cases in which Z3 could
not produce the initial core within the time limit. The 138 fails
of the hybrid approach include 98 fails of MATHSAT itself.
Hence, we can see that from the perspective of the number
of fails, the hybrid approach is better than HSMTMUC alone
for finding a minimal core. In Table III we examine more
closely the cases that all three approaches succeeded. As can
be seen, we achieve a reduction of 20.9% on average in core
size with the hybrid approach, comparing to MATHSAT alone
(which, recall, is not necessarily minimal), and a reduction of
9% comparing to HSMTMUC. The total average time of the
hybrid approach (11.2 sec. + 16.7 sec.) is larger, however, than
invoking HSMTMUC alone (22.9 sec).

Comparing MATHSAT to our implementation on top of Z3,
we see that the former is better: it has less fails (98 vs. 164),
better run-time on those instances it completes (11.2 sec. vs.
40.4 sec) and smaller average core size (523.0 vs. 723.7). It
seems that MATHSAT simply finds proofs that use a smaller

4Using the methods expr::num args(), expr::arg(i), expr::decl(),
fun decl::decl kind()

number of facts from the original formula ϕ. It also does not
have the overhead of reconstructing the proof as explained
in Sec. IV-C, and it uses a different propositional extractor
(MUSER2 vs. HMUC).

V. CONCLUSIONS AND FUTURE WORK

We presented an algorithm for extracting a minimal un-
satisfiable core from SMT unsatisfiable formulas, which is
based on a combination of a deletion-based strategy and theory
rotation. Many other optimizations exist for the propositional
case, such as those published in [8], [32], but they can only
be used in the context of SMT if the SMT solver itself is
changed. We refrained so far from such changes, with the
hope of supporting other SMT solvers that provide a similar
API. A highly desirable situation is one in which the initial
run of the SMT solver is already biased towards a small core,
the same way that the SAT solver is biased towards finding
a minimal core in HaifaMuc [32]. For example, make the
theory solver return lemmas that contradict as few unmarked
clauses as possible. Such an optimization requires theory-
specific changes, however, which we leave for future research.

REFERENCES

[1] A. Albarghouthi, Y. Li, A. Gurfinkel, and M. Chechik. UFO: A
framework for abstraction- and interpolation-based software verification.
In Computer Aided Verification - 24th International Conference, CAV,
volume 7358 of LNCS, pages 672–678. Springer, 2012.

[2] N. Amla and K. McMillan. Automatic abstraction without counterexam-
ples. In H. Garavel and J. Hatcliff, editors, 9th Intl. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’03),
volume 2619 of LNCS, 2003.

[3] F. Bacchus and G. Katsirelos. Using minimal correction sets to more
efficiently compute minimal unsatisfiable sets. In Computer Aided
Verification - 27th International Conference, CAV, volume 9207 of
LNCS, pages 70–86. Springer, 2015.

[4] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version
2.5. Technical report, Department of Computer Science, The University
of Iowa, 2015. Available at http://www.SMT-LIB.org.

[5] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns,
editors, Computer Aided Verification, 19th International Conference,
CAV, volume 4590 of LNCS, pages 298–302. Springer, 2007.

[6] A. Belov, H. Chen, A. Mishchenko, and J. Marques-Silva. Core
minimization in SAT-based abstraction. In DATE, pages 1411–1416,
2013.

[7] A. Belov and J. Marques-Silva. Accelerating MUS extraction with
recursive model rotation. In FMCAD, pages 37–40, 2011.

[8] A. Belov and J. Marques-Silva. MUSer2: An efficient MUS extrac-
tor. J. on Satisfiability, Boolean Modeling and Computation (JSAT),
8(1/2):123–128, 2012.

[9] S. Böhme. Proof reconstruction for z3 in isabelle/hol. In 7th Interna-
tional Workshop on Satisfiability Modulo Theories (SMT09), 2009.

[10] S. Böhme and T. Weber. Fast lcf-style proof reconstruction for z3. In
Interactive Theorem Proving, pages 179–194. Springer, 2010.

[11] R. Bruni. Approximating minimal unsatisfiable subformulae by means
of adaptive core search. Discrete Appl. Math., 130(2):85–100, 2003.

[12] R. E. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, O. Strichman,
and B. Brady. An abstraction-based decision procedure for bit-vector
arithmetic. Software Tools for Technology Transfer (STTT), 11:95 – 104,
2009.

[13] H. Chen and J. Marques-Silva. Improvements to satisfiability-based
boolean function bi-decomposition. In VLSI-SoC (Selected Papers),
pages 52–72, 2011.

[14] A. Cimatti, A. Griggio, and R. Sebastiani. A simple and flexible way of
computing small unsatisfiable cores in sat modulo theories. In Theory
and Applications of Satisfiability Testing–SAT 2007, pages 334–339.
Springer, 2007.

63

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

http://www.SMT-LIB.org

Family # Benchmarks # Fails # Minimal Time # lemmas Init Core
(Sec.) extracted core size

QF IDL 71 4 43 6.2 3109.5 1120.7 529.9
QF LIA 115 15 20 13.5 3670.1 1306.4 824.6
QF LRA 116 14 26 46. 14134.0 1094.8 794.9
QF RDL 81 20 14 72.2 9281.0 2398.6 1257.3
QF UF 115 48 2 76.2 54394.6 242.4 172.6
Total 498 101 105 40.4 15686.6 1208.9 723.7

TABLE II
RESULTS OF OUR IMPLEMENTATION OF CIMATTI’S ET. AL.’S METHOD ON TOP OF Z3, OVER 498 SMT BENCHMARKS. COLUMNS 4 – 8 REFER ONLY TO

BENCHMARKS THAT RAN TO COMPLETION.

Family # Benchmarks Original Core size Time Core
size Hybrid-M Hybrid-H HSMTMUC Hybrid-M Hybrid-H HSMTMUC Reduction %

QF IDL 68 30659.5 534.3 525.8 515.9 4.5 6.0 8.5 1.6
QF LIA 100 3490.1 614.1 496.0 567.3 18.7 13.6 11.9 22.5
QF LRA 83 1908.3 448.7 330.2 405.5 2.2 20.8 47.6 31.7
QF RDL 53 13353.3 872.1 779.2 813.6 26.5 16.6 28.2 15.7
QF UF 71 2007.3 209.9 105.0 107.7 5.8 26.6 19.7 50.0
Total 375 9180.0 523.0 428.8 470.0 11.2 16.7 22.9 20.9

TABLE III
CHECKING THE HYBRID APPROACH, OVER THE 375 (OUT OF 561) BENCHMARKS SOLVED BY ALL CONFIGURATIONS TO COMPLETION. THE LAST

COLUMN REFERS TO THE REDUCTION IN CORE SIZE BY THE HYBRID APPROACH, COMPARING TO MATHSAT ALONE.

[15] A. Cimatti, A. Griggio, and R. Sebastiani. Computing small unsatisfiable
cores in satisfiability modulo theories. J. Artif. Intell. Res. (JAIR),
40:701–728, 2011.

[16] O. Cohen, M. Gordon, M. Lifshits, A. Nadel, and V. Ryvchin. Designers
work less with quality formal equivalence checking. In Design and
Verification Conference (DVCon), 2010.

[17] L. M. de Moura and N. Bjørner. Proofs and refutations, and z3. In
LPAR Workshops, volume 418, pages 123–132, 2008.

[18] L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In TACAS,
volume 4963 of LNCS, pages 337–340, 2008.

[19] B. Dutertre and L. M. de Moura. A fast linear-arithmetic solver for
DPLL(T). In Computer Aided Verification (CAV), 18th International
Conference, volume 4144 of LNCS, pages 81–94, 2006.

[20] R. Gershman, M. Koifman, and O. Strichman. An approach for
extracting a small unsatisfiable core. Formal Methods in System Design
(FMSD), 33:1 – 27, 2008.

[21] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali. Compositional
may-must program analysis: unleashing the power of alternation. In
M. V. Hermenegildo and J. Palsberg, editors, POPL, pages 43–56. ACM,
2010.

[22] O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided
underapproximation-widening for multi-process systems. In POPL,
pages 122–131. ACM Press, 2005.

[23] A. Gupta. Learning Abstractions for Model Checking. PhD thesis,
Carnegie Mellon University, 2006.

[24] A. Gupta, M. K. Ganai, Z. Yang, and P. Ashar. Iterative abstraction
using SAT-based BMC with proof analysis. In ICCAD, pages 416–423,
2003.

[25] O. Guthmann, O. Strichman, and A. Trostanetski. HSmtMuc:. http:
//ie.technion.ac.il/∼ofers/haifasolvers/site/site.html.

[26] Z. Khasidashvili, D. Kaiss, and D. Bustan. A compositional theory
for post-reboot observational equivalence checking of hardware. In
FMCAD, pages 136–143, 2009.

[27] J. H. Liang, V. Ganesh, E. Zulkoski, A. Zaman, and K. Czarnecki.
Understanding VSIDS branching heuristics in conflict-driven clause-
learning SAT solvers. In N. Piterman, editor, Hardware and Software:
Verification and Testing - 11th International Haifa Verification Confer-
ence, HVC 2015, Haifa, Israel, November 17-19, 2015, Proceedings,
volume 9434 of LNCS, pages 225–241. Springer, 2015.

[28] I. Lynce and J. Marques-Silva. On computing minimum unsatisfiable
cores. In Proceedings of the International Symposium on Theory and
Applications of Satisfiability Testing, pages 305–310, 2004.

[29] F. Maric and P. Janicic. Argo-Lib: A generic platform for decision
procedures. In D. A. Basin and M. Rusinowitch, editors, Automated

Reasoning - Second International Joint Conference, IJCAR, volume
3097 of LNCS, pages 213–217. Springer, 2004.

[30] A. Nadel. Boosting minimal unsatisfiable core extraction. In R. Bloem
and N. Sharygina, editors, Proceedings of 10th International Conference
on Formal Methods in Computer-Aided Design, FMCAD 2010, Lugano,
Switzerland, October 20-23, pages 221–229. IEEE, 2010.

[31] A. Nadel, V. Ryvchin, and O. Strichman. Efficient mus extraction with
resolution. In FMCAD, pages 197–200, 2013.

[32] A. Nadel, V. Ryvchin, and O. Strichman. Accelerated deletion-based
extraction of minimal unsatisfiable cores. Journal on Satisfiability,
Boolean Modeling and Computation (JSAT), 9:27–51, 2014.

[33] A. Nadel, V. Ryvchin, and O. Strichman. Ultimately incremental
SAT. In Theory and Applications of Satisfiability Testing - SAT 2014 -
17th International Conference, volume 8561 of LNCS, pages 206–218.
Springer, 2014.

[34] Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L.
Markov. Amuse: a minimally-unsatisfiable subformula extractor. In
DAC ’04, pages 518–523, 2004.

[35] V. Ryvchin and O. Strichman. Faster extraction of high-level minimal
unsatisfiable cores. In SAT, pages 174–187, 2011.

[36] J. P. M. Silva. Minimal unsatisfiability: Models, algorithms and
applications (invited paper). In ISMVL’10, pages 9–14, 2010.

[37] J. P. M. Silva and I. Lynce. On improving MUS extraction algorithms.
In K. A. Sakallah and L. Simon, editors, Theory and Applications of
Satisfiability Testing - SAT 2011 - 14th International Conference, volume
6695 of LNCS, pages 159–173, 2011.

[38] O. Strichman. HBench – a platform for performance benchmarking.
http://strichman.net.technion.ac.il/hbench/.

[39] J. Zhang, S. Li, and S. Shen. Extracting minimum unsatisfiable cores
with a greedy genetic algorithm. In Advances in Artificial Intelligence,
19th Australian Joint Conference on Artificial Intelligence, volume 4304
of LNCS, pages 847–856. Springer, 2006.

[40] J. Zhang, S. Shen, J. Zhang, W. Xu, and S. Li. Extracting minimal
unsatisfiable subformulas in satisfiability modulo theories. Comput. Sci.
Inf. Syst., 8(3):693–710, 2011.

[41] J. Zhang, W. Xu, J. Zhang, S. Shen, Z. Pang, T. Li, J. Xia, and S. Li.
Finding first-order minimal unsatisfiable cores with a heuristic depth-
first-search algorithm. In Intelligent Data Engineering and Automated
Learning - IDEAL, volume 6936 of LNCS, pages 178–185, 2011.

[42] L. Zhang and S. Malik. Extracting small unsatisfiable cores from
unsatisfiable boolean formulas, 2003.

64

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

http://ie.technion.ac.il/~ofers/haifasolvers/site/site.html
http://ie.technion.ac.il/~ofers/haifasolvers/site/site.html
http://strichman.net.technion.ac.il/hbench/

Efficient Uninterpreted Function Abstraction and
Refinement for Word-level Model Checking

Yen-Sheng Ho∗, Pankaj Chauhan†, Pritam Roy†, Alan Mishchenko∗, Robert Brayton∗
∗Department of EECS, University of California, Berkeley, CA, USA
{ysho, alanmi, brayton}@eecs.berkeley.edu

†Mentor Graphics, Inc., Fremont, CA, USA
{Pankaj_Chauhan2, Pritam_Roy}@mentor.com

Abstract—Methods for word-level model checking based on
purely bit-level techniques have difficulties with heavy arithmetic
logic. Word-level and SMT approaches often are limited by
relying on (incomplete) bounded model checking. UFAR, a hybrid
word- and bit-level approach, addresses these issues, taking
advantage of modern bit-level sequential techniques while heavy
arithmetic logic is addressed by word-level abstraction and the
use of uninterpreted function (UF) constraints. The methods
and efficiency improvements developed for UFAR enabled it to
prove 2422 of a set of 2492 industrial sequential model checking
problems within a 1-hour limit, while a bit-level model checker
super prove completed only 2115 of these within the same limit.

I. INTRODUCTION

Model checking (MC) on a Register-Transfer-Level (RTL)
word-level netlist is a necessary verification task for applica-
tions involving sequential synthesis. In this, an RTL netlist
is synthesized into another through retiming, clock-gating,
pipelining etc., and MC is required for proving the correctness
of the result. These problems are challenging if hard arithmetic
operators such as multipliers, adders, and variable shifters
are involved, and correspondences between flip flops are not
known.

Previous methods in this domain can be classified as fol-
lows. One directly “bit-blasts” the problem and then solves
with bit-level techniques such as IC3/PDR [5], [14], interpola-
tion [19], or BDDs [11]. Another [18] translates the problem
into SMT formulas (if possible) and then directly employs
SMT solvers such as Boolector [10], or Z3 [13]. A third [17]
applies predicate abstraction [16]. Term-level abstraction [2],
[1], [7], [6] replaces arithmetic operators with uninterpreted
functions (UF), and then solves with SMT solvers. However,
bit-level techniques are problematic when verifying circuits
with heavy arithmetic logic. Techniques adapted from software
verification are often not effective for hardware equivalence
checking. Most SMT-based approaches rely on (incomplete)
bounded model checking (BMC) [4] or induction [21] and
may not be applicable.

UFAR (Uninterpreted Function Abstraction and Refine-
ment), is a hybrid word- and bit-level solver, which moderates
the above issues. It takes advantage of modern sequential
techniques such as PDR and BMC at the bit-level, while
heavy word-level logic is tackled by abstraction and the use
of uninterpreted function (UF) constraints.

Such techniques are not new, even at the word level. Con-
ventional UF abstraction [2], [1], [7], [6] methods implicitly
enforce all possible UF constraints among the same functions.
This becomes inefficient when the number of similar functions
is large. Keys to UFAR’s efficiency are how simulations and
minimized counterexamples are used to refine abstractions,
how constraints are added and removed lazily, which pairs of
operators are constrained, and how UF constraints are applied
between operators of the same type but with different bit
widths. All this requires efficiently iterating between word-
level Verilog and AIG representations as refinements are done.
These techniques enable UFAR to prove problems containing
hundreds of heavy word-level operators.

We prove that UFAR is a sound and complete framework
for word-level counterexample guided abstraction and refine-
ment (CEGAR) [12]. It starts with the extreme abstraction
with all “problematic” word-level operators (e.g., multipliers,
adders, etc) removed (i.e. operator outputs are replaced by
unconstrained pseudo primary inputs). This is then bit-blasted
and given to a sound and complete bit-level model checker. If
a counterexample is returned, UFAR first simulates it on the
original netlist to check if it is real. If so, UFAR terminates
and reports it. Otherwise, the spurious counterexample is used
to refine the current abstraction. Refinement is done in this
context by 1) adding UF constraints between some pairs of
chosen compatible operators, and 2) restoring one or more of
the removed operators.

We experiment on 2492 industrial benchmarks for sequen-
tial RTL (word-level) model checking and show how different
refinement methods and heuristics are complementary, each
solving more problems in less time, and leading to a final
algorithm which solves all but 70 of the benchmarks within a
one hour time limit. We show detailed results on 19 examples
having ranges of 4-475 multipliers, 21092-302277 AIG nodes,
and 358-4785 flip-flops.

This paper first presents background material and formal
settings in Section II. The UFAR algorithm is presented in
Section III. Several optimization techniques for the algorithm
are given in Section IV. Section V gives some details about
the UFAR framework, including word-level representation and
bit-blasting this into an AIG. Experimental results on an
extensive set of industrial problems are presented in Section
VI, comparing the effectiveness of the two optimizations and

65

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

the overall UFAR algorithm. Some conclusions and future
work are discussed in Section VII.

II. BIT-VECTORS AND UF CONSTRAINTS

In the context of Verilog and its bit-vector operators, we
need to be precise about applying UF constraints between
pairs of operators. A UF constraint states that for two same-
type functions, if their inputs are equal then their outputs
are equal. Unfortunately, this is not at all straight-forward
when bit-vector operators are involved. Incorrect application
of UF constraints can lead to an unsound procedure on the
one hand or to a too restrictive application on the other. In
this section, we discuss bit-vector operators, define what it
means to be the same function, state when and how to make
UF constraints valid between two same-type operators, and
prove the soundness of the derived methods.

A. The MC problem

We assume that the input RTL design is in structural
Verilog. In structural Verilog, there are bit-vector (BV) signals
including primary inputs (PIs), primary outputs (POs), flip
flops (FFs), and internal signals. Flip flops have reset values
as initial states. A bit-vector signal s can be either signed or
unsigned, denoted by signed(s). The bit-width of s is denoted
by bw(s). A design is modeled as a finite state machine (FSM).

Definition 1. A design in structural Verilog is a tuple M =
(I,O, S, S0, T) where I is the set of inputs, O is the set of
outputs, S is the set of state variables, S0 is the set of initial
states, and T is the set of (deterministic) transition relations
where T ⊆ I × S × S. If (i, s, s′) ∈ T , then there exists a
transition from s to s′ under i.

The input format is assumed to be mitered as a single
FSM and a single output, out, representing the property to be
checked. If the problem is to prove equivalence between two
designs, a miter is created by merging all PIs and merging
corresponding mapped FFs (if any). The output out is a
Boolean signal, which is the OR of the pairwise XORs of
the corresponding outputs of the two designs. Thus it is 1 if
the two designs are different. Similarly for property checking,
the output is a monitor which signals 1 if the property fails.
In terms of linear temporal logic (LTL), the MC problem is
formulated as M |= G¬out, meaning the miter M should
never excite the signal out if the property holds.

B. Basics of word-level operators

We focus on abstracting problematic word-level operators
in a design. The subset of operators considered are all word-
level binary operators, such as +,−, ∗, /,%, <<,>>,<<<
,>>>. In Verilog, an operator is instantiated by a structural
statement which only states the function type of the operator
and the connection between signals1. An operator is modeled

1Without loss of generality, we assume that each statement contains only 1
binary operator. Statements like x = (a+b)*c can always be rewritten to
y = a+b and x = y*c.

*

c1(u32)

a1(u16) b1(u16)

*

c2(u16)

a2(u16) b2(u16)

*

c3(s32)

a3(s16) b3(s16)

op1 op2 op3

u/s: signedness
16/32: bit-width

Fig. 1: Three multipliers with different functions.

as a labeled node with a single output, up to two inputs, and
its label of function type.

Definition 2. An operator op is a tuple op = (o, i1, i2, t) where
o is the output signal, i1 and i2 are the input signals, and t is
the label of function type.

For example, the Verilog statement, c = a * b, is mod-
eled as op = (c, a, b, ∗). Note that the inputs are ordered
as specified in the Verilog statement. Note also that ∗ is a
“function-type” and not a function, since the actual function
that would be instantiated would depend on the properties of
the signals to which its inputs and output are connected. The
necessity of this important distinction will be clarified in the
next section.

C. Functions of word-level operators

In Verilog, the actual function associated with an operator
is determined by the bit-widths and signedness of its inputs,
output, and function-type. Operators with the same function
type do not necessarily have the same function; a function-type
represents a set of functions. For example, the three multipliers
in Figure 1 all represent different functions. Operators op1 and
op3 are different since op1 is unsigned multiplication while
op3 is signed multiplication. Operator op2 is different because
its output is only 16 bits.

To be precise in what follows, we need to explicitly model
what a Verilog front end does when it bit-blasts a Verilog
RTL design into a bit-level circuit. For this we need generic
operators and signal convertors.

Definition 3 (Generic operator). A generic operator is a bit-
vector operator that agrees with the integer function of its
function-type. That is, the bit-vector output, when evaluated
as an integer, is consistent with the result using the integer
function. It has the following properties.
• All of its inputs and output are signed.
• It is a pure arithmetic function parametrized with speci-

fied widths for its inputs and output.
• When a generic operation is implemented, its input widths

should be compatible with the widths of the signals
connected to them.

• The output width should be exactly large enough so as
to not impose any restriction on the operation (such as
truncation due to overflow).

In order to create signals used or produced by an instantiated
generic function, they must be converted from unsigned to
signed signals or vice versa. They also need to be converted
by truncation, sign extension, or zero extension. We model this

66

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

*

a(s16)

SC

ag(s17)

b(u16)

bg(s17)

cg(s34)

c(u16)

SC SC

*

c(u16)

a(s16) b(u16)

Generic
operator

(a) The relationship between a multiplier and its generic
version. SC denotes signal converters.

wire signed [15:0] a;
wire [15:0] b;
wire [15:0] c = a * b;

wire signed [15:0] a;
wire [15:0] b;
wire [15:0] c;
wire signed [16:0] ag = {1’b0, a};
wire signed [16:0] bg = {1’b0, b};
wire signed [33:0] cg = ag * bg;
assign c = cg;

Expose

(b) A piece of Verilog code for exposing the generic operator.

Fig. 2: An example showing how generic operators are mod-
eled and exposed.

by emulating what Verilog does in its assignment operator (=)
and concatenation operator ({}), called signal convertors.

The benefits of explicitly exposing generic operators include
1) it agrees with the arithmetic of not only bit-vectors but
integers, and 2) it unifies unsigned and signed operators. For
example, the original bit-vector multiplier, c = a * b in
Figure 2, does not agree with integer arithmetic, meaning that
if signals (a, b, c) are evaluated as integers (A,B,C), then
they do not necessarily satisfy the relation C = A× B (here
× is integer multiplication). To expose the generic multiplier
in Figure 2, first we observe that the original one is unsigned2

multiplication, so the original inputs are converted to signed
generic inputs with leading zeros inserted. Then a generic
output of 34 bits is created to prevent overflow. Finally the
generic output is converted to the unsigned original one with
some upper bits truncated. The generic multiplier, cg = ag

* bg, agrees with the integer arithmetic by construction.
This way, the original multiplier is represented by its generic
version and some signal convertors on the inputs and output.

With generic operators, all same-type generic operators
(e.g., multipliers) are considered to have the same function
since they all agree with their integer functions (e.g. integer
multiplication). This is important for uninterpreted function
abstraction since uninterpreted function constraints are valid
only for same-function classes.

D. Uninterpreted function constraints

The theory of uninterpreted functions (UF) states that given
any function F with its input X , and any two instances of
the same function, (x1, f1) and (x2, f2), then the Property (1)

2In Verilog, an operation is unsigned if at least one input is unsigned.

holds, stating that if the inputs are equal then the two outputs
must be equal.

(x1 = x2)⇒ (f1 = f2) (1)

This is called a UF constraint which is simply a relation
implied by any pair of the same two functions.

For Verilog, we need to be more precise about “same
function” and “equal inputs”. By f and g being the same
function we mean that f and g are instantiations of the same
generic function-type. By two signals being equal, we will
mean that they are signed and bit-wise equal after extension.
Then Property (1) holds with these modifications. Thus,
a UF constraint is valid between any pair of same function-
type generic operators (even if they have different bit widths).

Definition 4. Two signals, s1 and s2, are said to be equal
in Verilog if the corresponding statement, s1 == s2, is
evaluated to 1 in Verilog.

The precise Verilog semantics for comparing two signals is
as follows. It does either zero- or sign-extension for the signal
with the smaller bit-width depending on their signedness. If
both signals are signed, then it does sign-extension. Otherwise,
zero-extension is applied. Two signals are equal if they are bit-
wise equal after extension.

Definition 5. For two same function-type generic operators,
op1 = (o1, i11, i12, t) and op2 = (o2, i21, i22, t), the UF
constraint, denoted as c, is either Constraint (2) or (3).
• If t is asymmetric:

c = (i11==i21) ∧ (i12==i22)⇒ (o1==o2) (2)

• If t is symmetric:

c =

(
(i11==i21) ∧ (i12==i22)⇒ (o1==o2)

)∧
(

(i11==i22) ∧ (i12==i21)⇒ (o1==o2)

) (3)

We only apply UF constraints between generic instances
of same function-type operators. The constraints are created
as signals first and then treated as invariant constraints to the
model checking problem (see Section III-C). Thus, abstrac-
tions are created by 1) using UF constraints and 2) replacing
their outputs by new primary inputs (the generic operators are
“black-boxed”).

Definition 6. A generic instance is said to be black-boxed if
its output is replaced by a fresh primary input consistent with
the generic’s output.

Thus the new primary input is signed and has the same
width as the instance output being replaced. Note that a
UF constraint may be added even though the two operators
involved are both white-boxed. This can still be effective as it
provides a relation between operators which may not be easy
to derive using bit-level operations.

67

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

III. UFAR

In this section, the abstraction-refinement algorithm, UFAR,
for solving word level model checking problems is described.

A. The algorithm

Algorithm 1 UFAR

Input: M . M : the input miter
Input: S . S: the set of problematic operators
Output: status ∈ { SAT, UNSAT }

1: B ← S . B: the set of black-box operators
2: P ← ∅ . P: the set of UF constraints
3: M ← EXPOSINGFUNCTIONS(M , S)
4: while true do
5: A ← CREATEABSTRACTION(M , P , B)
6: status, cex ← MODELCHECKING(A)
7: if status = SAT then
8: if ISREALCEX(M , cex) then
9: return SAT

10: else
11: ∆P ← REFINEUFPAIRS(A, S, cex)
12: if ∆P 6= ∅ then
13: P ← P ∪ ∆P
14: continue
15: else
16: ∆B ← REFINEBLACK(M , P , B, cex)
17: B ← B\∆B
18: else
19: return UNSAT

Algorithm 1 provides a high level view of UFAR. It takes
two inputs; one is a miter M in word-level structural Verilog
and the other is S, the set of problematic operators that we
want to abstract (multipliers in most cases). UFAR will return
SAT if a true counterexample is found; otherwise, it concludes
that M |= G¬out and returns UNSAT. We will prove that
UFAR is a sound and complete algorithm in Section III-G.

There are two internal state sets in UFAR. The first is B,
the set of black operators that will be black-boxed in the
abstraction. The second is P , the set of operator pairs whose
UF constraints will be added to the abstraction. Initially B =
S, thereby black-boxing all problematic operators, and P = ∅.

Algorithm 1 begins with the procedure of exposing generic
operators (see Section III-B). It then operates in an abstraction-
refinement loop (lines 4–19). Each iteration begins by creating
an abstraction based on the current states of the algorithm,
which will be discussed in Section III-C. The abstraction
is then bit-blasted and solved by state-of-the-art bit-level
engines concurrently (see Section III-D). If the solver returns
UNSAT, the property is proven and UFAR terminates (line 19).
Otherwise a counterexample to the abstraction (cex) exists.
If cex is also a counterexample to the original miter, then
the property is falsified and UFAR terminates (lines 8–9).
Otherwise cex is spurious and UFAR analyzes it to refine the
abstraction (lines 11–17).

Refinement is achieved in two phases. UFAR first tries to
find new UF pairs that will block cex (see Section III-E).
If such are found, UFAR adds them to P and starts a new
iteration (lines 12–14). Otherwise, the second phase is started,
where cex is analyzed to determine a set of critical operators
(∆B) that can block cex (see Section III-F). For the next
iteration, UFAR will remove operators in ∆B from B (lines
16–17) and hence these will be white-boxed.

B. Exposing generic operators

To expose the generic version of an operator, we modify the
Verilog by inserting signed- or zero-extended signal convertors
to ensure that it becomes signed and that the bit-width of its
output is large enough. The procedure for each operator op =
(o, i1, i2, t) in the problematic set S is summarized below.

1) If one of the inputs is unsigned, then create zero-
extension-by-1 signed signal convertors for both inputs.
Denote two generic inputs as a1 and a2.

2) Create the generic operator op2 = (o2, a1, a2, t) where
o2 is signed and has a large enough bit-width.

3) Replace the original output o with the statement o =
o2. Note that this step creates the generic operator op2,
eliminating the original one op.

C. Creating abstractions

An abstraction (A) is created from the original miter (M),
using P and B, the two current states of Algorithm 1.
CREATEABSTRACTION operates in two steps:

1) For each pair p = (op1, op2) in P , construct a Boolean
signal c as defined in UF Constraints (2) or (3). Signal c =
1 implies that a UF constraint is active in M between op1
and op2. Signal c is then treated as an invariant constraint.

2) For each operator op = (o, i1, i2, t) in B, replace its
output o with a fresh primary input ppi with the same
signedness and bit-width, i.e. black-box it.

Note that an operator can be in a pair of P but not B. For
example, one benchmark contained a group of 3 multipliers
where 2 UF constraints were used between them, but only
one of the 3 was needed to be white-boxed for the final proof.
Note also that P and B are monotone.

We claim that the model A is an abstraction of M .

Lemma 1. Let N denote the model created after Step 1
(adding UF constraints) in CREATEABSTRACTION. N and
M satisfy: (¬out denotes the property)

N |= G¬out⇔M |= G¬out.

Proof. Consider any constraint signal c. We have M |= Gc
since the model M satisfies any valid UF constraint. Thus,

M |= G¬out⇔M |= G¬out ∧Gc
⇔M,Gc |= G¬out⇔ N |= G¬out

Theorem 1. The model A created by CREATEABSTRACTION
is an abstraction of the miter M .

68

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Proof. From Lemma 1, N generated by Step 1 is equisatis-
fiable to the miter M . In Step 2, it creates the model A by
replacing some internal signals in N with fresh primary inputs,
which is a known procedure for producing an abstraction.

D. Model checking using concurrency

To verify the current abstraction at the bit level, we could
use a single engine like PDR since it is efficient, sound,
and complete. Also, this procedure should be parallelized to
take advantage of different engines. Running a BMC engine
in parallel with PDR usually finds counterexamples to the
current abstraction more efficiently and thus very effective
in improving the algorithm. Also, various versions (based on
different implementations and parameters) of PDR and BMC
complement each other.

E. Refining UF pairs

This is the first phase of refinement. Given a (spurious)
counterexample cex to the abstraction, we want to find new
UF pairs ∆P among operators in S that can block cex during
the next iteration. REFINEUFPAIRS operates in two steps:

1) Simulate cex on the abstraction A to derive an assignment
function α : S × N → Z that maps every signal in A at
each time frame to a concrete value.

2) Identify pairs that violate UF constraints and add them to
∆P . For each time frame t and every pair of operators
(op1, op2) : op1, op2 ∈ S, op1 6= op2, if the values of the
inputs are equal but the outputs are different (Formula 4),
then add (op1, op2) to ∆P . Note that we consider both
input orders for symmetric operators although this is not
shown in Formula 4 for simplicity.

(α(i11, t) = α(i21, t) ∧ α(i12, t) = α(i22, t))
∧

α(o1, t) 6= α(o2, t)
(4)

Next, we discuss an upper bound for the size of P .

Theorem 2. The size of P in Algorithm 1 is bounded by
|S|(|S| − 1).

Proof. Consider the worst case where the operators in S are
all symmetric, then there are

(|S|
2

)
pairs of operators with 2

possible permutations of binary inputs. Hence the number of
pairs in the algorithm cannot exceed |S|(|S| − 1).

F. Refining black operators

In the second phase of refinement, we want to identify a
subset of operators ∆B in B such that if ∆B is removed from
B, cex will be blocked for the next iteration. We call the
procedure of removing elements from B white-boxing and the
operators in S \ B white boxes.

A straightforward way of identifying ∆B is to simulate
cex on the abstraction A and collect those operators in B
that have input-output values inconsistent with their white-
box values. However, this approach often finds an overly large
∆B, resulting in an unnecessarily large abstraction in the next
round. Hence, we propose a proof-based approach that often
obtains a much smaller ∆B.

The main idea is that if cex is spurious, then the BMC
Formula (5) is UNSAT. Here the functions β(i, t) and β(s, t)
denote the assignment of input i or state s at time t derived
from cex being simulated on the original miter M , k is the
depth of cex, and out is the miter signal.

IM (β(s, 0)) ∧
k−1∧
t=0

TM (β(i, t), β(s, t), β(s, t+ 1))

∧
k∨

t=0

out(β(i, t), β(s, t))

(5)

Next, multiplexers are introduced to select between the con-
crete version (white-box) and the abstracted version (black-
box) of an operator. If assumptions are made such that all the
concrete ones are selected initially, then the resulting BMC
formula would still be UNSAT and a modern SAT solver like
MiniSat [15] will return a subset of the assumptions that is
sufficient for UNSAT. This is a variation of finding an unsat
core and the subset returned is our candidate for ∆B.

The procedure REFINEBLACK operates in five steps.
1) For each pair in P , construct a UF constraint signal and

treat it as an invariant constraint on M .
2) For each operator op = (o, i1, i2, t) in B, introduce

two fresh primary inputs, sel and ppi, where sel is
a Boolean signal and ppi a bit-vector signal which is
consistent with the output ogen of the associated generic
operator. Replace ogen with o′gen = ITE(sel, ogen, ppi)
where ITE is the if-then-else operator. Depending on
the value of sel, either the concrete operator (ogen) or
the abstracted one (ppi) flows to the new output o′gen.

3) Denote the model created in Step 2 by N and unroll it
with the values of cex plugged in, and keep sel and ppi
as the remaining primary inputs. The cex values plugged
in are initial states and PIs at each time frame, denoted
by γ(s, 0) and γ(i, t) respectively.

4) Solve the BMC query (6), which is guaranteed to be
UNSAT. Note that γ is the assignment function of cex,
Xt is the set of sel input signals at time t, PPIt is the set
of ppi input signals at time t, and xtn is the sel signal for
the n-th operator at time t. By propagating xtn = 1 for
all t and n, the query (6) is reduced to (5) by construction
(sel = 1 means that the concrete version is chosen).

IN (γ(s, 0)) ∧
k−1∧
t=0

TN (γ(i, t), Xt,PPIt, st, st+1)

∧
k∨

t=0

out(γ(i, t), Xt,PPIt, st)

∧
k∧

t=0

|Xt|∧
n=0

xtn

(6)

5) Derive a subset ∆X of X using the assumption interface
of a modern SAT solver, and determine ∆B from ∆X .

69

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Theorem 3. The set ∆B found by REFINEBLACK is not empty
(|∆B| > 0).

Proof. |∆B| = 0 would mean that the formula (6) is SAT,
which contradicts with the fact that cex is spurious.

G. Analysis of the algorithm

Theorem 4. Algorithm 1 is sound and complete.

Proof. (sketch) Algorithm 1 is sound because it returns UN-
SAT only if the model A satisfies G¬out, which implies
M |= G¬out from Theorem 1. As for the completeness, the
algorithm returns SAT only if a counterexample is real (line
8–9). Convergence follows because for each iteration (line 4–
19), the following statements are true.
• B and P are monotone. Either P becomes strictly bigger

(line 12–13) or B becomes strictly smaller (Theorem 3).
• |P| is upper bounded by |S|(|S| − 1) (Theorem 2) and
|B| is lower bounded by 0 (empty set of black boxes).

Therefore the iteration must terminate implying that a defini-
tive answer must have been found.

IV. OPTIMIZATION

In this section, we introduce two optimizations (counterex-
ample minimization, and random simulation), each of which
improves the basic version of UFAR, Algorithm 1.

A. Minimizing counterexamples

A counterexample can be minimized [20] in the sense
that some inputs can be assigned as X (don’t care), but the
counterexample is still valid after ternary simulation. This way,
the number of concrete assignments is minimized.

The main advantage of using minimized counterexamples
is that Procedure REFINEUFPAIRS in Algorithm 1 can return
potentially fewer, but higher-quality pairs of constraints. This
is done by modifying the condition (Formula 4) for identifying
and adding a UF constraint, where we check if the inputs are
equal and the outputs are different under concrete assignments.
With minimized counterexamples, Xs might appear on the
outputs of black-box operators (unconstrained pseudo primary
inputs). We strengthen the condition by considering only in-
compatible outputs with X assignments. Two assignments are
said to be incompatible if they have opposite values at some
bit position, and compatible if they do not. For example, the
assignments XX01 and X000 are incompatible while 10XX
and 100X are compatible. With this strengthening, pairs that
satisfy Formula 4 under concrete assignments might violate the
new condition since their outputs become compatible after the
minimization. For example, consider two operators with con-
crete assignments (o, in1, in2), (0011, 01, 10) and (0101,
01, 10), which satisfies Formula 4. After the minimization,
if the assignments become (0XX1, 01, 10) and (XXX1, 01,
10), then the pair will not be added as UF constraints since
it violates the strengthened condition with compatible outputs.
Thus, it is likely that fewer constraints are added. Also, the
constraints we drop are lower-quality in the sense that if they
are added, then UFAR will still get similar counterexamples.

B. Performing random simulation

UFAR in Algorithm 1 only finds and applies UF constraints
when a counterexample (CEX) is found. However, the CEX
returned by a verification engine may not be unique. If UFAR
were to get a different CEX, then it might find and apply a
different set of UF constraints. This inherent randomness of
counterexamples could cause UFAR to take a path where more
white boxes are needed for a proof. Thus, random simulation
is applied on the original miter to find candidates for “good”
UF constraints. The idea is that if a UF constraint is useful for
the final proof, then the corresponding pair of operators must
be related in some way. This means that for some execution
traces they would have identical input assignments.

The procedure of random simulation operates in 2 steps.
1) Determine the parameters: the number of patterns and the

number of time frames. Run random simulation on the
original miter.

2) For each time frame and for each pair of same function-
type generic operators, count the number of times iden-
tical input patterns occur.

A threshold is then set for determining what are good
candidates of UF constraints (a pair is considered good if its
count is above the threshold). A threshold should be chosen
carefully since there is a trade-off between the number and the
quality of constraints; a lower threshold increases the chances
of getting higher-quality UF constraints (in the sense that it is
more difficult to find them with counterexamples), but a lower
threshold also leads to a larger number of constraints.

V. THE UFAR FRAMEWORK

UFAR involves an iteration of abstraction and refinement
between two types of representations,

1) AIGs (bit-level circuit), and
2) an internal netlist format called WLC (word-level circuit),

a new development in ABC [9] to represent word-level
designs.

This capability includes 1) a very fast Verilog based bit-blaster,
using Verilog semantics of the WLC box operators, to translate
into an AIG, and 2) a duplication-based method to create
different WLC netlists at the word level. These developments
are critical in making UFAR efficient, to the extent that UFAR
run-time is dominated by the SAT solving in the bit-level
model checker.

A. Bit-blasting WLC with Verilog semantics

The framework starts with reading in a structural Verilog
miter representing the model checking problem. This is trans-
lated into a WLC netlist (WLCm) using ABC’s structural
Verilog parser. Next, the generic operators of all designated
“problematic” operators are exposed by creating a new WLC
netlist, denoted as WLCg. More details of creating a new WLC
netlist are described in the next subsection. It is important to
note that WLCg needs to be created only once during the
entire flow and represents the fully concretized problem. This
is bit-blasted into an AIG, denoted by AIGg to be used later.

70

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

The next step is to create a WLC netlist, WLCa, for the
current abstraction using WLCg and the state sets P and B.
WLCa is bit-blasted into an AIG, denoted as AIGa. During
this, Verilog semantics are used to faithfully interpret the box
operators of WLC netlists.

Typically the model checker, applied to AIGa, returns a
counterexample which is simulated on AIGg to see if it is
spurious. If so, the counterexample is first minimized, using
AIGg as reference. This is analyzed to decide the state changes
to P and B, which will be used to block this counterexample.
These are implemented by creating a new WLCa from WLCg
and the current state sets. Then the next iteration proceeds.

B. Creating abstractions WLCa

In the iteration in the previous section, the next abstraction
is constructed as a WLC netlist using inputs P and B and
WLCg. This is achieved by constructing one intermediate
netlist (WLCp) and the final netlist (WLCa). To activate the
UF constraints in P , WLCp is created by duplicating WLCg
but attaching the UF constraints in P to the appropriate signals.
The boxes listed in B need to be made black, so the outputs
of each such box need to be replaced by new PIs. WLCa is
built by duplicating WLCp but with the outputs of the boxes
in B replaced by the new PIs.

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results of our
implementation of UFAR with different optimization methods
enabled. The implementation is based on ABC [9] using its
latest improvements to Verilog parsing and bit-blasting.

We ran UFAR on a set of 2492 industrial word-level Verilog
designs that were synthesized by an industrial tool to be cycle-
accurate with the original circuit. Multipliers are the targeted
problematic operators for UFAR to abstract. All experiments
were performed on a workstation of Intel Xeon E5504 CPUs
clocked at 2.0 GHz with 24 GB of RAM.

Comparing our results against publicly available verification
tools is difficult. To our knowledge, no tools exist that can
parse such designs directly without requiring a major mod-
ification3. Also, there is no standard format for sequential
word level circuits, as there is for the combinational case with
SMT-LIB [3]. Therefore we compared results of running a)
super_prove [8] on bit-blasted designs against b) three
UFAR versions with different optimization settings.

For super_prove, we simply bit-blasted an input miter
and immediately called super_prove to solve it. For UFAR
we used three versions in this comparison:
• opt1 means the basic version.
• opt2 means opt1 plus counterexample minimization.
• opt3 means opt2 plus random simulation.

For all UFAR versions, four bit-level verification engines were
run in parallel, 3 variants of PDR and one BMC implementa-
tion. BMC is much more efficient at finding counterexamples,

3Ebmc [18] cannot handle parameterized modules or functions/tasks in
Verilog. VCEGAR [17] has a more limited front-end than the one in Ebmc.

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

10 510 1010 1510 2010 2510 3010 3510

N
um

be
r o

f s
ol

ve
d

in
st

an
ce

s

Time in seconds

ufar-opt1

ufar-opt2

ufar-opt3

Fig. 3: Comparison of UFAR variants.

super_prove ufar-opt1 ufar-opt2 ufar-opt3

2115 2398 2408 2422

TABLE I: The numbers of solved instances using different
settings. 70 instances remain unsolved.

while the 3 versions of PDR in combination are efficient at
proving a problem UNSAT.

We present the results in Figure 3, where the horizontal axis
represents wall-clock time and the vertical axis represents the
cumulative number of solved instances. A time-out of 1 hour
was enforced for each example. The result of super_prove
is not shown in Figure 3 because its number of solved
instances is 2115, well below the bottom scale of 2330.
The opt2 version is slightly better than opt1 because the
counterexample minimization prevents UFAR from applying
too many constraints. The opt3 version works best because
the random simulation finds important UF constraints that can
be missed by counterexamples. All solved instances are unsat.

Table I shows the numbers of instances finally solved by
all versions within the 1-hour time-out. The three versions of
UFAR outperform super_prove, which is often ineffective
in solving problems with many arithmetic operators.

We selected 19 out of 2492 designs to present more detailed
results in Table II. The selection is somewhat arbitrary but it
does represent designs that are dissimilar and gives an idea of
expected ranges of iterations needed, UF constraints used, and
white box operators in the final abstractions. We observe the
following from Table II.

1) UFAR proves most cases with a relatively small number
of white-box multipliers.

2) The number and quality of UF constraints are two impor-
tant factors of performance. If the number is large, then
UFAR generally needs more time to run, which is why
counterexample-based constraint reduction is important.
If the quality is good, then UFAR may prove a problem
with fewer white boxes (or none). This supports the using
of the random simulation to find good constraints.

3) It takes a nontrivial number of refinements for UFAR

71

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

sp ufar-opt1 ufar-opt2 ufar-opt3

Design #Mults #AIGs #FFs Result Time Time ip/iw/np/nw Time ip/iw/np/nw Time ip/iw/np/nw

1 60 187303 2608 unsat 306.71 173.54 1/0/364/0 1127.1 3/0/12/0 3.39 1/0/874/0
2 11 72003 358 unsat 2/1/24/9 2661.2 3/1/30/9 1209.7 1/1/6/9
3 16 115888 550 unsat 20.75 2/0/37/0 3/1/17/10 18.69 1/0/12/0
4 12 49948 819 unsat 4.01 4/0/26/0 4.47 4/0/18/0 1.33 1/0/4/0
5 102 104272 1524 unsat 60.65 3/0/641/0 65.56 6/0/82/0 98.18 2/0/1252/0
6 144 161721 2456 unsat 1225.8 4/0/2366/0 2085.1 12/0/57/0 843.09 1/0/352/0
7 8 192143 5825 unsat 725.36 1/0/14/0 488.99 2/0/4/0 833.42 2/0/11/0
8 14 21092 400 unsat 474.51 3/1/30/10 316.95 3/1/28/8 272.7 2/1/33/8
9 32 46239 972 unsat 8.93 7/3/315/5 3/2/16/4 2428.6 3/3/276/9
10 43 302277 4065 unsat 157.14 3/0/597/0 106.83 4/0/40/0 66.38 1/0/447/0
11 4 25355 1552 unsat 156.16 1.49 1/0/2/0 1.10 1/0/2/0 0.99 1/0/2/0
12 15 49718 1707 unsat 25.33 3/1/40/7 48.46 8/1/34/7 24.93 3/1/52/7
13 21 65892 1997 unsat 40.18 2/1/154/7 50.42 5/1/40/9 102.24 6/1/90/7
14 223 292183 2649 unsat 2548.9 41/8/2398/50 34/9/674/55 1670.8 7/5/1401/37
15 63 91259 875 unsat 1967.4 10/4/915/29 517.86 10/4/142/37 2457.5 3/5/374/35
16 15 184859 4785 unsat 2939.8 1/1/68/4 535.18 2/1/7/3 2169.9 1/1/73/3
17 216 128137 1661 unsat 2231.2 4/0/1107/0 16/0/1943/0 401.76 1/0/394/0
18 253 199466 3751 unsat 118/0/23825/0 6.15 5/2/78/5 686.49 82/2/8638/3
19 475 274801 4204 unsat 470.71 5/0/10556/0 150.18 8/0/172/0 158.99 1/0/268/0

TABLE II: Detailed results of 19 unsat designs. The #Mults/#AIGs/#FFs means the number of multipliers/bit-level AIG
nodes/bit-level flip flops. The ip/iw/np/nw means the number of iterations of applying new UF constraints/iterations of
applying new white boxes/total UF constraints/total white boxes.

to converge, implying that UFAR builds up abstractions
gradually. A major challenge is to figure out how to strike
a good balance between the number and quality of UF
constraints and the number of white boxes needed.

4) The main effect of counterexample minimization seems
to be to make the overall algorithm more efficient but
solves only 2 additional benchmarks.

5) Random simulation made UFAR faster and helped solve
4 more benchmarks.

VII. CONCLUSION AND FUTURE WORK

UFAR is an algorithm that abstracts (black-boxes) all
problematic operators up front and refines them by applying
UF constraints and/or white-boxing. We presented two op-
timization techniques for UFAR. We demonstrated UFAR’s
scalability on a large set of industrial problems.

For future work, we would like to understand a few of the
anomalies in Table II (e.g., Designs 15 and 18) where an
optimization caused quite a large slow-down in the solving.
We also want to experiment on the 70 remaining unsolved
benchmarks to find additional techniques to solve more prob-
lems. We plan to extend UFAR to use UF constraints across
time frames and to perform refinement more gradually. For
example, instead of white-boxing an entire operator, we might
grey-box it. Last, we plan to integrate modern SMT solvers to
investigate possible advantages in this setting.

VIII. ACKNOWLEDGEMENTS

This work was supported in part by SRC contract 2265.001
as well as NSA under the TRUST project. We also thank
industrial sponsors of BVSRC: Altera, Atrenta, Cadence,
Calypto, IBM, Intel, Mentor Graphics, Microsemi, Synopsys,
and Verific. for their continued support.

REFERENCES

[1] Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah. Reveal: A formal
verification tool for verilog designs. In Proc. of LPAR ’08.

[2] Z. S. Andraus and K. A. Sakallah. Automatic abstraction and verification
of verilog models. In Proc. of DAC’04.

[3] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version
2.0. Technical report, Department of Computer Science, The University
of Iowa, 2010. Available at www.SMT-LIB.org.

[4] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model
checking without bdds. In Proc. of TACAS’99.

[5] A. R. Bradley. Sat-based model checking without unrolling. In Proc.
of VMCAI’11.

[6] B. A. Brady, R. E. Bryant, and S. A. Seshia. Learning conditional
abstractions. In Proc. of FMCAD’11.

[7] B. A. Brady, R. E. Bryant, S. A. Seshia, and J. W. O’Leary. ATLAS:
automatic term-level abstraction of RTL designs. In Proc. of MEM-
OCODE’10.

[8] R. Brayton, N. Een, and A. Mishchenko. Using speculation for
sequential equivalence checking. In Proc. of IWLS’12.

[9] R. Brayton and A. Mishchenko. Abc: An academic industrial-strength
verification tool. In Proc. of CAV’10.

[10] R. Brummayer and A. Biere. Boolector: An efficient smt solver for
bit-vectors and arrays. In Proc. of TACAS’09.

[11] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. In Proc. of LICS’90.

[12] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Proc. of CAV’00.

[13] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In Proc. of
TACAS’08.

[14] N. Eén, A. Mishchenko, and R. Brayton. Efficient implementation of
property directed reachability. In Proc. of FMCAD’11.

[15] N. Eén and N. Sörensson. An extensible sat-solver. In Proc. of SAT’03.
[16] S. Graf and H. Saı̈di. Construction of abstract state graphs with pvs. In

Proc. of CAV’97.
[17] H. Jain, D. Kroening, N. Sharygina, and E. Clarke. Word level predicate

abstraction and refinement for verifying rtl verilog. In Proc. of DAC’05.
[18] D. Kroening and M. Purandare. Ebmc: The enhanced bounded model

checker. www.cprover.org/ebmc.
[19] K. L. McMillan. Interpolation and sat-based model checking. In Proc.

of CAV’03.
[20] A. Mishchenko, N. Eén, and R. Brayton. A toolbox for counter-example

analysis and optimization. In Proc. of IWLS’13.
[21] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties

using induction and a sat-solver. In Proc. of FMCAD’00.

72

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Optimizing Horn Solvers for Network Repair
Hossein Hojjat∗, Philipp Rümmer†, Jedidiah McClurg‡, Pavol Černý‡, and Nate Foster∗

∗ Cornell University, USA
{hojjat,jnfoster}@cs.cornell.edu

† Uppsala University, Sweden
philipp.ruemmer@it.uu.se

‡ CU Boulder, USA
{jedidiah.mcclurg,pavol.cerny}@colorado.edu

Abstract—Automatic program repair modifies a faulty pro-
gram to make it correct with respect to a specification. Previ-
ous approaches have typically been restricted to specific pro-
gramming languages and a fixed set of syntactical mutation
techniques—e.g., changing the conditions of if statements. We
present a more general technique based on repairing sets of
unsolvable Horn clauses. Working with Horn clauses enables
repairing programs from many different source languages, but
also introduces challenges, such as navigating the large space
of possible repairs. We propose a conservative semantic repair
technique that only removes incorrect behaviors and does not
introduce new behaviors. Our proposed framework allows the
user to request the best repairs—it constructs an optimization
lattice representing the space of possible repairs, and uses a novel
local search technique that exploits heuristics to avoid searching
through sub-lattices with no feasible repairs. To illustrate the ap-
plicability of our approach, we apply it to problems in software-
defined networking (SDN), and illustrate how it is able to help
network operators fix buggy configurations by properly filtering
undesired traffic. We show that interval and Boolean lattices are
effective choices of optimization lattices in this domain, and we
enable optimization objectives such as modifying the minimal
number of switches. We have implemented a prototype repair
tool, and present preliminary experimental results on several
benchmarks using real topologies and realistic repair scenarios
in data centers and congested networks.

I. INTRODUCTION

Program repair is a promising approach to software devel-
opment that synthesizes a modification to a faulty system to
make verification succeed. A number of approaches have been
explored in the literature including deductive program repair
[1] and automatic patch generation [2], but these often have
several limitations.

1) They target specific types of programs—e.g., repairing
functional Scala programs, or patching PHP programs to
make them pass a test suite.

2) They search for specific types of repairs—e.g., finding
syntactically similar programs by swapping arguments to
functions, or modifying the conditions on if statements
by conjoining (or disjoining) additional conditions.

3) In general, they are not able to find repairs that are
optimal with respect to a given objective function.

This paper develops a general approach to the program repair
problem. Rather than developing tools customized for specific
languages, we utilize a general modeling framework that
can be used to encode a wide variety of software artifacts.
Additionally, rather than examining specific types of repairs,
we explore the space of all possible repairs, and develop
techniques for doing this efficiently. Importantly, our tool also

has the ability to search for optimal repairs, specified using a
domain-specific objective function.

Our approach is based Horn clauses—a general framework
that is able to model a wide variety of systems and has scalable
algorithms and verification tools [3], [4], [5]. In order to use
the framework in the context of program repair, we formulate
the Horn clause repair problem: given a set of Horn clauses
that violates a safety invariant, our goal is to produce a repaired
set of clauses where the repair is optimal with respect to a
domain-specific objective function. To find the optimal repair,
we must search through a large (in fact, potentially infinite)
space of Horn clause repairs. To do this, we construct a finite
lattice that abstracts the space of possible repairs—e.g., using
Boolean and interval lattices. Our algorithm for solving Horn-
clause optimization problems over finite lattices combines
ideas from local search with conflict-driven learning (inspired
by SAT and SMT solvers) to prune parts of the optimization
lattice that are guaranteed to not contain solutions.

To evaluate our approach, we show how it can be used
to solve a variety of real-world problems in the domain of
software-defined networking (SDN). To apply our techniques
in a given domain, we need a user-defined mapping from
the source language to Horn clauses (and vice-versa), and
an objective function that specifies in what sense a repair
is optimal. In SDN, a configuration consists of tables of
packet-forwarding rules of the individual switches in the
network. Network configurations often contain bugs—e.g., due
to loops, black-holes, or access-control violations [6]. We
model network configurations using Horn clauses and use
an objective function that minimizes the number of switches
whose configuration is modified by the repair. We show that
our repair framework is able to produce optimal repairs of
realistic network configurations efficiently.

II. MOTIVATING EXAMPLE

The network shown in Fig. 1(a) corresponds to a topology
commonly used in large data centers—switches are grouped
into three layers: core, aggregation, and ToR (top-of-rack)
switches. During normal operation, packets are forwarded
from a host upward through aggregation and core switches,
and then back downward to the destination host. Although
there are physical loops in this network a packet should take
only a finite number of hops in any configuration.
In this example, the data center configuration provides service
to multiple tenants: hosts H1, H2, and H3 belong to one
customer, and H4 belongs to another customer. Host H1 sends
traffic to H2 and H3, but this traffic should not reach H4, as

73

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

H1

T1

Host

A1Aggregation

T2ToR T3 T4

A3 A4

H2 H3 H4

Not safe
for H1.

A2

C1Core C2(a) filter(H1)

H1

H2

H3

S1

S2

S3

S4

buffer size=10

S5

S6

Not safe for green.

S7

S8

S9

H4

H5

H6

(b)

10(r)

15(b)

5(g)

5(r)

5(r)

5(b)
5(b)

5(b)

5(r)

5(b) 5(r)

5(b)

5(b)

Fig. 1: a) Repair in data center, b) Repair w.r.t. bandwidth and
queue sizes.

it is not owned by the customer. To implement this policy, the
operator might install a forwarding rule at C1 to filter packets
from H1 going towards A4 and also disable the link A3−T4
for good measure (in the figure, this disabled link is indicated
by a “ ” symbol.) Now assume that the network operator
has brought the core switch C2 down for maintenance—i.e.,
the dashed links cannot be traversed by any packet. After the
maintenance task has been completed, the network operator
decides to bring up C2 to help balance load within the data
center. Unfortunately, this causes the safety requirement to be
violated, since there is a new path that forwards H1 traffic
to H4. Our repair framework interactively helps the network
operator bring the network back to safety. The operator can
provide as input (i) a description of the network as a high-level
transition system, and (ii) a set of required safety properties.
Our tool then synthesizes a set of possible repairs which re-
turns the system to safety. As a first solution, the repair engine
might suggest that we either disconnect the links A1−C2 and
A2−C2, or take C2 offline and return the network to its initial
state. The network operator could reject this “trivial” repair
by stipulating that any repair must not disconnect links. The
repair engine might also suggest solutions that rewrite the
traffic from H1 to another type of traffic by modifying packet
headers, and the network operator could reject such solutions
by stipulating that the repair engine must not modify headers.
After providing such restrictions, our tool returns a solution in
which filters for H1 traffic have been added on a number of
links: {A1−C2, A2−C2}, {C2−A4, A4−T4}, {A4−T4}, etc.
Our framework uses objective (ranking) functions to guide
the repair engine to the “best” answers. For example, the
network operator might be interested in solutions that modify
the configurations on the smallest number of switches. By
providing a suitable objective function, our tool can find an

optimal correct solutions—e.g., adding a single filter on the
link C2−A4 or on the link A4−T4.

Another important class of network configuration repairs is
related to quantitative measures of bandwidth and traffic. As an
example, consider Fig. 1(b) and suppose that each intermediate
node can buffer at most 10 units of traffic. The hosts H1, H2,
H3 on the left receive 10 units of “red” traffic, 15 units of
“blue” traffic, and 5 units of “green” traffic respectively. Red
traffic should be sent to H4, blue traffic to H5, and green
traffic to H6. In addition, the green traffic must not traverse the
intermediate node S6. Initially, the network operator decides
to send 5 units of red traffic to each of S4 and S5. She also
decides to send 5 units of blue traffic to each of S4, S5, and
S6. Unfortunately, this configuration does not allow the green
traffic to reach its destination since it cannot flow through S6,
and the buffers of S4 and S5 are already full. A correct repair
might shift some of red or blue traffic (or both) to S6 to make
room for the green traffic to pass through S4 or S5. Our repair
engine might generate a solution that sends all green traffic to
S4, and allows the red and blue traffic to be arbitrary divided
between S4, S5, and S6, provided the total amount of traffic
does not exceed the buffer capacity.

III. BASIC DEFINITIONS

a) Constraint languages: Throughout this paper, we as-
sume that a first-order vocabulary of interpreted symbols has
been fixed, consisting of a set Σf of fixed-arity function
symbols, and a set Σp of fixed-arity predicate symbols.
The interpretation of Σf and Σp is determined by a fixed
structure (U, I), consisting of a non-empty universe U , and a
mapping I that assigns to each function in Σf a set-theoretic
function over U , and to each predicate in Σp a set-theoretic
relation over U . As a convention, we assume the presence
of an equality symbol “=” in Σp, with the usual interpre-
tation. Given a set X of variables, a constraint language
is a set Constr of first-order formulae over Σf ,Σp, X . For
example, the language of quantifier-free Presburger arithmetic
(mainly used in this paper) has Σf = {+,−, 0, 1, 2, . . .} and
Σp = {=,≤, |}, with the usual semantics.
b) Horn Clauses: We consider a set R of uninterpreted
fixed-arity relation symbols. The arity of a symbol p ∈ R is
denoted by α(p). A Horn clause is a formula H ← C ∧B1 ∧
· · · ∧ Bn, where C is a constraint over Σf ,Σp, X; each Bi
is an application p(t1, . . . , tk) of a relation symbol p ∈ R
to first-order terms over Σf , X; and H is similarly either an
application p(t1, . . . , tk) of p ∈ R to first-order terms, or false.
H is called the head of the clause, and C ∧B1 ∧ · · · ∧Bn

the body. In case C = true, we usually omit C and just
write H ← B1 ∧ · · · ∧ Bn. First-order variables in a clause
are implicitly universally quantified; relation symbols repre-
sent set-theoretic relations over the universe U of a struc-
ture (U, I) ∈ S. Notions like (un)satisfiability and entailment
generalize to formulae with relation symbols.

Definition 3.1: Let HC be a set of Horn clauses over relation
symbols R. HC is called (semantically) solvable (in the
structure (U, I)) if there is an interpretation σ of the relation

74

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Algorithm 1: Generalize Procedure
Input: Unsolvable Horn clauses HC
Result: Solvable Horn clauses HC

1 ok := false;
2 while ¬ok do
3 (ok ,CEX) := SOLVE(HC);
4 pick CEX ′ ⊆ CEX ; HC := (HC \ CEX ′);
5 if ¬ok then
6 for h := (H ← C ∧

∧
j Bj) ∈ CEX ′ do

7 m := fresh symbol ;
8 HC := HC ∪ (H ← C ∧m ∧

∧
j Bj);

symbols R as set-theoretic relations such that the universal
closure Cl∀(h) of every clause h ∈ HC holds in (U, I),
denoted by σ |= HC ; in other words, if the structure (U, I)
can be extended to a model of the clauses HC .

We can practically check solvability of sets of Horn clauses
by means of predicate abstraction [7], [8], using tools like
Z3 [9], HSF [7], or Eldarica [5].

IV. HORN-CLAUSE REPAIR

This section defines the Horn clause repair problem and
presents our conservative approach to solving it.

Definition 4.1 (Repair): Let HC be a set of Horn clauses
and φ a safety invariant, encoded as a Horn clause hφ. Now
assume that HC violates the safety invariant—i.e., HC ∪{hφ}
is unsolvable. The set HC ′ is a repair of HC if (i) HC ′∪{hφ}
is solvable, and (ii) the models I of the first-order variables
in HC are a superset of the models I ′ for HC ′.

Given a set of unsolvable Horn clauses, there can be
many different strategies for repairing them—i.e., to make
the clauses solvable—but it is important that we be able to
map repairs back into the problem domain. As an example,
in our case studies, we will interested in converting suggested
repairs from Horn clauses back to network configurations. The
relation symbols in the Horn clause representation will have
a specific meaning in the problem domain (e.g., position of
the packets or the distribution of traffic in network), and the
clauses will have a specific meaning (e.g., forwarding across
links). Our repair procedure is conservative in the sense that it
does not add clauses, remove clauses, or change the structure
of the relation symbols. This makes the translation of repairs
back to the problem domain easy—we merely add constraints
to the bodies of the clauses to make the clauses more con-
strained with the goal of removing bad behaviors. We show
that this kind of repair corresponds to adding filters or packet-
processing rules to switches, and we argue in Section VII that
this strategy is not restrictive in the networking domain.

The generalization procedure in Algorithm 1 removes coun-
terexamples to a set of Horn clauses by adding fresh relation
symbols to the bodies of a subset (CEX ′) of the clauses
that constitute the counterexample (CEX). The arguments
to the fresh relation symbol m are either determined by
the problem domain, or use all of the arguments from the

existing relation symbols in the head and body of the clause.
Algorithm 1 removes every counterexample so that the while
loop eventually terminates. In the worst case, it conjoins
fresh relation symbols to the bodies of all clauses. The fresh
relation symbol added to the body of each clause are trivially
satisfiable, since the symbols can be set to false. However,
our Horn optimization problem attempts to synthesize more
interesting solutions.

V. HORN-CLAUSE REPAIR OPTIMIZATION

We now develop a general framework for formulating and
solving optimization problems subject to Horn constraints.
The framework is a good match for a range of analysis and
synthesis tasks, and in particular, for the purpose of repairing
networks. In this setting, side conditions in the form of Horn
clauses are used to represent the network, its desired correct-
ness properties, and the space of possible network repairs,
while the optimization objective captures preferences about the
generated repair—e.g., the smallest number of switches should
be updated. Since multiple incomparable solutions may exist
in general, we arrange the search space as a lattice.

Definition 5.1 (Optimization lattice): Suppose again that R
is a set of uninterpreted fixed-arity relation symbols, and that

SR = {σ : R→ P(U∗) | σ(p) ⊆ Uα(p)}

is the space of possible interpretations of the R symbols as
set-theoretic relations over the universe U . An optimization
lattice is a pair (〈L,vL〉, µ) consisting of a complete lattice
〈L,vL〉 and a mapping µ : L → P(SR) from elements of
〈L,vL〉 to sets of interpretations of the R symbols, such that:

1) the bottom element is mapped to µ(⊥) = SR, the set of
all interpretations; and

2) µ is anti-monotonic, i.e., a vL b implies µ(a) ⊇ µ(b).
The lattice (〈L,vL〉, µ) is Horn-definable if there is a

function π mapping elements l ∈ L to finite sets π(l)
of Horn clauses over relation symbols R ∪ R′, such that
µ(l) = {σ|R | σ |= π(l)} for every l ∈ L.

Given a set HC of Horn clauses, we call a lattice ele-
ment l ∈ L feasible if there is an interpretation σ ∈ µ(l) with
σ |= HC ; in other words, if the clauses are satisfied by some
interpretation associated with l. Since µ is anti-monotonic,
feasibility is an anti-monotonic predicate on optimization
lattices as well: if a node is infeasible, all of its successors
are also infeasible. An element l ∈ L is maximal feasible if l
is feasible, but all of its successors are infeasible.

Definition 5.2: A Horn optimization problem is defined
by a set HC of Horn clauses over relation symbols R, an
optimization lattice (〈L,vL〉, µ) over R, and a monotonic
function obj : L → D to a totally ordered domain D. A
solution is a lattice element lmax ∈ L such that

1) lmax is maximal feasible for HC ; and
2) obj (lmax) = max{obj (l) | l ∈ L is feasible for HC}.
Example 5.1: Consider the topology shown in Fig. 2 and

suppose we want to implement IP multicast from H to I1
and I2 with TTL scoping. As background, the TTL (time-
to-live) field is initialized to a default value (e.g., 64) and is

75

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

H R

I1

I2

Fig. 2: Multicast router with TTL scoping.

decremented at every hop. Packets with TTL 0 are dropped,
which prevents forwarding loops. In TTL scoping, the operator
assigns a TTL threshold to each output port on all multicast
routers. The routers only forward packets whose TTL value
is greater than or equal to the configured threshold. In this
example, we will consider a stronger version of TTL scoping
with upper and lower bounds. To represent multicasting of a
packet to the hosts I1 and I2 using Horn clauses, we assign
relation symbols R to the router, and I1, I2 to the destination
hosts (Section VI shows how to encode networks as Horn
clauses). Now suppose the network operator wants to disable
multicasting by allowing only traffic to I1 or I2 (but not both)
by adding a filter on TTL values for traffic coming from H .
Representing the newly added filter using the relation symbol
f , we obtain the following Horn clauses:

R(t)← f(t)

I1(t′)← R(t) ∧ (t′ = t− 1) ∧ (t′ ≥ 3)

I2(t′)← R(t) ∧ (t′ = t− 1) ∧ (1 ≤ t′ ≤ 2)

The safety specification is false ← I1(t) ∧ I2(t′).

A. Optimization in Boolean Lattices

We discuss two lattices that are frequently useful for defin-
ing Horn optimization problems: Boolean lattices, defined as
the powerset lattice of some finite set, and interval lattices,
which can capture value or address ranges to be enabled or
blocked in network repair problems (Sect. V-B). One can
construct more complicated optimization lattices—e.g., by
taking the Cartesian product of lattices.

We first consider powerset lattices 〈P(B),⊆〉 of some finite
base set B. The bottom element of such a lattice is the empty
set ∅, while the top element is the full set B. This kind of
lattice is useful for modeling optimization problems of discrete
character, and also covers (weighted) first-order Max Horn
SAT problems—i.e., the problem of satisfying a maximum
subset of some set of Horn constraints [10].

To convert 〈P(B),⊆〉 into an optimization lattice, a map-
ping πB from P(B) to sets of Horn clauses can be defined
as a homomorphism πB(A) =

⋃
x∈A πB(x), given a πB that

maps every element of B to a (finite) set of Horn clauses. In
other words, every element x ∈ B is responsible for enabling
some Horn constraints. The mapping πB induces an anti-
monotonic mapping µB(A) = {σ | σ |= πB(A)} to sets of
interpretations, and an optimization lattice (〈P(B),⊆〉, µB).

Example 5.2: Recall Example 5.1. We will show how to
convert this system into a Horn optimization problem. To start,
we choose a base set of clauses

B =

{
f(t)← t < 2, f(t)← t = 2, f(t)← t = 3,
f(t)← t = 4, f(t)← t > 4

}

(−∞, 2]

[2, 2]

(−∞, 3]

[2, 3]

(−∞, 4]

∅

[3, 3]

[2, 4]

(−∞,+∞)

[3, 4]

[2,+∞)

[4, 4]

[3,+∞)

[4,+∞)

v

Fig. 3: Example interval lattice 〈I42 ,v4
2〉.

and generate a 32-element lattice 〈P(B),⊆〉. Since each
lattice element is identified with a set of Horn clauses, the
mapping πB can be defined as the identity function. Each
element of B describes constraints on considered solutions
of f , and maximal feasible elements correspond to solutions
where f accepts as many TTL values t as possible. The
maximal feasible elements are:

m1 = {f(t)← t < 2, f(t)← t = 2, f(t)← t = 3}, and
m2 = {f(t)← t < 2, f(t)← t = 4, f(t)← t > 4},

i.e., f must filter either values t ≥ 4, or values t ∈ [2, 3].

B. Optimization in Interval Lattices

Boolean lattices tend to grow rapidly in practice (as in the
previous example). As a more compact (though more coarse-
grained) representation, lattices of intervals are more useful.
Given integers a, b ∈ Z (a ≤ b), we define the lattice 〈Iba,vba〉:

Iba = {∅} ∪ {(−∞,∞)} ∪
{[x, y] | x, y ∈ Z, a ≤ x ≤ y ≤ b} ∪
{(−∞, x], [x,∞) | x ∈ Z, a ≤ x ≤ b}

vba = {(I, J) ∈ Iba × Iba | I ⊇ J}

where [x, y], (−∞, x], etc., denote non-empty intervals of
integers. The bottom element of the lattice is the full inter-
val (−∞,∞) = Z, and the top element is the empty set ∅. As
an example, the 14-element lattice 〈I42 ,v4

2〉 is given in Fig. 3.
A lattice 〈Iba,vba〉 can naturally be used to express network

repairs that consist of blocking certain ranges (of packet
types, addresses, ports, etc.). For instance, given a unary Horn
predicate p, a mapping πp from interval lattice elements to
Horn clauses can be defined by

πp(I) = {p(z)← z 6∈ I} (for I ∈ Iba) .

The clause πp(I) implies that p holds for all values outside
of the interval I , while p can be false for values within
the interval.1 As before, πp induces an anti-monotonic map-
ping µp(I) = {σ | σ |= πp(I)}, and therefore gives
rise to an optimization lattice (〈Iba,vba〉, µp). Preference of
some intervals over others (e.g., minimizing the lower bound
of solution intervals) can be captured by adding a suitable
monotonic objective function obj .

1For the opposite situation, constraining p to be true for all values within
some interval, a dual lattice can be constructed in which the empty set ∅
forms the bottom element, and the full interval (−∞,∞) is top.

76

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Algorithm 2: Optimization Procedure
Input: Horn clauses HC , optimization lattice

(〈L,vL〉, µ), objective function obj : L→ D
Result: Set Sol of all solutions of optimization problem

1 Sol := ∅; SubOpt := ∅; B := −∞;
2 while there is a feasible l ∈ L that is incomparable with

Sol ∪ SubOpt do
3 m or so :=

boundedMaximize(HC , (〈L,vL〉, µ), obj , l, B);
4 if m was returned, and obj (m) > B then
5 SubOpt := SubOpt ∪ Sol ;
6 Sol := {m}; B := obj (m);
7 else
8 Sol := Sol ∪ {m} or SubOpt := SubOpt ∪ {so};

9 return Sol ;

Example 5.3: We again use the system from Example 5.1,
and the lattice 〈I42 ,v4

2〉 in Fig. 3 as illustration. With the
mapping πf defined as in (V-B), and the Horn constraints
from Example 5.1, the maximal feasible elements are [2, 3] and
[4,∞), which are marked in Fig. 3. Note that those solutions
correspond to the ones identified in Example 5.2, but that the
interval lattice is more compact than the Boolean lattice.

Since there are multiple maximal feasible elements, we can
use a monotonic objective function obj to disambiguate—e.g.,
such a function could return the negated upper endpoint, which
would express a preference for [2, 3] over [4,∞):

obj (I) =

−y if I = [x, y] or I = (−∞, y]

−∞ if I = [x,∞)

∞ if I = ∅

C. Effective Optimization for Finite Lattices

We now present our algorithm for solving Horn optimization
problems over finite lattices. The algorithm combines ideas
from local search (e.g., [11]) with conflict-driven learning
(inspired by SAT and SMT solvers) to prune parts of the
optimization lattice that are guaranteed to not contain solu-
tions. The algorithm is partly derived from an earlier search
procedure for optimal Craig interpolants [12].

Example 5.4: We first illustrate the procedure using Ex-
ample 5.1, and the interval lattice in Example 5.3. The two
maximal feasible elements in the lattice (Fig. 3) are [2, 3] and
[4,∞). Interval [2, 3] has cost obj ([2, 3]) = −3, and is the
optimal solution (obj from Example 5.3).

Our algorithm starts by choosing an arbitrary feasible lattice
element, and then walks upward in the lattice until a maximal
feasible element is reached. In the example, we can choose
the bottom element (−∞,+∞), since if any lattice element
is feasible, then so is bottom; suppose that maximizing this
element (walking upward as long as feasible successors exist)
yields [2, 3], which also happens to be the global optimum.

After identifying [2, 3] as a possible solution, optimality
must be verified. For this, we make the observation that every

Algorithm 3: boundedMaximize (HC , (〈L,vL〉, µ), obj , l, B)

Input: Horn clauses HC , feasible lattice element l ∈ L,
optimization bound B

Result: m ∈ L s.t. l vL m, m is maximal feasible,
and obj (m) ≥ B or

so ∈ L s.t. l vL so, obj (so) < B, and all
successors of so are infeasible.

1 upperBound := >;
2 for all immediate successors s of l do
3 if s vL upperBound then
4 if s is feasible then
5 l := s; Restart loop at line 2;
6 else if ∃b. feasibilityBound(l, s, b) then
7 upperBound := upperBound u b;
8 if obj (upperBound) < B then
9 return so := upperBound ;

10 if upperBound is feasible then
11 return m := upperBound ;

12 if obj (l) < B then return so := l ;
13 return m := l;

further solution has to be incomparable to [2, 3], since ele-
ments above [2, 3] are infeasible, and elements below are not
maximal. Our procedure therefore picks an arbitrary feasible
incomparable element, and then again walks upward towards
a maximal feasible element. To find feasible incomparable
elements, we enumerate all minimal incomparable elements,
and check whether any of them is feasible (otherwise, no fea-
sible incomparable element can exist). Here, the two minimal
elements incomparable to [2, 3] are (−∞, 2] and [3,∞), and
we suppose that the latter (the feasible one) is picked.

To walk upward, we check whether [3,∞) has a feasible
successor. Suppose we first consider [3, 4], which turns out
to be infeasible. Our algorithm utilizes this information to
derive a feasibility bound: since [3,∞) is feasible and [3, 4]
infeasible, it follows that every feasible element above [3,∞)
has to be below or equal to [4,∞), i.e., further search can be
bounded by [4,∞). Since obj ([4,∞)) = −∞ < obj ([2, 3]),
we can conclude that no solution can possibly exist above
[3,∞), and the search must backtrack. Note that it is not
relevant whether [4,∞) itself is feasible.

At this point, the feasibility bound [4,∞) can be used to
prune further search, since no solutions can exist above or
below [4,∞). We search for further feasible elements that are
incomparable to both [2, 3] and [4,∞). The minimal incom-
parable elements are now (−∞, 2] and [3, 4], both of which
are infeasible. It follows that no further feasible incomparable
elements exist, and that [2, 3] is the (unique) solution.

The pseudo-code of the optimization procedure is shown in
Alg. 2 and 3. The main loop in Alg. 2 maintains a set Sol
of solutions, a set SubOpt of blocking elements, and cost B
of the best solution so far. In each iteration, Alg. 2 computes
a feasible element l that is incomparable to all elements in
Sol ∪ SubOpt (i.e., neither above nor below any element in

77

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Sol∪SubOpt , line 2), and then searches for a maximal feasible
element above l using boundedMaximize (line 3).

To update the variable upperBound (line 7 in Alg. 3), the
algorithm exploits the fact that a feasible lattice element l with
an infeasible successor s has been found. Given a pair l vL s
such that l is feasible and s is infeasible, we define what it
means for an element b ∈ L to be a feasibility bound:

feasibilityBound(l, s, b) ≡{
l = s u b, and
l v x implies x v b for every feasible element x ∈ L.

Given a feasible element l with infeasible successor s of l,
the predicate feasibilityBound provides an upper bound b for
every feasible successor of l. This allows the subsequent max-
imization to ignore parts of lattice that are not underneath b.
Derivation of feasibility bounds is discussed in Sect. V-D.

Feasibility bounds often enable our procedure to prune
away large parts of the search space. As the experiments in
Sect. VIII show, the algorithm can in practice handle opti-
mization lattices with more than 1030 elements, only needing
to inspect a tiny fraction of the lattice to find all solutions. The
procedure is furthermore an “anytime procedure,” which can
at any point provide (possibly sub-optimal) solutions, should
time run out. The procedure is also complete:

Theorem 5.1: When applied to a finite optimization lattice,
Alg. 2 terminates and returns the set of all solutions.

D. Feasibility Bounds

The predicate feasibilityBound can often be defined generi-
cally for a lattice 〈L,vL〉, without taking the actual set HC of
clauses into account. For Boolean lattices 〈P(B),⊆〉, correct
feasibilityBound statements can be derived using the rule

x 6∈ A
feasibilityBound(A,A ∪ {x}, B \ {x})

.

For interval lattices 〈Iba,vba〉, the predicate can be defined by:

R1. feasibilityBound([x, x], ∅, [x, x])
R2. feasibilityBound([x, y], [x+ 1, y], [x, x])
R3. feasibilityBound((−∞, y], [a, y], (−∞, a])
R4. feasibilityBound([x, y], [x, y − 1], [y, y])
R5. feasibilityBound([x,∞), [x, b], [b,∞])
R6. feasibilityBound([x,∞), [x+ 1,∞), [x, x])
R7. feasibilityBound((−∞,∞), [a,∞), (−∞, a])
R8. feasibilityBound((−∞, y], (−∞, y − 1], [y, y])
R9. feasibilityBound((−∞,∞), (−∞, b], [b,∞])

For instance, R2 says if [x, y] is feasible and [x + 1, y] is
infeasible, it can be concluded that every feasible interval I
above [x, y] must be below (or equal to) [x, x]. Clearly, if
I wba [x, y] is feasible, it must be the case that I 6wba [x+ 1, y]
(since [x+1, y] is infeasible, and feasibility is anti-monotonic),
which implies that I must include the value x; I vba [x, x].

VI. SOFTWARE-DEFINED NETWORKING

To demonstrate the usefulness of our approach in practice,
we apply it in the context of software-defined networking.
In this paper, we consider a packet to be a bounded natural

number pkt ∈ N (0 ≤ pkt < 2b) where b is the total required
number of bits to represent the header fields. A packet with
a value outside the admitted bound (e.g., pkt = −1) is an
invalid packet, and any switch immediately drops it.

A switch has a forwarding table consisting of a set of rules.
Each rule has a pattern which is a predicate on headers. When
a packet matches a pattern, the switch forwards it to an output
port (with possibly updates to some header fields). If there
are multiple matching rules, the switch is free to pick any of
them, and if there are no matching rules, it drops the packet.

A. Single-packet Transition System

A single-packet transition system is a tuple S =
〈pkt , trc, Q,Qi, Qf , T 〉 in which pkt ∈ N , trc : [Q] (trace
of states); Q is a set of states (Qi ⊆ Q start, Qf ⊆ Q final);
T ∈ (Q × Φ(pkt, pkt′) × Q) is the transition relation from
state q to q′, written as q

φ→ q′. The label φ ∈ Φ is a Presburger
formula over pkt (value of pkt in q) and pkt ′ (value of pkt
in q′). Each state q ∈ Q of a single-packet transition system
normally corresponds to a switch in the network. We show the
source of a transition with src, destination with dst , and label
with `. A transition updates the trc value trc′ = trc / q′.
a) Drop State: We assume that there is a special state
qd ∈ Qf that represents dropping a packet. For any q 6∈ Qf ,
there is a transition to the drop state for the invalid packets:

q
(pkt<0 ∨ pkt≥2b)−−−−−−−−−−−−→ qd. The condition on this transition is

weaker for a switch that drops more packets in the space of
admissible packets.
b) Local Progress: We assume that for any packet pkt , there
is always a transition out of a non-final state:

∀q 6∈Qf .∀pkt∈N.∃t∈T.∃pkt ′∈N.(src(t)=q) ∧ `(t)(pkt , pkt ′)

Intuitively, this means that a non-final state either forwards a
packet to the next or the drop state. The local progress property
along with the drop state helps us specify reachability in terms
of safety constraints. If there are no forwarding loops in a
network, having local progress ensures that a packet is either
received at the drop state or a final host.
c) Path: A path of a single-packet transition system S =

〈pkt , trc, Q,Qi, Qf , T 〉 is a sequence 〈pkt0, trc0, q0〉
φ→

〈pkt1, trc1, q1〉
φ′→ · · · φ

(n−1)

→ 〈pktn, trcn, qn〉 where q0 ∈ Qi
is an initial state, and qn ∈ Qf is a final state.
d) Invariant: A single-packet transition system S =
〈pkt , trc, Q,Qi, Qf , T 〉 satisfies an invariant ψ(trc) (written
as S |= ψ) if and only if every path trc satisfies ψ.
e) Horn-Clause Translation: We associate a relation sym-
bol sq with arity 2 to any q ∈ Q. The following Horn clause
represents the transition relation q

φ→ q′:

sq′(pkt
′, trc′)← sq(pkt , trc)∧φ(pkt , pkt ′)∧(trc′ = trc/q′) .

If in a start state qi, a packet has an initial value pkt i, then
we add the following clause: sqi(pkt , trc)← (pkt = pkt i).

We can describe some invariants of interest in the network
domain using Horn clauses, such as the following.

78

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Non-dropping—no packet is dropped: false← qd(pkt , trc).
Non-Reachability—for a non-dropping network, the traffic
from a given source qa must not reach a certain destination:
false← qf (pkt , trc) ∧ qa 6= trc.head.
Way-pointing—a specific switch qa must be traversed:
false← qf (pkt , trc) ∧ qa 6∈ trc.

B. Bandwidth Constraints

In some repair scenarios, the properties of interest are
related to bandwidth capacities of the links, congestion
avoidance, or buffer overflows in packet queues. To model
traffic sizes, we use a technique based on counter abstraction.
The basic idea is to use tokens to represent the sizes of the
flows that enter the network. Tokens here are merely used to
model bandwidth usage and should not be confused with the
actual packets. The token counters get updated whenever a
flow of packets travels through a link.
A bandwidth transition system is a tuple S =
〈Q,Qi, Qf ,M,M0, T 〉 in which Q is a set of states
(Qi ⊆ Q start, Qf ⊆ Q final); M is the distribution of the
traffic tokens in the network at any time. For a state q ∈ Q and
a traffic type τ ∈ N, the value of M(q, τ) is the number of
tokens of traffic type τ at state q, M0 is the initial distribution
of tokens in the network, T ∈ (Q × Φ(M,M ′) × Q) is the
transition relation from state q to q′, written as q

φ→ q′. The
label φ determines how the distribution of the tokens M(q)
and M(q′) changes during the transition.
a) Invariant: Invariants in bandwidth transition systems are
similar to single-packet transition systems, the difference being
that the property ψ talks about the distributions of tokens in
the network. As an example, if a state q is not safe for traffic
type typ, then an invariant for the network specifies the number
of tokens for typ to be 0 at any time.
b) Horn-Clause Translation: Assume that there are n
types of traffic in a network, namely {typ1, · · · , typn}. For a
bandwidth transition system S = 〈Q,Qi, Qf ,M,M0, T 〉, we
use a single relation symbol s that holds counters to store the
number of tokens for each flow at any Q = {q1, · · · , qm} po-
sition in the network: s(ctyp1

q1 , · · · , ctypn
q1 , · · · , ctyp1

qm , · · · , ctypn
qm).

Similar to the single-packet case, we add clauses to capture
the transitions of T and the updates to M .

VII. NETWORK REPAIR PROBLEM

A network repair problem U = (S, ψ, ρ) has the following
inputs: S is a single-packet or bandwidth transition system, ψ
is an invariant such that S 6|= ψ, and objective ρ is a ranking
on the space of transition systems. A solution to the repair
problem updates the transition relation T in S to obtain S′,
such that S′ |= ψ and if S′′ is another transition system that
satisfies the above conditions then ρ(S′) ≥ ρ(S′′). Objectives
of interest in networking are, e.g., touching a minimal number
of switches, filtering fewer traffic paths in the network, etc.

Let HC be the translation of S to Horn clauses. We
formulate a Horn optimization problem for single-packet and
bandwidth transition systems.

Benchmarks #Nodes#Links #Rels. #Lattice #Eld Time(s)
Gridnet 9 20 – – – –
Cesnet200304 29 33 3 2.22×1010 145 4.98
Arpanet19706 9 10 3 2.22×1010 91 2.98
Oxford 20 26 8 3.89×1027 664 16.70
Garr200902 54 71 6 4.92×1020 3045 107.62
Getnet 7 8 2 7.90×106 61 1.45
Surfnet 50 73 3 2.22×1010 101 3.49
Itnet 11 10 1 2.81×103 17 0.18
Garr199904 23 25 1 2.81×103 19 0.33
Darkstrand 28 31 5 1.75×1017 425 14.81
Carnet 44 43 2 7.90×106 37 0.49
Atmnet 21 22 1 2.81×103 15 0.67
HiberniaCanada 13 14 11 8.63×1037 1795 84.56
Evolink 37 45 1 2.81×103 14 0.20
Dfn 58 87 – – – –
Ernet 30 32 4 6.23×1013 140 4.94
Bren 37 38 6 4.92×1020 974 25.14
Niif 36 41 2 7.90×106 48 0.92
Renater2001 24 27 3 2.22×1010 101 3.56
Latnet 69 74 2 7.90×106 47 0.64

Fig. 4: Repairing 20 benchmarks from Topology Zoo [13] on
a 1.4 GHz AMD OpteronTM Processor with 32 Gigabytes of
memory (time-out is set to 2 minutes in this experiment).

a) Single-packet Transition System: We use Alg. 1 to add
new fresh symbols m(pkt) to the bodies of some clauses in
HC to get HC ′ (or m(pkt , pkt ′) when the source switch
can rewrite packets). Assuming the size of the header in a
packet is b, to each m(pkt) we associate an interval lattice
I2

b−1
0 (e.g., lattice in Fig. 3) that represents the packets that

should be filtered out. The lattice of repair solutions is the
product of all the interval lattices for m relations. For an
objective function ρ that more highly ranks solutions that filter
fewer traffic types, we use an objective function obj in the
Horn optimization problem that assigns the lowest rank to the
solution that assigns (−∞,∞) to every m.
b) Bandwidth Transition System: The formulation of net-
work repair in this case is similar to single-packet transition
systems, with the difference being that the lower-bound of the
intervals for added fresh symbols is 0, and the upper-bound is
the maximum number of tokens for each type.
c) Generality of Repair: We assume that the reason for a
violation of the safety property is that the network configura-
tion is under-constrained. In other words, there are forwarding
behaviors in the network that should be restricted—e.g., by
adding filters on the links. Furthermore, we assume that during
the repair procedure, no new switches or links are added to
the network. These assumptions are not overly restrictive in
practice—if the network operator wants to add new switches
to the network, she can connect the new switch to the rest of
the network without any constraints: the new switch behaves
as a repeater. It is also possible to add links to the network and
send all the traffic through the new links. The repair procedure
may then restrict forwarding of packets through these links.

VIII. IMPLEMENTATION AND EXPERIMENTS

We have implemented the prototype tool Marham (Minimal
repair for Horn clause systems) that operates on top of the

79

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Eldarica [5] verifier. To evaluate Marham, we considered
two main questions. First, we studied the applicability of
our approach to several interesting repair scenarios from the
network domain. Second, we benchmarked the performance
of our tool against a dataset of real topologies. For the first
question, we considered the network properties introduced in
Section II using the data center topology shown in Fig. 1(a)
with a non-dropping criterion. We used [0, 7] as intervals, with
0 representing SSH traffic. Our tool found the correct repair
by suggesting that a filter be added on A4. We also repaired a
way-pointing scenario by removing the path through the way-
point and then repairing. For the Fig. 1(b) example, Marham
produces a repair by sending the green traffic to s4.

For the second question, for topologies from the Internet
Topology Zoo set [13], we generated Horn clauses to connect
a set of random vertices (Topology Zoo contains data network
topologies from around the world). We non-deterministically
selected a node and made it unsafe for a certain flow by adding
a clause specifying that this type of traffic should not reach
that particular point. We considered the objective function that
minimizes the number of filtered paths relative to the original
configuration. Table in Fig. 4 shows the results of executing
Marham for repairing 20 representative topologies from the
Topology Zoo. The table reports the number of nodes, links,
and synthesized relation symbols, as well as the size of the
lattice, number of calls to Eldarica, and total time.

IX. RELATED WORK

Although optimizing SMT solvers have been proposed in
previous work [14], to the best of our knowledge, our frame-
work is the first to provide such optimization functionality in
a Horn clause solver. Our approach also differs from MaxSAT
solvers, which search for solutions satisfying maximum sets
of clauses, in the generic way that optimization lattices and
objectives are formulated.

A number of approaches to repair are based on finding
similar expressions—e.g., by using a game-based approach
in which winning strategies correspond to choosing a correct
expression [15], adding nondeterministic expressions at prob-
lematic locations and using a SAT solver to find a deterministic
program that satisfies the specification [16], using a cost
function to select a correct expression [17], or using deductive
approaches based on guided synthesis [1].

Other repair approaches target specific languages (e.g.,
Boolean programs, which are essentially a restricted form of
C programs [18]) or specific types of fixes (e.g., atomicity
violations [19]). Our repair framework is different in that (i)
it is not language-specific so it can be used in a variety of
settings, (ii) it places no restrictions on the type of repairs that
can be made, and (iii) it allows the programmer to repair with
respect to a safety property as well as an objective function.

In regards to the problem of synthesizing repairs for network
configurations, the closest to our work is [20]. Our work is
more general in several aspects. Their specification language is
based on regular expressions, and updates are specified as end-
to-end paths from the old to new configuration using regular

expressions. Our Horn clause specification language gives us
the power to consider more general properties such as loop
freedom, bandwidth constraints, etc.

X. CONCLUSION

This paper introduces a framework for repairing a set of
Horn clauses, and presents an optimization technique to search
the space of repairs efficiently. We have implemented our
repair engine in the Marham tool—to investigate its applica-
bility to real world problems, we perform experiments using
the Internet Topology Zoo dataset. The generality of Horn
clauses in describing problems from various domains makes
our proposed approach suitable for repairing various systems.

ACKNOWLEDGMENTS

We thank the FMCAD reviewers for helpful and construc-
tive comments. Our work is supported by the National Science
Foundation under grants CNS-1111698, CNS-1413972, CCF-
1421752, CCF-1422046, CCF-1253165, and CCF-1535952;
the Office of Naval Research under grant N00014-15-1-2177;
and gifts from Cisco, Facebook, Fujitsu, Google, and Intel.

REFERENCES

[1] E. Kneuss, M. Koukoutos, and V. Kuncak, “Deductive program repair,”
in CAV, pp. 217–233, 2015.

[2] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” in POPL, pp. 298–312, ACM, 2016.

[3] N. Bjørner, A. Gurfinkel, K. McMillan, and A. Rybalchenko, “Horn
clause solvers for program verification,” in Fields of Logic and Compu-
tation II, pp. 24–51, Springer, 2015.

[4] N. Bjørner, K. McMillan, and A. Rybalchenko, “On solving universally
quantified horn clauses,” in SAS, pp. 105–125, Springer, 2013.

[5] H. Hojjat, F. Konečný, F. Garnier, R. Iosif, V. Kuncak, and P. Rümmer,
“A verification toolkit for numerical transition systems (tool paper),” in
FM, 2012.

[6] J. McClurg, H. Hojjat, P. Cerný, and N. Foster, “Efficient synthesis of
network updates,” in PLDI, pp. 196–207, 2015.

[7] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko,
“Synthesizing software verifiers from proof rules,” in PLDI, 2012.

[8] P. Rümmer, H. Hojjat, and V. Kuncak, “Disjunctive interpolants for
Horn-clause verification,” in CAV, pp. 347–363, 2013.

[9] K. Hoder and N. Bjørner, “Generalized property directed reachability,”
in SAT, 2012.

[10] B. Jaumard and B. Simeone, “On the complexity of the maximum sat-
isfiability problem for Horn formulas,” Information Processing Letters,
vol. 26, no. 1, pp. 1 – 4, 1987.

[11] H. Hoos and T. Stützle, Stochastic Local Search: Foundations &
Applications. Morgan Kaufmann Publishers Inc., 2004.

[12] J. Leroux, P. Rümmer, and P. Subotic, “Guiding Craig interpolation with
domain-specific abstractions,” Acta Informatica, 2015.

[13] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” Selected Areas in Communications, IEEE
Journal on, vol. 29, no. 9, pp. 1765–1775, 2011.

[14] N. Bjørner, A. Phan, and L. Fleckenstein, “νz - an optimizing SMT
solver,” in TACAS, pp. 194–199, 2015.

[15] B. Jobstmann, A. Griesmayer, and R. Bloem, “Program repair as a
game,” in CAV, pp. 226–238, Springer, 2005.

[16] D. Gopinath, M. Z. Malik, and S. Khurshid, “Specification-based
program repair using SAT,” in TACAS, pp. 173–188, Springer, 2011.

[17] R. Samanta, O. Olivo, and E. A. Emerson, “Cost-aware automatic
program repair,” in SAS, pp. 268–284, Springer, 2014.

[18] A. Griesmayer, R. Bloem, and B. Cook, “Repair of boolean programs
with an application to C,” in CAV, pp. 358–371, Springer, 2006.

[19] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated atomicity-
violation fixing,” PLDI, vol. 46, no. 6, pp. 389–400, 2011.

[20] S. Saha, S. Prabhu, and P. Madhusudan, “Netgen: Synthesizing data-
plane configurations for network policies,” in SOSR ’15, 2015.

80

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

On ∃ ∀ ∃! Solving: A Case Study on
Automated Synthesis of Magic Card Tricks

Susmit Jha Vasumathi Raman
United Technology Research Center, Berkeley

jhask, ramanv@utrc.utc.com

Sanjit A. Seshia
EECS, UC Berkeley

sseshia@eecs.berkeley.edu

Abstract—In formal synthesis, the goal is to find a composition
of components from a finite library such that the composition
satisfies a given logical specification. In this paper, we consider
the problem of synthesizing magic card tricks from component
actions, where some of the actions depend on non-deterministic
choices made by the audience. This problem can be naturally
represented as a quantified logical formula of the form: Exists
a composition, Forall nondeterministic choices, Uniquely-Exists
intermediate and final outputs satisfying a logical specification,
that is, an (∃∀∃!) satisfiability problem. We present a novel
approach to solve this problem that exploits the unique-existence
of intermediate and final outputs for any given composition and
choice values. We illustrate how several popular magic card
tricks can be recovered using this approach. These tricks evolved
through human ingenuity over decades, but we demonstrate that
formal synthesis can generate a number of novel variants of these
tricks within minutes. In contrast, a direct encoding to quantified
SMT problem fails to find a solution in hours.

I. INTRODUCTION

Composition has played a central role in enabling con-
figurable and scalable design of efficient systems across
different domains. Automated formal synthesis of systems
as composition of elementary components using satisfiabil-
ity solving techniques has proved to be useful in creating
non-intuitive artefacts such as bit-vector programs using bit-
twiddling operations [1] and deobfuscating code [2]. Synthesis
from components can also be carried out by selecting a
syntactically expressible family of compositions such as a
sketch with a fixed skeleton but free choice of components [3],
[4]. These approaches are, however, restricted to deterministic
functional components. In this paper, we consider the problem
of synthesizing composition of components that represent
primitive actions such as shuffling, cutting a card deck or
turning over of a set of cards. Some of these component
actions are nondeterministic, and their output depends on
uncontrollable external choices. This formulation also applies
to synthesis of strategies against unknown non-deterministic
choices made by an adversary, synthesis of circuits with
stochastic (abstracted as non-deterministic) components, in
addition to the application to synthesizing magic card tricks
considered in this paper. Magic card tricks are often de-
veloped over decades and use significant human ingenuity.
These tricks involve interesting applications of number theory
and discrete mathematics, and hence, their explanation has
received significant attention from mathematicians [5], [6].
In particular, they have been found to be useful in teaching

computer science [7]. To the best of our knowledge, this is the
first application of formal methods to synthesize new magic
card tricks. Beyond this unconventional application domain
and an attempt to automate a long-standing bastion of human
creativity, we believe this application will also add interesting
benchmarks to fuel further work on automated synthesis of
systems with non-deterministic components.

In previous work [1], we have shown that the synthesis
of composition using components can be expressed in first-
order logic by eliminating the existential quantification over
the predicate corresponding to composition, using integer
parameters to encode the set of possible compositions for a
finite library of components. We make the following novel
contributions in this paper:

• The synthesis problem using non-deterministic compo-
nent actions is directly representable as ∃∀∃! problem and
it is shown to have a corollary of the ∃∀ form. This dual
representation enables the use of counterexample guided
inductive synthesis.

• We model the component actions in popular magic card
tricks logically and use the Z3 SMT solver [8] to discover
novel magic card tricks as compositions of these actions.
While human discovery of these variants takes decades,
we discover new magic tricks within minutes.

In the rest of the paper, we first present a brief background
on magic card tricks in Section II. We formulate the synthesis
of magic tricks as a composition synthesis problem and
describe its reduction to a satisfiability problem in Section III.
We present results including new magic tricks discovered by
our approach in Section IV, and conclude with discussion of
future work in Section V.

II. BACKGROUND ON MAGIC CARD TRICKS

Magic card tricks consist of sequences of actions in which
the performer manipulates the cards through acts such as
shuffling or turning over cards. Usually, these action sequences
also involve audiences making a number of choices indepen-
dently and at their discretion, and sometimes in secret without
the performer knowing the exact choice. These choices are
intended to make the audience believe that they are in control
of the manipulation of cards. Consequently, the performer’s
ability to achieve some deterministic goal such as finding a
particular card or ensuring that the cards end up in a specific

81

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

pattern surprises the audience and makes the entire process
appear magical.

The secret sauce behind these magic card tricks often lies in
some mathematical invariant of the sequence of actions which
allows the performer to ensure a deterministic output irrespec-
tive of the exact choice made by the audience. Such sequences
of actions are naturally hard to generate, and consequently,
each sequence is passed on as training from magician to
magician. We use an example of a very simple magic card trick
to give insight into the underlying mathematics that ensures
the outcome of the trick is independent of audience choices.
This magic trick was invented by magician Bob Hummer and
popularized as Face Up/Face Down Mysteries (1941)[9]. It has
the following sequence of actions.

1) Take any ten cards face-down and hold them as if you
are going to deal the cards.

2) Go through the following procedure which mixes the
cards face-up and face-down based on audience choice:
Spread the top two cards off and turn them over together,
placing them back on top. Let an audience member give
the deck of cards a straight cut 1. The cut can be at any
position (odd or even) of the deck. Repeat this “turn-
two and audience-directed cut” procedures at random
as often as you like. The cards will be in an apparent
unpredictable mess.

3) To find the order in the mess, proceed as follows: Go
through the card deck, reversing every second card (the
cards in positions 2, 4, 6, 8, and 10). You will find
exactly five cards face-up, no matter how many times the
“turn two and cut at random” procedure was repeated.

The ten cards with faces-up or down can end up in 210×10!
possible arrangements, which is more than 3.6 billion. The
magical surprise is due to the fact that we always end up in
a state satisfying a deterministic property irrespective of the
choices made by the audience. The explanation for this lies in
the following observation. The actions in step 2 (also called
Hummer Shuffle) has the following invariant - the number of
cards facing up/down at even places in the stack is respectively,
equal to the number of cards facing up/down at odd places
after each Hummer Shuffle. Let m be the number of face-up
cards in even places, and by the above invariant, also in odd
places. The last step of turning over even cards will leave us
with 5 −m face-up cards in even places. Combined with m
face-up cards in odd places, the total number of face-up cards
will always be five irrespective of the audience choices.

A more popular derivative of this trick called the Royal
Hummer invented by Steve Freeman decades later is used
to produce a royal flush from a deck of cards that has been
apparently shuffled randomly by the audience. The Hummer
Shuffle consisting of just two actions: turn two and audience-
directed cut, was invented more than seventy years ago but it
still remains the core of many magic card tricks. Our goal is

1Audience chooses a random position in the deck and all the cards below
this position are put contiguously on the top of the deck. See [9], [10] for a
glossary of card trick terms.

to automatically synthesize even longer (and hence, even more
surprising and non-intuitive) sequences which are guaranteed
to satisfy some relevant deterministic property on the final
state irrespective of the choices made by the audience.

III. COMPOSITION BASED SYNTHESIS OF CARD TRICKS

Automated formal synthesis of systems (particularly pro-
grams) from high-level specification has received significant
attention over the past decade. For brevity, we refer to a
recent papers [3], [11] and references therein for detailed
discussion on state of the art in synthesis. We focus on the
problem of formal modelling and synthesis of magic card
tricks in this section. Given a deck of cards, we characterize
the configuration of cards as a state s ∈ S where S is all
possible configurations the cards can be put in. The states
would capture relevant details for a trick such as whether a
card is facing up or down, the position of each card and color
or kind of cards in each position. For the Hummmer trick
described in Section II, the state space is given by whether the
cards are facing-up or down in each of the 10 positions. We
denote the library of primitive actions, such as turning over
a card or cutting the card deck, by L = {A1, A2, . . . , An}
where each action is either deterministic or non-deterministic.
For notational uniformity, we associate both kinds of actions
Ai with a state transformation function Ti : S × C → S
where C is the set of choices. Execution of actions Ai takes
the cards from state s to s′ = Ti(s, c) where c ∈ C is
the choice parameter. Deterministic actions ignore the second
argument, that is, the choice c. In order to generate action
sequences of varying length, we include k copies of noop (no
operation) actions An+1 . . . An+k in the library L such that
the transformation function for each noop action is identity,
that is, Tn+1(s, c) = . . . Tn+k(s, c) = s. A schematic of a
magic trick as a sequence of actions is shown in Figure 1.

Ak

ckc2c1

Ai1 Ai2 Ai3

c3

s1 s2 sks0

Fig. 1. Magic Scheme as Sequence of Actions

From the scheme presented above and using the first-order
representation of the connection predicate [1], [2], the problem
of synthesizing magic trick can be formulated as follows,
assuming a unique initial state s0 (generalization to multiple
initial states is straightforward). We assume that k is the upper
bound on the length of the magic trick. Since k ≤ n, a trick
may not use all actions in the library. Further, we include
k copies of noop action with identity state transformation
function so that the sequence may use these functions which
can be eliminated as post-processing to generate shorter magic
sequences.

Let the vector corresponding to a sequence of actions
i1i2 . . . ik, where ij ∈ [0, n], be denoted by conn, c1, c2, . . . ck

82

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

with cj ∈ C be denoted by choices, and s1, . . . sk with
sj ∈ S be denoted by states. Further, T is a parametrized
state transformer which uses im as its first argument to select
the corresponding action Aim and thus, the transformer Tim .
We can now rewrite the above constraints as
Fdes : ∃conn ∀choices ∃!states

φdes(conn, choices, s0, states) ∧ φ(states)
where φdes(conn, choices, s0, states) =

∧k
m=1(sm =

T (im, sm−1, cm)) and φ(states) = φspec(sk) is the de-
terministic requirement on the final state. Since the pos-
sible choices constitute a finite (albeit very large) set,
say {choices1, choices2, . . . , choicesL}, and there exists
exactly one state vector statesl for each choice vector
choicesl, we can rewrite Fdes as follows:
Fsat : ∃conn ∃states1∃states2 . . . ∃statesL∧L

l=1 φdes(conn, choicesl, s0, statesl) ∧ φ(states)
The challenge in solving Fsat is that the number of choices is
huge. But the above formulation can be used to find a sequence
of actions conn that is consistent with a subset of example
choice vectors. Let us consider another constraint:
Fver : ∃conn ∀choices ∀states

φdes(conn, choices, s0, states)⇒ φ(states)
We observe that Fver is true if Fdes is true, that

is, Fdes ⇒ Fver due to the unique existence of the
states for any given choice vector in Fdes. For any
given sequence of component actions conn, a counterex-
ample obtained by solving the satisfiability problem for
∃choices∃states ¬(φdes(conn, choices, s0, states) ⇒
φ(states)) can thus be used to solve the original synthesis
problem in Fdes using component-based program synthe-
sis [1], [2]. The generalization from examples is done by
solving the satisfiability problem for Fsat including only the
choices found by solving Fver.

IV. RESULTS

In this section, we present our results on automated synthe-
sis of magic card tricks. We consider three different known
magic card tricks from [9], [10] and synthesize a number of
novel variants for each of these tricks. These novel variants
are new sequence of actions which ensure that the final state
meets the given deterministic requirement irrespective of the
choices made by the audience for non-deterministic actions.
Our experiments used the Z3 [8] SMT solver for checking
satisfiability and all experiments were run on a 2.9 GHz Intel
Core i7 with 16 GB RAM. Finding the action sequence for the
example presented in Section II took 3 minutes 18 seconds.

A. Baby Hummer

In this magic trick, the audience selects a card unknown
to the magician, and three other cards creating a card deck
of 4 cards with the selected card at the bottom. All the
cards are put in the deck face down. The magician instructs
the audience to take a sequence of actions - some of which
involve making choices, such that the card deck appears to be
randomly shuffled. At the end, the magician states that all the
cards in the deck except one must face in the same direction

- either up or down. The deck must have only one odd-facing
card, and this card is the one selected by the audience. We
build a glossary of actions used in this trick before describing
the actions in the original card trick and the synthesized novel
variants. The finite library used in the automated synthesis
process consists of four copies of each action listed below,
and noop actions as described in Section III.

Action Description
turntop Turn over the face of the top card.
turntop2 Take off the top two cards (keeping them together), turn

them over together and place them back on top.
toptobottom Place the top card of the deck to the bottom.
top2tobottom Place the top two cards of the deck to the bottom

keeping them together and in-order
cut Audience-choice directed straight-cut of the card deck.

The sequence of actions in the original magic card trick are
as follows:
• toptobottom, turntop, cut, turntop2,
cut, turntop2, cut, turntop2, turntop,
top2tobottom, top2tobottom, turntop

The reader can refer to Fig 4-13 in Chapter 1 of [9] for
pictorial illustrations of this magic trick.

We used the synthesis approach presented in Section III to
generate new action sequences of length at most 15 steps. Our
initial experiments yielded non-interesting sequences where
the cut action was never used. We, therefore, added con-
straints to ensure that the cut action was always included in
the sequence. This led to sequences where all the occurrences
of cut were either at the start of the sequence or at the end
of the sequence. These are also not interesting since the cut
actions do not turn the cards and hence, do not achieve any
shuffling of face-up and face-down cards unless mixed with
turning-over actions.

After adding constraints to mix the card-turning actions with
cut, we generated a number of new sequences which also
ensure that the audience-selected card is the odd-facing card
at the end, irrespective of the choices made by audience. We
report six of these (with the noops removed) below:

• toptobottom, turntop, cut, cut, turntop,
toptobottom, turntop2, toptobottom, turntop,
toptobottom

• turntop2, turntop, toptobottom, toptobottom,
cut, turntop, toptobottom, toptobottom, turntop,
cut, turntop2, turntop2

• turntop2, toptobottom, toptobottom, turntop,
cut, toptobottom, cut, turntop2, turntop2, cut,
turntop, turntop

• toptobottom, turntop, cut, toptobottom,
toptobottom, turntop2, cut, cut, turntop,
toptobottom, turntop, turntop2

• toptobottom, turntop, cut, toptobottom,
toptobottom, cut, turntop2, cut, turntop,
toptobottom, turntop, turntop2

• toptobottom, toptobottom, toptobottom, turntop,
cut, top2tobottom, cut, turntop2, turntop2, cut,
turntop, turntop

The runtime for synthesis was 12m 23sec, 12m 04sec, 10m
30sec, 5m 43 sec, 11m 11 sec and 11m 39 sec. respectively.
A direct ∃∀∃ encoding of the problem timed out after 2 hours
and could not find any satisfying action sequence.

83

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

B. Elmsley Shuffles

Shuffles are very common component actions of many
magic card tricks. We consider two perfect shuffle actions: in-
shuffle and out-shuffle. Both in-shuffle and out-shuffle begin
by splitting the deck into two equal piles by splitting it in the
middle, followed by shuffling perfectly so that the new deck
has cards alternately from both piles. The original top card
is the second card in in-shuffle and it is the top card in out-
shuffle. In this magic trick, the performer asks the audience
to randomly shuffle the cards and select one card which is
put on top of the stack but not revealed to the performer. The
performer then does a number of in-shuffles and out-shuffles
which make the stack appear to be randomly shuffled, but the
performer is able to select a card from a particular position
in the stack, and this card is revealed to be the one originally
selected by the audience. Since these shuffles do not depend on
the initial state of the card deck, simple enumeration could also
work in this case. However, more interesting shuffles will not
be possible through enumeration. Let inS, outS denote the
two actions of in-shuffle and out-shuffle respectively. Starting
with 8 cards, two action sequences that would put the top
card at position 6 are as follows: inS, inS, outS; and
inS, outS, outS, outS, inS, outS. Similarly, two action
sequences which would put the top card at position 5 are as
follows: inS, outS, inS; and inS, outS, outS, outS,
outS, inS. The runtimes for synthesis were 6m 42sec, 8m
52sec, 5m 18sec and 6m 08sec.

C. “Mind Reading” of Cards

In this magic trick, the performer starts with a prearranged
card deck with 8 cards which are passed to the audience.
Let this sequence be AH, 5D, 6H, 2S, 5S, KC, 7H, 8S
where H,D,C,S stands for hearts, diamonds, clubs and spades,
respectively. The color sequence for this stack is RRRBBBRB.
Any three audience members are asked to make a sequence
of random cuts on this stack after which each of them select
(in order) the top card as their chosen card in secret from
the performer. The performer is required to find these cards.
He does so by asking the audience members with red cards
to stand up. Depending on who stand up, the performer can
tell the exact card selected by the audience. This trick works
because any cyclic subsequence with length 3 of RRRBBBRB
is unique. So, when the audience members stand up, the
performer can find the subsequence (RRR, RRB, RBR, RBB,
BRR, BRB, BBR, BBB). Once this subsequence is known,
the performer uses his knowledge of the prearranged stack
to tell the exact cards picked by the audience. The automated
synthesis requires coming up with this initial prearranged card
deck. The subsequent actions performed by the audience are
fixed in this trick. Clearly, not all prearranged card decks
will work. The patterns needed for this trick are in face de
Bruijn sequences also used in robot localization [12]. For the
variant of this trick with 5 audience members and a card
deck with 32 cards (there are 32 possible sub-sequences of
length 5 which can be possibly decoded using the color pattern
for the 5 audiences), we synthesized the following possible

color patterns. The runtime for the two searches was 8 m 34s
and 9m 18s respectively. Note that the exact card sequence
is not important and any cards consistent with these color
patterns can be used as long as the performer remembers the
original sequence, to be able to tell the exact cards at the end
irrespective of the choice of cuts by the audience.
• RRRRRBRBRRBRRRBBBBBRBBBRRBBRBRBB
• RRRRRBRRBRBBRRBBBBBRRRBBRBBBRBRB

V. CONCLUSION

In this paper, we consider the problem of synthesizing a
composition of non-deterministic components and show how
its solution can be used to generate new magic tricks. We
believe computer-aided design of magic tricks can provide
interesting examples in computer science courses. Class-room
exercises on automatically synthesizing new magic card tricks
can be used to introduce combinatorial search, quantified
satisfiability solving and formal methods. We also plan to
improve the quality of our results by adding constraints to rule
out subsequences that reduce to identity operations without
user-input. We also plan to investigate more complex magic
tricks including probabilistic tricks such as Kruskal’s count
trick [13]. Further, the logical modelling of magic tricks is
similar to that used for computer programs from component
functions and for plans from component actions in artificial
intelligence. In future work, we plan to investigate the applica-
tion of this approach to planning in the presence of adversarial
choice.
Acknowledgement: We thank Ashish Tiwari, Sonali Sinha and
Claudio Pinello for very helpful discussions. The third author
was supported in part by NSF grant CCF-1139138.

REFERENCES

[1] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan, “Synthesis of loop-
free programs,” in PLDI, 2011, pp. 62–73.

[2] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” ser. ICSE ’10, 2010, pp. 215–224.

[3] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa,
“Syntax-guided synthesis,” in FMCAD, October 2013.

[4] A. Solar-Lezama, L. Tancau, R. Bodk, S. A. Seshia, and V. A. Saraswat,
“Combinatorial sketching for finite programs.” in ASPLOS, 2006, pp.
404–415.

[5] M. Gardner, Mathematics, magic and mystery. Courier Corp., 2014.
[6] C. Mulcahy, “Mathematical card tricks,” Whats New in Mathematics,

2000.
[7] J. F. Ferreira and A. Mendes, “The magic of algorithm design and

analysis: Teaching algorithmic skills using magic card tricks,” ser.
ITiCSE ’14, 2014, pp. 75–80.

[8] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2008, pp. 337–340.

[9] P. Diaconis and R. Graham, Magical Mathematics: The Mathematical
Ideas That Animate Great Magic Tricks. Princeton University Press,
2011.

[10] J. Hugard and J. J. Crimmins, Encyclopedia of card tricks. Courier
Corp.

[11] S. Jha and S. A. Seshia, “A theory of formal synthesis via inductive
learning,” CoRR, vol. abs/1505.03953, 2015.

[12] J. Pagès, J. Salvi, C. Collewet, and J. Forest, “Optimised de bruijn
patterns for one-shot shape acquisition,” Image and Vision Computing,
vol. 23, no. 8, pp. 707–720, 2005.

[13] S. Humble, “Magic math cards,” The Mathematics Enthusiast, vol. 5,
no. 2, pp. 327–336, 2008.

84

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Property-Directed k-Induction
Dejan Jovanović
SRI International

dejan.jovanovic@sri.com

Bruno Dutertre
SRI International

bruno.dutertre@sri.com

Abstract—IC3 and k-induction are commonly used in au-
tomated analysis of infinite-state systems. We present a re-
formulation of IC3 that separates reachability checking from
induction reasoning. This makes the algorithm more modular,
and allows us to integrate IC3 and k-induction. We call this
new method property-directed k-induction (PD-KIND). We show
that k-induction is more powerful than regular induction, and
that, modulo assumptions on the interpolation method, PD-KIND
is more powerful than k-induction. Moreover, with k-induction
as the invariant generation back-end of IC3, the new method
can produce more concise invariants. We have implemented the
method in the SALLY model checker. We present empirical results
to support its effectiveness.

I. INTRODUCTION

IC3 and k-induction are two commonly used methods in
automated analysis of infinite-state systems. IC3 was origi-
nally developed for finite systems [7], [20], but it was soon
adapted to the infinite-state case by relying on SMT solvers as
reasoning engines [22], [9], [24], [10]. These IC3 variants have
been successfully used in analysis of software. Similarly, k-
induction was initially introduced in the finite-state setting [31]
and was then extended to infinite-state systems [15], with
similar success in software verification [16].

At its core, IC3 is based on induction. To show that a
property is invariant, IC3 tries to incrementally construct
an inductive strengthening of the property. Surprisingly, the
relative power of k-induction and induction-based methods,
with respect to the capability to construct a strengthening,
has not been studied in detail.1 It is folklore knowledge that
k-induction can be stronger than induction, but this has, to
the best of our knowledge, never been formally accounted
for. In this paper, we show that k-induction can be strictly
more powerful than regular induction, making a case for an
IC3-style method that is based on k-induction. The additional
reasoning power is particularly important when one works
within an expressive logical theory such as the theory of arrays
[21], [23]).

Although additional deductive power is desirable, we are
also concerned with practical effectiveness. With this in mind,
we start with IC3, a practically effective algorithm, and break
it into its constituents: satisfiability checking, reachability
checking, and generation of inductive invariants. Isolating

The research presented in this paper has been supported by NASA Co-
operative Agreements NNX14AI05A and NNA10DE73C, by DARPA under
agreement number FA8750-16-C-0043, and by NSF grant 1528153.

1Some IC3 variants, such as PDR [22], are not guaranteed to terminate
even if the property is already inductive.

these functionally independent modules allows us to replace
the inductive core with k-induction, producing a method that
is a natural combination of IC3 and k-induction. This method
is effective in practice, and can be shown to be at least as
powerful as k-induction, provided the interpolation procedure
satisfies a natural property that we call finite-covering.

To summarize, the main contributions of the paper are as
follows. We show that k-induction can be more powerful, and
more concise, than regular induction (Section III). We de-
compose IC3 into functionally relevant parts (Section IV) and
adopt k-induction as the core reasoning step (Section IV-C).
We isolate a fundamental property of interpolation (Sec-
tion IV-A) that allows us to prove the new method more
powerful than k-induction. We provide experimental evidence
that the new method is effective in practice (Section V). 2

II. BACKGROUND

We assume a finite set of typed variables ~x called state
variables. To each variable x ∈ ~x, we associate its primed
version x′ of the same type. We call any quantifier-free
formula F (~x) over the state variables a state formula, and any
quantifier-free formula T (~x, ~x′) a state-transition formula. A
state s is a type-consistent interpretation of ~x that assigns to
each variable x ∈ ~x a value s(x) over its domain. A state
formula F (~x) holds in a state s (written s � F) if the formula
evaluates to true under the state’s assignment.

A state-transition system is a pair S = 〈I, T 〉, where I(~x)
is a state formula describing the initial states and T (~x, ~x′) is
a state-transition formula describing the system’s evolution. A
state s′ is a successor of a state s in S if the formula T (~x, ~x′)
evaluates to true when we interpret each x ∈ ~x as s(x) and
each x′ ∈ ~x′ as s′(x). A state s is k-reachable if there exists a
sequence of states σ = 〈s0, . . . sk〉 such that, s = sk, the state
s0 satisfies I , and each si+1 is a successor of si. We call σ a
concrete trace of the system. We also say that a state formula
F is reachable in k steps if there is a k-reachable state s such
that s � F .

Given a state formula P (the property), we want to deter-
mine whether all the reachable states of S satisfy P . If this is
the case, P is an invariant of S, which we denote by S � P .
We also write S �ba P to denote that P is true in all k-
reachable states for a ≤ k ≤ b. If P is not invariant, there is
a concrete trace, called a counter-example, that reaches ¬P .

2Due to space limitations proofs we omit the proofs in this paper. The
full paper with proofs and additional experimental data is available from the
authors as a technical report.

85

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Definition II.1 (F-Induction). Given a set F of state formulas
such that P ∈ F , P is F-inductive3 with respect to S if

I(~x)⇒ F(~x) , (init)
F(~x) ∧ T (~x, ~x′)⇒ P (~x′) . (cons)

If F = {P}, we say that P is inductive.

If P is inductive then it is also invariant. Since invariants are
in general not inductive, a common approach to prove that P is
invariant is to find a strengthening of P . Such a strengthening
is a set of formulas F such that P ∈ F and F is inductive.
If such a strengthening exists, then P is invariant.

Definition II.2 (Fk-Induction). Given a set F of state for-
mulas such that P ∈ F , P is Fk-inductive with respect to S
if

I(~x0) ∧
l−1∧
i=0

T (~xi, ~xi+1)⇒ F(~xl) , for 0 ≤ l < k , (k-init)

k−1∧
i=0

(F(~xi) ∧ T (~xi, ~xi+1))⇒ P (~xk) . (k-cons)

When F = {P}, we say that P is k-inductive.

A property that is inductive is 1-inductive by definition. It is
also k-inductive for any k. In the other direction, if a property
P is k-inductive and the logical theory underlying the system
admits quantifier elimination, then we can construct an induc-
tive strengthening of P by eliminating quantifiers.4 For such
theories, induction and k-induction have the same deductive
power but k-induction may give more succinct strengthenings.
If the base theory does not admit quantifier elimination then
k-induction can be more powerful than induction.5

III. RELATIVE POWER OF INDUCTION AND k-INDUCTION

We present examples that illustrate the deductive power of
k-induction in relation to induction. To simplify the presen-
tation, we describe transition systems as programs. We use
the quantifier-free fragment of the extensional theory of ar-
rays [27], denoted by Tarr, and an extension of Tarr with array
constants [13], denoted by T c

arr. The theory Tarr is axiomatized
as WRITE(a, i, v)[i] = v, i 6= j ⇒ WRITE(a, i, v)[j] = a[j],
and a[i] 6= b[i]⇒ a 6= b. The extended theory T c

arr is obtained
by adding a construct c(v) that represents the constant array
with value v, and the axiom c(v)[i] = v.

The quantifier-free fragments of both theories are decid-
able [32], [13] and are very useful in practice. For example,
one can model integer sets in the theory T c

arr as arrays
that map integers to Booleans, and define set operations as
x ∈ a ≡ a[x], ∅ ≡ c(false), a ∪ {x} ≡ WRITE(a, x, true).

3This is the same idea as induction relative to F used in [7].

4If P is k-inductive then P ∧ ◦P ∧ ◦ ◦ P ∧ . . .∧
k−1︷ ︸︸ ︷
◦ ◦ · · · ◦P is inductive,

where ◦ stands for “next state”.
5We postulate that, for theories such as pure Boolean logic or linear

arithmetic, k-induction is exponentially more succinct than induction. Proving
this postulate would entail new complexity results on quantifier elimination
(e.g., [33]) and would require a much more sophisticated analysis.

1 int i, j;
2 map<int,int> a; // int -> int
3
4 // I: write 0 at a[0]
5 i = j = 0;
6 a[0] = 0;
7
8 // T: write 0 at a[i] from a[j]
9 while (true) {

10 j = rand() % (i+1);
11 i = (i+1) % N;
12 a[i] = a[j];
13 }

Fig. 1. Writing 0 to array a in a circular fashion, resetting every N steps.

Although their quantifier-free fragments are decidable, the
full array theories are not decidable [8] and therefore do not
admit quantifier elimination.6 This makes them good candi-
dates for relating the powers of induction and k-induction.

Example III.1. The program in Figure 1 sets the elements
a[0], . . . , a[N−1] to 0 in a circular fashion. This program can
be encoded as a transition system in theory Tarr, with initial
states defined by lines 5-6, and transition relation defined by
lines 10-12. Now, consider the property P ≡ (a[0] = 0).
This property is clearly an invariant of the system. One can
show that it is (N + 1)-inductive: Any sequence of N + 1
states must include a transition that resets i to 0. From then
on, all transitions increment i to an integer no more than
N − 1, pick a j between 0 and i, and copy a[j] into a[i].
If P holds at all states in this sequence, and if i = N − 1
in the last state of this sequence, then a[0], . . . , a[N − 1] are
all 0 in this state. If i 6= N − 1 in the last state then the
next transition keeps a[0] unchanged. These observations are
enough to conclude that P is (N +1)-inductive. On the other
hand, P is not k-inductive for any k ≤ N . Moreover, any
inductive strengthening of P must have size at least N , such
as for example P ∧

∧N−1
k=1 (a[k] = 0 ∨ i < k).

Lemma III.1. There exists a sequence of state-transition
systems SN and a property P , such that for any N the
property P is N -inductive in SN , but the shortest inductive
strengthening of P has a size larger than N .

The relationship between induction and k-induction is
explored in [5], where the authors show that induction is
as powerful as k-induction for theories that admit “feasible
interpolation.” Feasible interpolation ensures that the inductive
strengthening is polynomial in the size of the proof. This
is in line with Lemma III.1, since the proof itself can be
exponential, resulting in potential blowup of the invariant.

Example III.2. Consider the program in Figure 2. This
program sets the elements a[0], . . . , a[i], . . . to 0 in rounds of
N steps. Variable c counts the number of steps in the current
round and variable J stores the indices of the elements of a
that have been written to. The program can be encoded as
a transition system in theory T c

arr, with initial states defined

6For example, ∃i . a[i] = 0 does not have a quantifier-free equivalent.

86

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

1 int c, i, j;
2 set<int> J; // int -> bool
3 map<int, int> a; // int -> int
4
5 // I: write 0 at a[0]
6 c = 0;
7 a[0] = 0;
8 J.insert(0)
9

10 // T: write 0 at a[i] from a[j]
11 while (true) {
12 c = (c+1) % N;
13 if (c == 0) {
14 J.clear();
15 i = 0;
16 a[i] = 0;
17 } else {
18 i = rand();
19 j = J.pick_rand();
20 a[i] = a[j];
21 }
22 J.insert(i)
23 }

Fig. 2. Writing 0 to array a while keeping a set J of written-to indices,
resetting every N steps.

by lines 6-8, and transition relation expressed by lines 12-22.
As previously, let the property be P ≡ (a[0] = 0) then P is
invariant. By the pigeon-hole principle, P is (N+1)-inductive:
Any sequence of N +1 states must include a “reset” that sets
i = 0 and J = {0}. From this reset point, all transitions sets
some a[i] to 0 and adds i to J . However, there is no inductive
strengthening P ′ of P . For P ′ to be inductive, it would need
to ensure that for all j ∈ J we have a[j] = 0 but this can not
be expressed in the quantifier-free fragment of theory T c

arr.

Lemma III.2. There exists a state-transition system S and a
property P , such that the property P is k-inductive for k > 1
but there is no inductive strengthening of P .

The additional power of k-induction comes with a com-
putational price: checking whether a property is k-inductive
requires k+1 satisfiability checks and a potentially expensive
unrolling of the transition relation. The method we propose
in this paper alleviates this issue by using an incremental
approach that minimizes the need for unrolling.

IV. ALGORITHM

We reason about transition systems in the satisfiability mod-
ulo theories (SMT) framework [2]. Specifically, we assume
that the transition system is described in a theory where
quantifier-free satisfiability is decidable.

A. Satisfiability Checking

Given a state formula F , we denote with T [F]k the un-
rolling of T to length k where F holds in the intermediate
states. For k > 1, T [F]k(~x, ~x′) is then defined as

T (~x, ~w1) ∧
k−1∧
i=1

(F (~wi) ∧ T (~wi, ~wi+1)) ∧ T (~wk−1, ~x
′)

where ~w are the state variables in the intermediate states. For
k = 0 and k = 1, we set T 0[F](~x, ~x′) ≡ (~x = ~x′) and

T 1[F](~x, ~x′) ≡ T (~x, ~x′). When F ≡ true, we omit it and
simply write T k.

A basic step in our algorithms is to check the satisfiability
of formulas of the form

A(~x) ∧ T [B]k(~x, ~w, ~y) ∧ C(~y) , (1)

where A, B, and C are state formulas. We denote by
CHECK-SAT(A, T [B]k, C) an (SMT-based) procedure that
checks satisfiability of formula (1), and returns a model if
the formula is satisfiable. In addition, we require two artifacts
from the SMT solver: interpolants and generalizations.

Definition IV.1 (Interpolant). If the formula (1) is unsatisfi-
able, a formula J(~y) is a state interpolant if

1) A(~x) ∧ T [B]k(~x, ~w, ~y)⇒ J(~y), and
2) J(~y) and C(~y) are inconsistent.

Definition IV.2 (Generalization). If the formula (1) is satisfi-
able, we call a formula G(~x) a state generalization if

1) A(~x) and G(~x) are consistent, and
2) G(~x)⇒ ∃~w, ~y . T [B]k(~x, ~w, ~y) ∧ C(~y).

Interpolation provides forward learning. An interpolant
over-approximates the set of states reachable from A via
T [B]k and is enough to refute C. Generalization is the
dual and provides backward learning. A generalization G is
consistent with A and under-approximates the set of states that
can reach C via T [B]k.

Our notion of a state interpolant is more specific than
the one usually considered in general interpolation, and our
definition can be easily satisfied: formula ¬C is always an
interpolant (so interpolants exists in our case even if the
underlying theory does not support general interpolation).
Similarly, one can construct a generalization G from a model
v of formula (1) by substitution (i.e., the formula (A ∧
T [B]k)[~w/v(~w), ~y/v(~y)] is a trivial generalization). Although
correct, trivial interpolants and generalizations are not ideal
for practical applications. In particular, they do not satisfy the
following property.

Definition IV.3 (Finite Cover Property). An interpolation
(resp. generalization) procedure has the finite cover property
(is finite-covering) when, for a fixed T [B]k and A (resp C), it
can only produce a finite number of distinct interpolants (resp.
generalizations).

Interpolation is a well-studied topic [28], [12] and it is
available in several SMT solvers. Effective generalization in
SMT was introduced in [24] (as model-based projection) for
specific use in a PDR engine. There are known generalization
methods for the theories of linear arithmetic [24], arrays [23],
and algebraic data-types [6]. These methods have the finite
cover property. On the other hand, most interpolation proce-
dures are proof-based and do not ensure finite covering.

Both interpolation and generalization approximate quantifier
elimination. For theories that admit quantifier elimination, one
can construct precise interpolants by eliminating ~x and ~w from
A ∧ T [B]k and precise generalizations by eliminating ~w and

87

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

~y from T [B]k ∧ B. Such precise procedures have the finite
cover property, and it is not unreasonable to expect the same
from interpolation and generalization. This is the case for pure
SAT problems. In SAT, interpolants can always be expressed
as clauses, while generalizations can be expressed as prime
implicants, both of which guarantee the finite cover property.7

The finite-cover property for interpolants is an incremental
form of the related notion of uniform interpolation [30]:
uniform interpolation requires a single interpolant instead of
a finite set.

Example IV.1. Consider the system S = 〈I, T 〉 defined as
I ≡ (x = 0), T ≡ (x′ = x + 1) where x is a real-valued
variable. Let P be the formula 0 ≤ x ∨ x ≥ 1. To check
whether P is inductive, we can ask the following satisfiability
query to the SMT solver

A1︷ ︸︸ ︷
(0 ≤ x ∨ x ≥ 1)∧

T 1︷ ︸︸ ︷
(x′ = x+ 1)∧

B1≡¬A1︷ ︸︸ ︷
¬(0 ≤ x′ ∨ x′ ≥ 1) .

This formula is satisfiable in a model x 7→ −0.5, x′ 7→ 0.5.
We can generalize this model to G ≡ (−1 < x < 0); any state
that satisfies G is a counterexample to induction of P . We can
then check whether G intersects with the initial states and
whether G is reachable in one step, by making two separate
queries

A2︷ ︸︸ ︷
(x = 0)∧

T 0︷ ︸︸ ︷
(x′ = x)∧

B2︷ ︸︸ ︷
(−1 < x′ < 0) ,

(x = 0)︸ ︷︷ ︸
A3

∧ (x′ = x+ 1)︸ ︷︷ ︸
T 1

∧ (−1 < x′ < 0)︸ ︷︷ ︸
B3

.

Both queries are unsatisfiable. From the first query, we can
get an interpolant J0(x′) ≡ (x′ ≥ 0) that refutes G in the
initial states. From the second query, we can get an interpolant
J1(x

′) ≡ (x′ ≥ 1) that refutes G after one transition.
Although P itself is not inductive, the two interpolants give
us a strengthening: the formula P ′ ≡ P ∧ (J0(x) ∨ J1(x)) is
inductive.

B. Reachability

Problem IV.1 (k-reachability). Given a state formula F that
is not reachable in fewer then k steps, check whether F is
reachable in k steps.

The reachability problem can be solved by bounded model
checking [3], but we discuss an alternative method that does
not require unrolling the transition relation. We introduce the
concept of k-interpolation as a way to learn from failures of
k-reachability.

Definition IV.4 (k-interpolant). Given a system S and state
formula F that is unreachable in ≤ k steps (system is k-
inconsistent with F), a state formula J is a state k-interpolant
for F if

S �k0 J , J and F are inconsistent .

7For arithmetic theories, finite-covering interpolants can be generated using
model-based procedures such as MCSat [14].

As with regular interpolation, the formula ¬F itself is a
trivial k-interpolant. We can also construct a k-interpolant by
calling a standard interpolation procedure k + 1 times: If S
and F are k-inconsistent, then I(~x) ∧ T i(~x, ~w, ~x′) ∧ F (~x′) is
unsatisfiable for 0 ≤ i ≤ k. From these inconsistencies we can
obtain interpolants J0,. . . , Jk, and the formula J ≡ (J0∨ . . .∨
Jk) is a k-interpolant for F . Moreover, if the interpolation
procedure has the finite-cover property then so does the k-
interpolation procedure.

To check k-reachability, we adopt the incremental depth-
first reachability method of IC3, which relies on local rea-
soning. The procedure maintains a sequence R0, R1, . . . of
reachability frames. Frame Ri is a set of state formulas that
over-approximates the set of states reachable in i steps or less.
This implies that S �i0 Ri. Unlike IC3/PDR, we do not require
the frames to be monotonic; we may have Ri+1 6⊆ Ri.8

This setup allows us to build k-interpolants efficiently
provided an extra local condition holds. If k = 0, we just
take the interpolant of I ∧ T 0 ∧ F . If k > 0 and the formula
F is not reachable in up to k steps, and if, in addition, F is
not reachable in one step from Rk−1, then both I ∧ T 0 ∧ F
and Rk−1 ∧ T ∧ F are inconsistent. We can then obtain
interpolants J1 and J2 for these two formulas and (J1 ∨ J2)
is a k-interpolant for F . This k-interpolant, which we denote
by EXPLAIN(S, k, F), is potentially more concise than the
one described before and it is obtained by local reasoning
only. Although EXPLAIN has an additional precondition, our
algorithm ensures that this holds whenever EXPLAIN is called.

Lemma IV.1. Starting from a fixed finite frame sequence
R0,R1, . . ., if the only formulas we add to the frames are
obtained through the EXPLAIN procedure, and the interpola-
tion procedure is finite-covering, then the EXPLAIN procedure
is also finite-covering.

Algorithm 1 Check k-reachability of F .
Require: S �i0 Ri for 0 ≤ i ≤ k, S �k−1

0 ¬F .
Ensure: S �i0 Ri for 0 ≤ i ≤ k. If not reachable, Rk−1 ∧ T ∧ F

is unsatisfiable.
1 function REACHABLE(S, k, F)
2 if k = 0 then return CHECK-SAT(I, T 0, F)

3 loop
4 if CHECK-SAT(Rk−1, T, F) then
5 G← GENERALIZE(Rk−1, T, F)
6 if REACHABLE(S, k − 1, G) then
7 return true
8 else
9 E ← EXPLAIN(S, k − 1, G)

10 Rk−1 ←Rk−1 ∪ {E}
11 else return false

Finally, our reachability routine REACHABLE(S, k, F) per-
forms a step-wise search for a concrete trace by using a
depth-first search strategy. It tries to reach the initial states

8From an implementation perspective, this gives flexibility in garbage
collection. We can remove any subset of formulas from any frame Ri without
compromising correctness.

88

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

backwards. To reach F at frame k, we check first whether
F can be reached in one transition from the previous frame
Rk−1. If no such transition is possible, then F is not reachable.
Otherwise, we get a state s that satisfies Rk−1 and from which
F is reachable in one step. The generalization procedure gives
us a formula G that generalizes s: every state that satisfies G
has a successor that satisfies F . We then recursively check
whether G is reachable. The recursive call will either find a
path from the initial states to G, in which case F is reachable,
or determine that G is not reachable, in which case we can
learn an explanation E of the reachability failure and eliminate
G. Learning E eliminates G as a potential step backward, and
we continue.

Lemma IV.2. Algorithm 1 solves the k-reachability problem.
If F is not reachable then, upon completion, either k = 0 and
F is inconsistent with I , or k > 0 and F is not reachable in
one step from Rk−1. In addition, if the interpolation or the
generalization procedure is finite-covering, then the procedure
always terminates.

We use a variant of the REACHABLE procedure to check
whether F is reachable in steps k1 to k2. We denote this
by (r, l) = REACHABLE(S, k1, k2, F). This extension of the
REACHABLE procedure is a straightforward loop from k1 to
k2, and has the same precondition as the single check version
(on k1). In the return value, r denotes the reachability result
(true/false), and, if r is true, l is the length of the shortest trace
that can reach F . The postcondition (and hence Lemma IV.2)
of the iterative extension is also the same (on k2).

C. Property-Directed k-Induction

We now present the main procedure of PD-KIND. This
procedure checks whether a property P is invariant for a
system S = 〈I, T 〉. It does so by iteratively trying to construct
a k-inductive strengthening of P for some k > 0. The overall
idea behind the procedure is simple. Assume a set of formulas
FABS that is a strengthening of P and is valid in S for up to n
steps. In other words, FABS is an over-approximation of states
reachable in n steps or less. Then, the set FABS satisfies (k-init)
for all 1 ≤ k ≤ n+1. We can pick any such k and try to show
that FABS is k-inductive by checking whether it also satisfies
(k-cons). Each iteration of the procedure PD-KIND does this
check. The core of our algorithm is procedure PUSH that either
finds a counter-example to P or produces a new strengthening
GABS ⊆ FABS. This new set GABS satisfies (k-cons) with respect
to FABS. The set GABS is then Fk

ABS-inductive. If GABS = FABS,
we can conclude that P is invariant. Otherwise, we know that
GABS is valid (at least) up to index n + 1. Procedure PUSH
actually returns an integer np such that GABS is valid up to
np. This index np is the length of the shortest trace of S that
reaches ¬FABS; it is guaranteed to be at least n+1 but it may
be larger. At this point, we repeat the loop with GABS as our
current strengthening and np as our new index.

In addition to the set of formulas FABS, procedure PD-
KIND associates with each each FABS ∈ FABS information
about a potential counter-example to P that the formula FABS

Algorithm 2 Main PD-KIND procedure.
Require: S = 〈I, T 〉 and I ⇒ P

1 function PD-KIND(S, P)
2 n← 0
3 F ← {(P,¬P)}
4 loop
5 pick k-induction depth 1 ≤ k ≤ n+ 1
6 〈F ,G, np〉 ← PUSH(S,F , P, n, k)
7 if P marked invalid then return invalid
8 if F = G then return valid
9 n← np

10 F ← G

eliminates. The set FABS and this additional information is
represented in the form of an induction frame. Let F denote
the set of all state formulas in our theory.

Definition IV.5 (Induction Frame). A set of tuples F ⊂ F×F
is an induction frame at index n if (P,¬P) ∈ F and the
following holds for all (FABS, FCEX) ∈ F:

1) FABS is valid up to n steps and refutes FCEX, and
2) FCEX-states can be extended to a counter-example to P .

If I ⇒ P , then the set F = {(P,¬P)} is an induction
frame at index 0. Given an induction frame F , we denote
by FABS the strengthening represented by F , i.e., FABS =
{FABS | (FABS, FCEX) ∈ F}. With this in mind, the procedure
PD-KIND is presented in Algorithm 2.

D. The PUSH Procedure

The core of the PD-KIND algorithm is the PUSH procedure
(Algorithm 3). This procedure takes as input an induction
frame F at index n, and tries to push formulas of the frame
using k-induction where 1 ≤ k ≤ n + 1. Figure 3 illustrates
the formulas and frame indices over which PUSH operates.

Since F is an induction frame at n, we know that FABS is
valid up to index n. In each iteration, the procedure picks one
yet unprocessed (FABS, FCEX) from F . Both FABS and ¬FCEX

hold up to index n in S.
First, the procedure checks whether FABS is Fk

ABS-inductive
(lines 9-12). If so, then we know that FABS is valid at least up
to position n+ 1. We call this a successful push and we add
(FABS, FCEX) to the set of pushed obligations G, and continue
with the next obligation. If the k-induction check fails, then
we have a model (counterexample to induction) mCTI. This is
a trace of length k + 1 in which FABS holds for the first k
states but FABS is false in the last state.

The procedure does not use mCTI yet. Instead, it checks
whether the counterexample formula FCEX is reachable from
FABS (lines 15-24). If the query at line 15 is satisfiable, it
has a model mCEX. Like mCTI, this model is a trace of length
k + 1; it starts with k states that satisfy FABS and ends with
a state that satisfies FCEX (thus, from the first state of mCEX

we can reach ¬P). At this point, we generalize mCEX to a
formula GCEX. From any state that satisfies GCEX, one can
reach ¬P . Formula GCEX is then a potential counterexample
for P . We check whether GCEX is reachable from the initial

89

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

k︷ ︸︸ ︷
valid FABS FABS · · · FABS FABS · · · FABS F ?

ABS

S s0 s1 · · · sn−k · · · sn sn+1 · · · sn+d · · ·

reachable ���GCEX ���GCEX · · · ���GCEX G?
CEX k F ?

CEX d ¬P ?

���GCTI ���GCTI · · · ���GCTI G?
CTI k CTI?

Fig. 3. Illustration of the formulas and frame indices over which PUSH operates.

states of S. Because we know that FCEX is not n-reachable,
GCEX can’t be reached in less than n − k + 1 steps. So we
check reachability of GCEX at positions n − k + 1 . . .n. If
GCEX is reachable, then so is ¬P and we mark P as invalid.
Otherwise, we call the EXPLAIN procedure, which returns a
new fact GABS that eliminates GCEX. The new fact GABS is
true up to position n, and refutes GCEX, so we can add the
new induction obligation (GABS, GCEX) to F , strengthening F ,
and try again with a potential counter-example eliminated.

In the remaining case, we have a counterexample mCTI to
the k-inductiveness of FABS. Since the query at line 15 is not
satisfiable and FABS ⇒ ¬FCEX, we know that ¬FCEX is Fk

ABS

inductive. We first apply generalization to mCTI to construct a
formula GCTI. From any state that satisfies GCTI, we can reach
¬FABS in k steps. If GCTI is reachable in S then ¬FABS is also
reachable, so FABS can’t be part of a valid strengthening of P .
This check is performed at line 28; as previously, it is enough
to check reachability of GCTI at positions n− k+1, . . . , n. If
GCTI is reachable, we can’t push FABS. Instead, we replace the
triple (FABS, FCEX) by the weaker obligation (¬FCEX, FCEX).
This new obligation can be immediately pushed to G. On
the other hand, if GCTI is not reachable then we strengthen
FABS with a new fact GABS learned from procedure EXPLAIN.
This eliminates the counterexample to k-induction and the
procedure continues.

At lines 30-31 of the procedure, we know that ¬FABS is
reachable in S and that this requires at least n+1 transitions.
It is useful to make this more precise by computing the actual
length of the shortest path to ¬FABS (line 30). This length is
stored in variable np (if it’s smaller than np’s current value).

After the loop terminates, PUSH returns the set of success-
fully pushed induction obligations G, the modified set F of k-
induction assumptions for G, and the shortest refutation length
np for any FABS ∈ FABS that was not successfully pushed.
The procedure does not only add to the original set F , it
also actively modifies it (line 37). Unlike existing IC3-based
procedures where frames are explored in succession, keeping
track of np allows us to perform “jumps” that move to deeper
frames faster. This is because FABS is valid up to position
np − 1 ≥ n, and the facts in GABS are valid up to position
np ≥ n+ 1.9

Assuming that PD-KIND terminates, it is not hard to show
that it returns the correct result. If PD-KIND terminates with
P marked invalid, then we have found a counter-example

9We have observed significant frame jumps in practice although this is
problem-specific.

Algorithm 3 Push F with k-induction.
Require: F is a valid frame for P at position n, 1 ≤ k ≤ n + 1,

(P,¬P) ∈ F .
Ensure: F is a valid frame for P at position np − 1 ≥ n, G ⊆ F

is Fk-inductive, and P marked invalid or (P,¬P, 0) ∈ Fp.
1 function PUSH(S, F , P , n, k)
2 push elements of F to Q . Q is a priority queue.
3 G ← {} . Pushed facts, i.e. GABS is Fk

ABS-inductive.
4 np ← n+ k . Keeps track of the shortest CTI position.
5 while P not marked invalid, Q not empty do
6 pop (FABS, FCEX) from Q
7

8 . Is FABS Fk
ABS-inductive?

9 (satCTI,mCTI)← CHECK-SAT(FABS, T [FABS]
k,¬FABS)

10 if not satCTI then
11 G ← G ∪ {(FABS, FCEX)} . GABS is Fk

ABS-inductive.
12 continue
13

14 . Is FCEX reachable?
15 (satCEX,mCEX)← CHECK-SAT(FABS, T [FABS]

k, FCEX)
16 if satCEX then
17 GCEX ← GENERALIZE(mCEX, T

k, FCEX)
18 if REACHABLE(S, n− k + 1, n,GCEX) then
19 mark P invalid . I GCEX k FCEX ¬P .
20 else
21 GABS ← EXPLAIN(S, n,GCEX)
22 F ← F ∪ {(GABS, GCEX)} . Eliminate CEX.
23 push (GABS, GCEX), (FABS, FCEX) to Q
24 continue
25

26 . Analyze the induction failure.
27 GCTI ← GENERALIZE(mCTI, T

k,¬FABS)
28 (rCTI, nCTI)← REACHABLE(S, n− k + 1, n,GCTI)
29 if rCTI then . I nCTI GCTI k ¬FABS.
30 (rCTI, nCTI)← REACHABLE(S, n+1, nCTI+k,¬FABS)
31 np ← min(np, nCTI)
32 F ← F ∪ {(¬FCEX, FCEX)}
33 G ← G ∪ {(¬FCEX, FCEX)}
34 else . I 6 ≤n GCTI k ¬FABS.
35 GABS ← EXPLAIN(S, n,GCTI) . GABS ⇒ ¬GCTI.
36 GABS ← FABS ∧GABS . GABS ⇒ ¬FCEX.
37 F ← F ∪ {(GABS, FCEX)} \ {(FABS, FCEX)}
38 push (GABS, FCEX) to Q.
39

40 return 〈F ,G, np〉

90

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

to the property. On the other hand, if PD-KIND terminates
when the inductive frames become equal, i.e. F = G, then
FABS is a k-inductive strengthening of P and P is therefore
valid. In general, for infinite domains, even termination of
the PUSH procedure is not guaranteed. But, a finite-covering
interpolation procedure ensures termination: the number of
new facts that PUSH can learn is finite, and this bounds both
the number of possible refinement steps, and the number of
new counter-examples that can be found in line 15.

The PD-KIND procedure, as presented, has the freedom to
choose the induction depth k in each iteration (line 5). We
call a strategy for picking the depth increasing if it guarantees
that, for every k, PD-KIND eventually picks induction depths
k′ larger than k.

Lemma IV.3. If the interpolation procedure is finite-covering,
then the PUSH procedure terminates. If the property P is k-
inductive for some k > 0, and PD-KIND uses an increasing
strategy for k, then the PD-KIND procedure terminates.

Proof. (Sketch) If the property P is k inductive, then PD-KIND
will eventually pick only depths k′ ≥ k. For any such k′ no
counterexamples can be found at line 15, because any mCEX

could be extended to a counter-example of P , violating the
assumption that P is k-inductive. If no new counter-examples
can be found then, as PD-KIND goes from frame to frame,
the only new facts that can be added to the frame are either
obtained from refinement on line 35, where existing facts
are replaced with stronger facts, or line 36, where facts are
weakened to a counter-example refutation. Since we know
that no new counter-examples can be found, the latter can
only happen a finite number of times. Therefore, the size of
the frame can not increase indefinitely, and will eventually
converge to a state where F = G.

V. EXPERIMENTAL EVALUATION

We have implemented PD-KIND in the SALLY model-
checker.10 The implementation of the procedure itself is rather
small (1.2 Kloc of C++) and follows the presentation of the
paper. As our back-end SMT solver we combine YICES2 [17],
[18] and MATHSAT5 [11]. YICES2 is used for all satisfiability
queries and for generalization, while MATHSAT5 is used for
interpolation. We use two solvers because YICES2 supports
model-based generalization (but not interpolation), and MATH-
SAT5 supports interpolation (but not generalization at the time
we started implementing SALLY). This combination incurs
some overhead as we solve every unsatisfiable problem twice,
once with YICES2 to know that the problem is unsatisfiable
and once with MATHSAT5 to get an interpolant.11 The default
strategy for picking the parameter k in PUSH is to increment
by one in each iteration.

We have evaluated the new procedure on a range of
existing and new benchmarks. Several of our benchmarks are
related to fault-tolerant algorithms (oral-messages

10SALLY is open source and available at http://sri-csl.github.io/sally/.
11On the other hand, with no burden of proof-production, YICES2 is much

faster on satisfiable queries.

[25], tte-synchro and tta-startup [19],
unified-approx [29], azadmanesh-kieckhafer
[1], approximate-agreement [26], and hacms problem
sets). We also used benchmarks from software model checking
(cav12 [9], ctigar [4]). The lustre benchmarks are
from the benchmark suite of the KIND model-checker,
and cons are simple concurrent programs. Some of the
benchmarks were obtained from an existing repository 12.
Since our tool does not yet handle integer reasoning properly,
we converted all the integer variables to the real type. All
problems are flat transition systems and we translated them to
the input languages of other tools in a straightforward manner.
The software benchmarks come from a public repository
and were already encoded in SMTLIB2 as flat transition
systems.13

To put the results in context, we compare PD-KIND with
other state-of-the-art, infinite-state model checkers, namely,
Z3 [22], NUXMV [10], and SPACER [24]. The results are
presented in Table 4. Each solver was run with a timeout
of 20 minutes. Each column of the table corresponds to a
different model-checking engine, and each row corresponds
to a different problem set. For each problem set and tool
combination we report the number of problems that the tool
has solved, how many of the solved problems were valid and
invalid properties, and the total time (in seconds) that the tool
took to solve those problems.

The evaluation shows that the new method is effective and
robust on real-world problems: on all problem sets, PD-KIND
either solves the most problems or is very close to the best
engine. PD-KIND is good at both proving properties correct
and finding counter-examples. When proving invariants, PD-
KIND benefits from k-induction and can in some cases prove
the properties using a substantially smaller strengthening than
the inductive engines. Moreover, PD-KIND is the only engine
that can prove all properties that are already k-inductive. On
the other hand, PD-KIND is also effective as a bug-finder due
to the longer steps of k-induction. As an example of this,
in one of the hacms examples, PD-KIND finds a counter-
example of length 60 already at frame 15. The comparison is
not exhaustive or definitive: we have not included tools such
as KIND, and we used all the model checkers with default
options. It is likely that they could be tuned to perform better
on the particular benchmarks we have chosen.

VI. CONCLUSION

The k-induction principle is a popular method for prov-
ing safety of infinite-state systems. We have shown that k-
induction can be more powerful than regular induction for
expressive theories such as the theory of arrays. With this
in mind, we proposed PD-KIND, a reformulation of the IC3
method that allows us to integrate k-induction into the method.
We have implemented the new procedure in the SALLY tool,
and the experimental evaluation shows that our prototype

12https://es-static.fbk.eu/people/griggio/vtsa2015/
13All benchmarks can be downloaded from http://csl.sri.com/∼dejan/

sally-benchmarks.tar.gz.

91

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Fig. 4. Experimental evaluation. Each row corresponds to a different problem set. Each column corresponds to a different engine. Each table entry shows
the number of problems that the engine solved, how many of those were valid and invalid, and the total time it took for the solved instances.

Z3 SPACER NUXMV PD-KIND

problem set solved valid/invalid time (s) solved valid/invalid time (s) solved valid/invalid time (s) solved valid/invalid time (s)

approximate-agreement (9) 9 8/1 213 7 6/1 1150 9 8/1 2174 9 8/1 164
azadmanesh-kieckhafer (20) 20 17/3 3404 20 17/3 4678 20 17/3 294 20 17/3 192
cav12 (99) 69 48/21 2102 71 49/22 3529 72 50/22 7443 71 49/22 4990
conc (6) 4 4/0 128 4 4/0 655 6 6/0 421 4 4/0 270
ctigar (110) 64 44/20 1683 72 52/20 4249 76 56/20 1342 77 57/20 2823
hacms (5) 1 1/0 11 1 1/0 4 4 3/1 388 5 3/2 1661
lustre (790) 757 421/336 1888 763 427/336 2263 760 424/336 7660 774 438/336 3494
oral-messages (9) 9 7/2 16 9 7/2 44 9 7/2 161 9 7/2 2
tta-startup (3) 1 1/0 9 1 1/0 8 1 1/0 17 1 1/0 8
tte-synchro (6) 6 3/3 969 6 3/3 445 5 2/3 405 6 3/3 21
unified-approx (11) 8 5/3 2928 11 8/3 589 11 8/3 139 11 8/3 217

is effective at solving real-world problems. In addition, the
new method is more powerful then k-induction, which is
a novel and theoretically pleasing property: if the property
being checked is k-inductive (for some k), then (modulo a
requirement on the interpolation procedure) the method always
terminates. It can also prove properties that are not k-inductive.
When limiting the induction depth k = 1, the method can
be seen as an effective instance of the IC3/PDR class of
algorithms.

REFERENCES

[1] M. H. Azadmanesh and R. M. Kieckhafer. Exploiting omissive faults in
synchronous approximate agreement. IEEE Transactions on Computers,
49(10):1031–1042, 2000.

[2] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability
modulo theories. Handbook of satisfiability, 185:825–885, 2009.

[3] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. Tools and Algorithms for the Construction and Analysis
of Systems, pages 193–207, 1999.

[4] J. Birgmeier, A. R. Bradley, and G. Weissenbacher. Counterexample to
induction-guided abstraction-refinement (CTIGAR). In Computer Aided
Verification, pages 831–848, 2014.

[5] N. Bjørner, A. Gurfinkel, K. McMillan, and A. Rybalchenko. Horn
clause solvers for program verification. In Fields of Logic and Compu-
tation II, pages 24–51. 2015.

[6] N. Bjørner and M. Janota. Playing with quantified satisfaction. Logic
for Programming, Artificial Intelligence and Reasoning, 2015.

[7] A. R. Bradley. SAT-based model checking without unrolling. In
Verification, Model Checking, and Abstract Interpretation, pages 70–87,
2011.

[8] A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about
arrays? In Verification, Model Checking, and Abstract Interpretation,
pages 427–442, 2006.

[9] A. Cimatti and A. Griggio. Software model checking via IC3. In
Computer Aided Verification, pages 277–293, 2012.

[10] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. IC3 modulo theories
via implicit predicate abstraction. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 46–61. 2014.

[11] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The
MathSAT5 SMT solver. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 93–107. 2013.

[12] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient generation of Craig
interpolants in satisfiability modulo theories. ACM Transactions on
Computational Logic, 12(1):7, 2010.

[13] L. De Moura and N. Bjørner. Generalized, efficient array decision
procedures. In Formal Methods in Computer-Aided Design, pages 45–
52, 2009.

[14] L. De Moura and D. Jovanović. A model-constructing satisfiability
calculus. In Verification, Model Checking, and Abstract Interpretation,
pages 1–12, 2013.

[15] L. De Moura, H. Rueß, and M. Sorea. Bounded model checking and
induction: From refutation to verification. Lecture notes in computer
science, pages 14–26, 2003.

[16] A. F. Donaldson, L. Haller, D. Kroening, and P. Rümmer. Software
verification using k-induction. In Static Analysis, pages 351–368. 2011.

[17] B. Dutertre. Yices 2.2. In Computer Aided Verification, pages 737–744,
2014.

[18] B. Dutertre. Solving exists/forall problems with Yices. In SMT
Workshop, 2015.

[19] B. Dutertre, A. Easwaran, B. Hall, and W. Steiner. Model-based analysis
of timed-triggered ethernet. In Digital Avionics Systems Conference,
pages 9D2–1, 2012.

[20] N. Een, A. Mishchenko, and R. Brayton. Efficient implementation of
property directed reachability. In Formal Methods in Computer-Aided
Design, pages 125–134, 2011.

[21] S. Ghilardi and S. Ranise. MCMT: A model checker modulo theories.
In Automated Reasoning, pages 22–29. 2010.

[22] K. Hoder and N. Bjørner. Generalized property directed reachability. In
Theory and Applications of Satisfiability Testing, pages 157–171. 2012.

[23] A. Komuravelli, N. Bjørner, A. Gurfinkel, and K. L. McMillan. Com-
positional verification of procedural programs using horn clauses over
integers and arrays. In Formal Methods in Computer-Aided Design,
pages 89–96, 2015.

[24] A. Komuravelli, A. Gurfinkel, and S. Chaki. SMT-based model checking
for recursive programs. In Computer Aided Verification, pages 17–34,
2014.

[25] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–
401, 1982.

[26] N. A. Lynch. Distributed algorithms. 1996.
[27] J. McCarthy. Towards a mathematical science of computation. In

Program Verification, pages 35–56. 1993.
[28] K. L. McMillan. An interpolating theorem prover. Theoretical Computer

Science, 345(1):101–121, 2005.
[29] P. Miner, A. Geser, L. Pike, and J. Maddalon. A unified fault-tolerance

protocol. In FORMATS/FTRTFT, pages 167–182, 2004.
[30] A. M. Pitts. On an interpretation of second order quantification in first

order intuitionistic propositional logic. The Journal of Symbolic Logic,
57(01):33–52, 1992.

[31] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties
using induction and a SAT-solver. In Formal Methods in Computer-
Aided Design, pages 127–144, 2000.

[32] A. Stump, C. W. Barrett, and D. L. Dill. A decision procedure for an
extensional theory of arrays. In In 16th IEEE Symposium on Logic in
Computer Science, 2001.

[33] V. Weispfenning. The complexity of linear problems in fields. Journal
of Symbolic Computation, 5(1):3–27, 1988.

92

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Lazy Proofs for DPLL(T)-Based SMT Solvers

Guy Katz, Clark Barrett
New York University

Cesare Tinelli, Andrew Reynolds
The University of Iowa

Liana Hadarean
Synopsys Inc.

Abstract—With the integration of SMT solvers into analysis
frameworks aimed at ensuring a system’s end-to-end correct-
ness, having a high level of confidence in these solvers’ results has
become crucial. For unsatisfiable queries, a reasonable approach
is to have the solver return an independently checkable proof
of unsatisfiability. We propose a lazy, extensible and robust
method for enhancing DPLL(T)-style SMT solvers with proof-
generation capabilities. Our method maintains separate Boolean-
level and theory-level proofs, and weaves them together into
one coherent artifact. Each theory-specific solver is called upon
lazily, a posteriori, to prove precisely those solution steps it is
responsible for and that are needed for the final proof. We
present an implementation of our technique in the CVC4 SMT
solver, capable of producing unsatisfiability proofs for quantifier-
free queries involving uninterpreted functions, arrays, bitvectors
and combinations thereof. We discuss an evaluation of our tool
using industrial benchmarks and benchmarks from the SMT-
LIB library, which shows promising results.

I. INTRODUCTION

Many different tools for system analysis and verification
exploit the reasoning capabilities of SMT solvers. Typically,
these tools dispatch satisfiability queries to an SMT solver
and then use the returned results to prove or disprove various
system properties. Thus, one’s ability to rely on the outcome
of the analysis depends on the level of confidence in the
results returned by the underlying SMT solver. Unfortunately,
obtaining the high level of trust required for, e.g., safety-
critical systems can be difficult, as the solvers themselves are
highly complex tools and may contain errors.

One reasonable approach to increasing one’s level of con-
fidence in an SMT solver’s answers is to have it produce
solution certificates checkable by simpler, external tools. In
the case of a satisfiable (quantifier-free) query, a natural
certificate is a satisfying assignment for the input formula,
which typically can be checked by straightforward means. In
the unsatisfiable case, the natural counterpart of a satisfying
assignment is a proof certificate, which details how to derive
a contradiction from the input assertions using a reasonably
small set of trusted inference rules. Proof certificates can then
be checked by a small trusted proof-checker, thus removing
the need to trust the SMT solver.

Proof certificates provide several additional benefits. For
instance, they can be used for interpolant generation [23] and

The project or effort depicted was sponsored by the Air Force Research
Laboratory (AFRL) and the Defense Advanced Research Projects Agency
(DARPA) under contracts FA8750-13-2-0241 and FA8750-15-C-0113. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of AFRL or DARPA.

certified compilation [11]. Notably, they can be used also to
improve the performance of skeptical proof assistants. The
proof assistant discharges subgoals to the SMT solver and
then uses the proof certificates to internally reconstruct a
proof [1], [7], [13].

Instrumenting SMT solvers to generate proofs is a complex
task. One challenge is that modern solvers reason about their
input on multiple levels: typically an underlying SAT en-
gine performs Boolean reasoning, whereas multiple dedicated
theory solvers (e.g. array, arithmetic, and bitvector solvers)
perform theory-specific deductions. The various components
interact with each other in subtle ways—the theory solvers
interact with the SAT engine and also with each other—and
all of these interactions need to be properly captured in the
produced proofs. Another challenge is to produce fine-grained
proofs, i.e., proofs that are sufficiently detailed to be checked
by simple means.

In previous work, we presented a proof generation tech-
nique for input queries in the logic of quantifier-free fixed-
width bitvectors [15]. A main limitation there was that the
technique was specifically tailored for that particular logic. In
this work we make three major contributions that considerably
enhance our previous approach:

1) We present and formalize a general approach for fine-
grained proof generation in DPLL(T)-style SMT solvers.
This approach is not limited to one specific theory (e.g,
fixed-width bitvectors); in fact, it even supports proof
generation for combinations of theories. We explain the
approach in terms on an abstract description of DPLL(T)
and also discuss ways to implement it in practice.

2) We demonstrate how our approach can be realized using
lazy proof generation, which incurs a lower overhead.
During search, an SMT solver will often generate a
multitude of lemmas that are not actually needed to
derive a contradiction from the input. Our lazy approach
postpones proof construction for such lemmas until after
the contradiction has been found, and then generates
proofs just for those lemmas that were actually used.

3) We present lazy proof generation procedures for the
theory of uninterpreted functions with equality and the
extensional theory of arrays.

For evaluation purposes, we implemented our technique
in CVC4, a state-of-the-art SMT solver [2]. We conducted
extensive experiments using the relevant benchmarks from the
SMT-LIB library [4]. Our tool was able to produce proofs in
the vast majority of cases.

93

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Before describing our work, we give a high-level de-
scription of the DPLL(T) framework for SMT solvers in
Section II. Next, in Section III, we explain how proofs of
unsatisfiability can be generated in a DPLL(T) setting. In
Section IV we discuss our approach to lazy proof production,
and in Section V we cover proof production for three theories:
uninterpreted functions, arrays, and fixed-width bitvectors.
An experimental evaluation of our approach is summarized
in Section VI, followed by a discussion of related work in
Section VII, and a few concluding remarks in Section VIII.

II. DPLL(T)-BASED SMT SOLVERS

In its most general formulation, SMT is the problem of
determining the satisfiability of a set of formulas in some
background theory T . This work focuses on quantifier-free
formulas and on SMT solvers based on the DPLL(T) ar-
chitecture [21], which modularly combines a generic CDCL
SAT solver (the SAT engine) with one or more reasoners (the
theory solvers). Each theory solver decides the satisfiability
of constraints (i.e., conjunctions of ground literals), in a
specific background theory. Commonly supported theories
include equality over uninterpreted functions (TUF), linear
arithmetic over the integers (TLIA) or the reals (TLRA), fixed-
width bitvectors (TBV), arrays (TAX), and their combinations.

Abstract DPLL(T) Framework. We follow a recent abstract
formalization of DPLL(T)-style SMT solvers by Reynolds et
al. [22], which in turn is an elaboration of the one first intro-
duced by Nieuwenhuis et al. [21]. We consider a background
theory T that is a combination of m theories T1, . . . , Tm with
respective many-sorted (i.e., typed) signatures Σ1, . . . ,Σm.
For convenience, and without loss of generality, we assume
that the theories have no predicate symbols besides equality1

and that they all have the same set S of sort symbols. We also
assume that the theories share no function symbols except for
a set C =

⋃
S∈S CS of constant symbols (functions of arity

0), where each CS is a distinguished infinite set of free (i.e.,
uninterpreted) constants of sort S.

DPLL(T) solvers can be formalized abstractly as state
transition systems defined by a set of transition rules. The
states of the transition system are either the distinguished state
fail or triples of the form 〈M,F,C〉, where
• M , the current context, is a sequence of literals and

decision points •,
• F is a set of ground clauses derived from the original

input formula, and
• C is either the empty set or a singleton set containing a

ground clause, the current conflict clause.
Each context M can be factored uniquely into a concatenation
of the form M0 •M1 • · · · •Mn, where the Mi’s contain no
decision points. For every 0 ≤ i ≤ n we call Mi the i’th
decision level of M , and denote with M [i] the subsequence
M0 • · · · •Mi. Each atom of a clause in F ∪ C is pure, in

1Other predicate symbols can be expressed as function symbols with return
sort Bool, interpreted as the Booleans in each theory.

the sense that it has signature Σi for some i ∈ {1, . . . ,m}.
Note that two atoms in the same clause can have different
signatures, and when they do they share at most the constants
in C. Input formulas can always be converted to this form
while preserving satisfiability in T .

The initial state of the transition system is 〈∅, F0, ∅〉, where
F0 is a given set of clauses to be checked for satisfiability
(i.e., the input formula). The expected final states are either
fail, when F0 is unsatisfiable in T , or 〈M,F, ∅〉 where M
is satisfiable in T , F is equisatifiable with F0 in T , and M
propositionally entails F .

The possible behaviors of the system are defined by a
set of non-deterministic transition rules that specify a set of
successor states for any given state. These rules are depicted
in Figure 1 in guarded assignment form [17].2 A rule applies
to a state s if all of its premises hold for s.

In the rules, M, F, and C denote, respectively, the context,
clause set, and conflict component of the current state. The
conclusion describes how each component is changed, if at
all. We write l to denote the complement of literal l and l ≺M

l′ to indicate that l occurs before l′ in M. The function lev
maps each literal of M to the (unique) decision level in which
it occurs. The set LitF (resp., LitM) consists of all literals in
F (resp., in M) and their complements. For i = 1, . . . ,m, the
set LitM|i consists of the Σi-literals of LitM. IntM is the set
of all interface literals of M: the equalities and disequalities
between shared constants, where the set of shared constants
is {c | constant c occurs in LitM|i and LitM|j , for some 1 ≤
i < j ≤ m}. The index i for the rules Propi, Confli, Learni,
and Expli ranges from 1 to m. In those rules, |=i denotes
validity in the theory Ti. Clauses are implicitly processed
modulo associativity, commutativity and idempotency of ∨.

Modeling Solver Behavior. Rules Dec, Prop, Expl, Confl,
Fail, Learn, and Backj model the behavior of the SAT en-
gine, which treats atoms as Boolean variables. In particular,
Confl and Expl model the conflict discovery and analysis
mechanism used by CDCL SAT solvers [18]. The remaining
rules model the interaction between the SAT engine and the
individual theory solvers within the overall SMT solver. The
rules maintain the invariant that every conflict clause and
learned clause is entailed in T by the initial clause set.

Generally speaking, the system uses the SAT engine to
construct the context M as a truth assignment for the clauses
in F, as if those clauses were propositional. However, it
periodically asks the solver of each theory Ti to check if the
set of Σi-constraints in M is unsatisfiable in Ti or entails some
yet-undetermined literal from LitF ∪ IntM. In the first case,
the theory solver returns an explanation of the unsatisfiability
as a conflict clause, which is modeled by rule Confli. The
propagation of entailed theory literals and the extension of
the conflict analysis mechanism to them is modeled by rules
Propi and Expli. We assume (as in [21]) that each Ti-solver
provides an explaini method with the property that if l is a

2To simplify the presentation, we do not consider here rules that model
the forgetting of learned lemmas or restarts of the SMT solver.

94

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Dec
l ∈ LitF ∪ IntM l, l /∈ M

M := M • l
Confl

C = ∅ l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M

C := {l1 ∨ · · · ∨ ln}
Fail

C 6= ∅ • /∈ M

fail

Prop
l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l, l /∈ M

M := M l
Backj

C = {l1 ∨ · · · ∨ ln ∨ l} lev l1, . . . , lev ln ≤ i < lev l

C := ∅ M := M[i] l

Expl
C = {l ∨D} l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l

C := {l1 ∨ · · · ∨ ln ∨D}
Learn

C 6= ∅
F := F ∪ C

Expli
C = {l ∨D} |=i l1 ∨ · · · ln ∨ l l1, . . . , ln ≺M l

C := {l1 ∨ · · · ∨ ln ∨D}
Confli

C = ∅ |=i l1 ∨ · · · ∨ ln l1, . . . , ln ∈ M

C := {l1 ∨ · · · ∨ ln}

Propi

l ∈ LitF ∪ IntM

|=i l1 ∨ · · · ∨ ln ∨ l l1, . . . , ln ∈ M l, l /∈ M

M := M l
Learni

l1, . . . , ln ∈ LitM|i ∪ IntM ∪ Li

|=i ∃x (l1[x] ∨ · · · ∨ ln[x])

F := F ∪ {l1[c] ∨ · · · ∨ ln[c]}
Figure 1: State transition rules. In Learni, x is a (possibly empty) tuple of variables; c is a tuple of fresh constants from C of
the same sort as x.

M F C Rule

1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2 ∅ Dec
• 1 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2 ∅ Prop (1 ∨ 2̄)
• 1 2̄ 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2 ∅ Prop (2 ∨ 3)
• 1 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2 ∅ Confl (3̄ ∨ 2)
• 1 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2 3̄ ∨ 2 Expl (2 ∨ 3)
• 1 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2 2 Expl (1̄ ∨ 2̄)
• 1 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2 1̄ Learn (1̄)
• 1 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2, 1̄ 1̄ Backj (1̄)

1̄ 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2, 1̄ ∅ Prop (1 ∨ 2̄)
1̄ 2̄ 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2, 1̄ ∅ Prop (2 ∨ 3)

1̄ 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2, 1̄ ∅ Confl (3̄ ∨ 2)
1̄ 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2, 1̄ 3̄ ∨ 2 Expl (2 ∨ 3)
1̄ 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2, 1̄ 2 Expl (1 ∨ 2̄)
1̄ 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2, 1̄ 1 Expl (1̄)
1̄ 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2, 1̄ ⊥ Fail

fail

Figure 2: An execution using only propositional rules.

literal propagated by the solver, then explaini(l) returns a
subset {l1, l2, . . . , ln} of M , such that |=i l1∨ l2∨· · ·∨ ln∨ l.
The inclusion of the interface literals IntM in rules Dec and
Propi achieves the effect of the Nelson-Oppen combination
method [10], [25]. Rule Learni models theory solvers follow-
ing the splitting-on-demand paradigm [5]. When asked about
the satisfiability of the set of Σi-literals in M, such solvers
may return instead a splitting lemma, a clause encoding a
guess that needs to be made about those literals before the
solver can determine their satisfiability. The set Li in the
rule is a finite set consisting of additional literals, i.e., not
present in the original formula in F, which may be generated
by splitting-on-demand theory solvers.

III. GENERATING PROOFS IN DPLL(T)

One can prove that the transition rules defined in Section II
are refutation sound: if an execution starting with 〈∅, F0, ∅〉
ends with fail, then F0 is unsatisfiable in T . We discuss below
how to generate unsatisfiability proofs from such executions.

Example 1: Figure 2 shows an example of an execution
from an initial state to fail, using only propositional rules.
In the figure, we abstract clause atoms by numbers to stress
that they are treated purely propositionally by these rules. The
Rule column shows the rule used for each transition, together
with the clause the rule was applied to. We observe that Fail
could have been applied right after the second application
of Confl; however, we show instead a longer execution that
regresses (with Expl) the conflict clause 3̄ ∨ 2 to the empty
clause ⊥. As we discuss later, the applications of Expl are
needed for proof generation. Note that the second occurrence
of 3̄∨2 as a conflict could have been avoided by learning the
conflict clause 2 as soon as it was generated. Then, a shorter
execution leading to fail would have been possible.

A. Proof Generation for Propositional Unsatisfiability.

Given a failed execution from an input set F0 that uses only
propositional clauses, as in Example 1, one can construct a
proof that F0 is (propositionally) unsatisfiable. Intuitively, we
can understand a failed execution as trying to construct a
refutation tree: a tree of clauses built from the leaves, which
are either clauses in F0 or learned clauses, down to the root
⊥, where each non-leaf node is a propositional resolvent of
its children. Thus, a failed execution can be translated into a
Boolean resolution proof in a straightforward manner.

Observe, however, that a refutation tree provides only part
of the full proof, since it only shows the unsatisfiability of the
initial clause set plus some set of learned clauses. Thus, to
complete the proof one also needs to prove that each learned
clause is a consequence of the initial clause set. This can be
performed similarly to how conflict analysis is performed in
CDCL solvers [16]: every learned clause is the result of an
application of the Confl rule and possibly a series of Expl
rules. A sequence of resolution applications to the clauses to
which these rules were applied produces the learned clause.

Figure 3 depicts a refutation tree for the execution in
Figure 2. The tree shows the final resolution proof once all

95

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

3̄ ∨ 2 2 ∨ 3

2 1 ∨ 2̄

1 1̄

⊥

3̄ ∨ 2 2 ∨ 3
2 1̄ ∨ 2̄

1̄

Figure 3: A refutation tree (on the left) with a sub-proof for
a learned clause (on the right).

the needed clauses have been learned. Its leaves are the input
clauses 3̄ ∨ 2, 3 ∨ 2 and 1 ∨ 2̄, and the learned clause 1̄. The
tree itself is constructed simply by revisiting the applications
of rules Confl and Expl that led to the conflict clause ⊥, since
each application of Expl produces a new conflict clause as the
resolvent of the current conflict clause and an initial or learned
clause. A separate proof is constructed for the learned clause
1̄, from the applications of Confl and Expl that generated it.
In general, this recursive proof-tree generation process always
terminates because each learned clause is derived from initial
clauses and previously learned ones. It can be implemented in
practice by keeping track of the various applications of Expl.

B. Proof Generation for Unsatisfiability Modulo Theories.

Executions ending in fail that involve the use of the non-
propositional transition rules can also be seen as attempts to
construct a refutation tree. This time, however, the leaves of
the tree can include, in addition to initial and propositionally
learned clauses, also theory lemmas—a name we give to
clauses that come from the Confli, Learni, and Expli rules.
Thus, the full proof tree requires combining propositional
resolution proofs, produced by the SAT engine, with theory-
specific proofs for each theory lemma.

To make this possible, we require each Ti-solver to provide
a method provideProofi that takes as input a theory lemma
and returns a proof of that lemma using theory-specific proof
rules.3 Then, a full proof tree can be constructed as before, by
visiting the application of rules that led to the final conflict
clause ⊥. When visiting applications of Expli, the conflict
clause l1∨· · ·∨ ln∨D is obtained by resolving l∨D with the
theory lemma E = l1∨· · · ln∨l. We then call provideProofi
on E to obtain the missing part of the proof. Rule Confli

adds a conflict clause C = l1 ∨ · · · ∨ ln, which may end
up as a leaf in a refutation tree. Thus, C is also a theory
lemma and we call provideProofi on it if we encounter it
during proof construction. Finally, rule Learni adds the clause
D = l1[c] ∨ · · · ∨ ln[c] directly to F, with the consequence
that D can act as an input clause. Thus, if we encounter it
during proof construction, we call provideProofi on D to
obtain its theory-specific proof.

Thanks to the use of pure literals in clauses and the
controlled exchange of information between the various the-
ory solvers through the use of interface literals, Expli and
provideProofi, which are local to the Ti-theory solver for

3 We give a few examples of theory-specific proofs for theory lemmas in
Section V, when we discuss specific theory solvers.

M F C Rule

. . .
1 2 3 • 4̄ • 5 F0 ∅ Prop1 (1̄ ∨ 2̄ ∨ 5̄ ∨ 6)

1 2 3 • 4̄ • 5 6 F0 ∅ Prop2 (3̄ ∨ 6̄ ∨ 7)
1 2 3 • 4̄ • 5 6 7 F0 ∅ Confl1

1 2 3 • 4̄ • 5 6 7 F0 4 ∨ 6̄ ∨ 7̄ Expl2 (3̄ ∨ 6̄ ∨ 7)
1 2 3 • 4̄ • 5 6 7 F0 3̄ ∨ 4 ∨ 6̄ Expl1 (1̄ ∨ 2̄ ∨ 5̄ ∨ 6)
1 2 3 • 4̄ • 5 6 7 F0 C Learn
1 2 3 • 4̄ • 5 6 7 F0, C C Backj

1 2 3 • 4̄ 5̄ F0, C ∅ . . .

C = 1̄ ∨ 2̄ ∨ 3̄ ∨ 4 ∨ 5̄

Figure 4: An execution using theory rules.

4 ∨ 6̄ ∨ 7̄ 3̄ ∨ 6̄ ∨ 7

3̄ ∨ 4 ∨ 6̄ 1̄ ∨ 2̄ ∨ 5̄ ∨ 6

1̄ ∨ 2̄ ∨ 3̄ ∨ 4 ∨ 5̄

T1-proof
T2-proofT1-proof

Figure 5: Using theory-specific proofs in proving a lemma.

each i, are enough to construct complex SMT proofs that
involve several theories.

Example 2: Suppose T is the combination of the theory of
uninterpreted functions (T1 is TUF) and the theory of arrays
with extensionality (T2 is TAX), and consider an initial clause
set F0 containing the atoms:

1 : c3 = f(c1) 3 : c5 = (a[c3] := c1)[c4]
2 : c4 = f(c2) 4 : g(c3, c5) = g(c4, c1)

where a is an array, c1, . . . , c5 are shared constants, and f
and g are uninterpreted functions. The expression a[i] denotes
the result of reading an array a at index i, and a[i] := b
denotes the result of writing value b at index i of a. Suppose
that literals 1, 2, 3 occur as unit clauses in F0 while 4 occurs
in some longer clause. Then, a possible execution from F0

might look like the one in Figure 4 where 5, 6, and 7 are the
following interface literals:

5 : c1 = c2 6 : c3 = c4 7 : c5 = c1 .

If that execution eventually ends in fail and uses the learned
clause C = 1̄ ∨ 2̄ ∨ 3̄ ∨ 4 ∨ 5̄, then a proof certificate for F0

will need a proof of C. The proof tree for C generated from
the given execution is shown in Figure 5, with the proofs of
the various theory lemmas omitted. Note that C, which has
both Σ1- and Σ2-literals, is valid in T . However, it is not a
lemma of either component theory. Proving it valid in T really
requires a collaboration between the two theory solvers.

In practice, concrete implementations of this framework do
not pass to the SAT engine the theory lemmas used in Expli
steps, to avoid polluting the engine with unnecessary clauses.
This means that in the example above, for instance, to obtain a
proof for the learned clause C, we must be able to reconstruct
the theory lemmas used in each Expli step. To do this, we
record for each learned clause a proof sketch: a list of theory
propagations, each performed by a specific theory solver, that
together justify the learned clause. A clause’s proof sketch can

96

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

be used later to produce a full proof as needed: each individual
propagation is converted into a theory lemma via a call to the
relevant solver’s explaini method, and then a proof for that
propagation is obtained via a call to provideProofi. These
intermediate proofs are then composed into a proof for the
learned clause, using resolution as in the example above. By
keeping these proof sketches we have enough information to
construct complete proofs later on. This process facilitates
lazy proof generation for learned clauses, as we discuss next.

IV. LAZY PROOF PRODUCTION

In the previous section we saw that in order to produce
proofs in a DPLL(T) setting, each Ti-solver must be able
to justify the theory lemmas it generates. In this section, we
discuss a complementary question: when should it provide
these justifications?

One approach, found in some solvers that support various
forms of proof production [3], [6], is to prove each theory
lemma eagerly, at the time it is generated. This has the
advantage that proof production for each theory step typically
incurs only a small overhead, and often boils down to
recording the internal deductive process that the theory solver
follows when generating the lemma. However, this greedy
approach can be inefficient. During the solution phase, theory
solvers usually produce numerous lemmas that end up not
being used in deriving the empty clause, and so do not make
it into the final refutation tree. Hence, any proofs produced
for such lemmas are a waste of effort. As an alternative, we
advocate a lazy approach where no proofs for theory lemmas
are generated until the final refutation tree has been found.
Then, the provideProofi methods are invoked only for those
theory lemmas that appear as leaves in the tree.

For many of the benchmarks we tried, only a fraction
of the thousands of theory lemmas generated during the
solving phase are used in the final proof, so the savings from
producing proofs for theory lemmas lazily can be significant.
A disadvantage is that theory lemmas occurring in the final
proof end up being processed twice: once when they are
originally generated, and then again when producing the
proof. Typically, this means that in addition to generating the
proof, the theory solver will have to redo the deductive work
that was required to generate each lemma in the first place.

Choosing an appropriate strategy depends on the particular
theory solver in question. For some theory solvers reproving
lemmas is cheap, making the lazy approach more suitable;
for others, an eager approach may yield better results. Our
experiments (in Section VI) indicate that, in the cases of
TUF and TAX, the lazy approach fairs better. We discuss the
particulars of our implementation in Section V.

Lazy Proofs and Rewrite Rules. Modern SMT solvers make
use of a large arsenal of rewrite rules aimed at simplifying
formulas. These rules specify how and when to replace atoms
and terms with simpler but equivalent versions, and applying
them can significantly improve the performance of solvers.
However, the simplification of even a single atom that appears

in a theory lemma can interfere with lazy proof production,
as illustrated by the following example, encountered while at-
tempting to produce proofs for the SMT-LIB benchmarks [4]
in the theory TABV combining arrays and bitvectors.

Example 3: Suppose that the TAX-solver generates the the-
ory lemma L1 : (b+1 = 1)∨((a[b+1] := x)[1] = a[1]), where
a is an array and b is a fixed-width bitvector (for conciseness,
we give here the lemma in non-purified form). Intuitively, this
lemma says that if b+ 1 6= 1, then writing x to a[b+ 1] does
not alter the value of a[1]. L1 is valid in TAX, and so the
TAX-solver should be able to prove it.

In the lazy approach, the TAX-solver is not asked to
provide a proof for L1 right away. Now, suppose that dur-
ing subsequent processing of the theory lemma, a bitvector
rewrite rule is invoked, simplifying the atom b + 1 = 1
to b = 0, and consequently transforming lemma L1 into
L2 : (b = 0) ∨ ((a[b + 1] := x)[1] = a[1]). This lemma
is valid in TABV, but not in TAX. Thus, when the time comes
to produce a proof and the TAX-solver is asked to prove L2,
it will fail to do so.

We can overcome this difficulty as follows. First, we extend
the abstract DPLL(T) framework with the following, general
rule, which allows theory solvers to rewrite literals:

Rewritei

C = {l ∨D}
|=i l1 ∨ · · · ∨ ln ∨ (l = l′) l1, . . . , ln ∈ M

C := {l′ ∨D}

We call the clause l1 ∨ · · · ∨ ln ∨ (l = l′) above a rewrite
lemma. During the solution phase, we keep track of the
application of these rewrite rules to theory atoms. Whenever
a theory atom that participates in a lemma is rewritten, we
record this information in the lemma’s proof sketch. Then, if
and when we need to prove the (rewritten) lemma, we can
separately prove the original lemma and each specific rewrite
lemma used to rewrite it, and then combine their proofs into
a proof for the rewritten lemma. In our example above, when
we need to prove L2, we first have the TAX-solver prove the
original lemma L1, and then separately ask the TBV-solver to
provide a proof for the equivalence (b + 1 = 1) = (b = 0).
These two proofs can then be combined to prove L2, which
is the actual leaf in the refutation tree. Observe that this
technique is applicable even if there is a series of rewrites
involving multiple theory solvers, because, according to the
Rewritei rule, each rewrite lemma used is valid in some
individual theory.

Besides enabling proof production when rewrite rules are
applied, this process also has a beneficial effect on mod-
ularity: it separates proofs for rewrite rules from those of
the theory lemmas, thus simplifying proof production and
improving proof legibility.

V. THEORY-SPECIFIC PROOFS

In the purely propositional case (as in Example 1), a proof
can always be constructed that consists of a sequence of
applications of Boolean resolution, starting from the input

97

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

clauses. In the non-propositional case, we saw that each
theory solver must provide proofs for its theory lemmas. This
requires additional instrumentation in the theory solvers as
well as additional deduction rules and axioms beyond Boolean
resolution. In this section, we discuss the construction of
proof-producing theory solvers for three common theories:
uninterpreted functions with equality (TUF), arrays with ex-
tensionality (TAX) and fixed-width bitvectors (TBV). In all
theory solvers, it is more convenient to prove a theory lemma
l1 ∨ · · · ∨ ln by first proving the unsatisfiability of the set
{l1, . . . , ln}; so we focus on the latter kind of proof here.

Uninterpreted Functions. A general scheme for a proof-
producing TUF-solver was proposed by Fontaine et al. [14].
We follow a similar approach, briefly summarized below.
Decision procedures for TUF are normally based on congru-
ence closure: the solver maintains an equality graph which
partitions the terms appearing in the input constraints into
equivalence classes. As the search progresses, equivalence
classes get merged. Unsatisfiability is derived when two terms
a and b from an input constraint a 6= b end up in the same
equivalence class.

To produce a refutation tree, the TUF-solver keeps track of
all previously performed merges of equivalence classes. When
it is asked to prove that a = b is a consequence of some of the
input constraints (contradicting the input constraint a 6= b),
it backtracks through these merges and constructs a chain
a = x1 = · · · = xn = b, where each link is the result of
an input constraint or an application of the congruence rule
(deriving, for instance, f(x) = f(y) from x = y) [14]. This
chain can then be transformed into a proof tree whose leaves
are input assertions and whose internal nodes are generated
by the application of one of the following rules:

Transitivity: from x = y and y = z derive x = z
Congruence: from x = y derive f(x) = f(y)
Symmetry: from x = y derive y = x

Figure 6 depicts a refutation of the negation of the TUF theory
lemma (x 6= y)∨ (z 6= f(y))∨ (f(x) = z) using those rules.

f(x) 6= z

x = y

f(x) = f(y)
Cong.

z = f(y)

f(y) = z
Symm.

f(x) = z
Trans.

⊥
Figure 6: A refutation of {x = y, z = f(y), f(x) 6= z}.

A convenient way to implement eager TUF proof pro-
duction is to instrument the TUF-solver’s explain function
to produce, apart from an explanation clause, also a proof
for that clause. However, TUF is a prime candidate for lazy
proof production: since the decision procedure in this case
is very efficient, reproving previous lemmas is cheap. In the
lazy approach, during proof construction, if we encounter a
TUF theory lemma l1 ∨ . . . ∨ ln, we assert its negation to a
fresh proof-producing instance of the TUF-solver. This solver
then constructs the proof as it derives a contradiction. Our

experimental evaluation (see Section VI) suggests that the
lazy approach is superior to the eager approach for TUF.

Arrays with Extensionality. We now show how we can build
on the procedure for TUF to produce proofs for TAX. An
efficient decision procedure for TAX [12] uses congruence
closure and maintains an equality graph, similarly to the TUF
case; however, it merges equivalence classes also as the result
of array-specific axioms (proof rules with no premises):

1) Read-over-write 1: for any array a, indices i and j and
element x, if i 6= j then (a[i] := x)[j] = a[j].

2) Read-over-write 2: (a[i] := x)[i] = x.
The first axiom guarantees that writing to index i does not
change the value at a different index j, and the second
guarantees that written values persist. A third axiom states
that disequal arrays must differ in at least one cell:

3) Extensionality: for any two arrays a and b, if a 6= b then
there exists a k such that a[k] 6= b[k].

Observe that, unlike in the TUF case, an unsatisfiable set of
constraints here does not have to include one of the form a 6=
b, since disequalities can also be deduced by the extensionality
axiom. A contradiction is reached when two contradictory
literal, a = b and a 6= b, are derived.

Instrumenting a TAX-solver to produce proof trees based on
these axioms again consists of collecting the reasons for the
merges of equivalence classes. In particular, any application
of Read-over-write 1 and Extensionality contains a sub-proof
for the axiom’s guard—respectively, i 6= j and a 6= b.

Figure 7 depicts a refutation of the negation of the TAX
theory lemma (i = j) ∨ ((a[j] := y)[i] 6= x) ∨ (a[i] = x)
using the first read-over-write (RoW) axiom.

i 6= j (a[j] := y)[i] = x

a[i] = x
RoW 1

a[i] 6= x

⊥

Figure 7: Refutation of {i 6= j, (a[j] := y)[i] = x, a[i] 6= x}.

Eager proof production can be achieved as in the TUF
case. For lazy proof production, we can again instantiate a
fresh copy of the solver for every lemma that we need to
prove. However, in this case, reproving lemmas from scratch
does not suffice. The problem is due to the Extensionality
axiom. Consider a case where we need to reprove an instance
(a = b) ∨ (a[k] 6= b[k]) of that axiom, where k is a free
constant witnessing the disequality a 6= b. If we attempt
to lazily prove this lemma by instantiating a fresh TAX-
solver and asserting to it the set {a 6= b, a[k] = b[k]}, it
will be unable to refute it (simply because, by itself, it is
not unsatisfiable). This problem can be overcome by some
simple bookkeeping during the solution phase: whenever the
Extensionality axiom is used, we record that k is a witness for
a 6= b; later, during lazy proof production, we ensure that the
same k is used to witness a 6= b in the fresh solver. Again,
our experiments (see Section VI) suggest that, despite this
extra bookkeeping, the lazy approach is superior to the eager
approach for TAX.

98

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Bitvectors. We discuss proof generation for the theory TBV of
fixed-width bitvectors thoroughly in our previous work [15],
so we provide here only a short recap, for completeness. The-
ory solvers for this theory make extensive use of bit-blasting:
they transform a bitvector formula ϕ into an equisatisfiable
propositional formula ϕBB , in which fresh Boolean variables
represent the values of individual bitvector bits. An internal
SAT solver then checks the satisfiability of ϕBB , and a proof
for its unsatisfiability can be translated into a proof for the
unsatisfiability of the original ϕ.

A small example appears in Figure 8. It depicts a bit-
blasting refutation for the negation of TBV lemma (b1 6=
b2)∨(b2 6= 10)∨(b1 6= 00), where b1 and b2 are bitvectors of
size 2. The three equalities in the lemma are bit-blasted, via
application of the BB rule, to derive equalities over some of
their constituent bits (denoted here by an array-like notation);
these equalities are then used to derive a contradiction.

b1 = b2
b1[1] = b2[1]

BB
b2 = 10

b2[1] = 1
BB

b1[1] = 1
Trans.

b1 = 00

b1[1] = 0
BB

⊥
Figure 8: A refutation of {b1 = b2, b2 = 10, b1 = 00}.

Bitvector lemmas are proved semi-lazily, in the following
sense. During the solution phase, the TBV-solver’s internal
SAT solver is instrumented to eagerly record any conflict
that it discovers. Later, when a lemma needs to be proved
because it appears in the refutation tree, the bit-level conflicts
that prove it have already been recorded and can be used.
While most of the work is thus done eagerly, one part is still
performed lazily: the proof of the bit-blasting process itself,
i.e., the part of the proof connecting ϕ to ϕBB , is reproduced
lazily only for participating lemmas.

Our motivation for eagerly recording the internal SAT
solver’s conflicts is that reproducing a TBV theory lemma with
no information would require re-bit-blasting and re-solving,
a potentially very expensive process.

VI. EVALUATION

For evaluation purposes we implemented our proof gen-
eration approach in CVC4 [2]. Proof generation for TBV
was implemented as part of previous work [15]. For this
evaluation, we extended CVC4 with both eager and lazy proof
generation capabilities for TUF and TAX. We also completed
the instrumentation of the DPLL(T) engine as described in
Section III, enabling it to handle any combination of the
three theories above. Support for proving rewrite rules is still
under development, and so for the purposes of this evaluation
rewrite rules are treated as axioms, i.e. are given without fine-
grained justification. However, the rewrite rules do appear
in separate lemmas outside the main proof as discussed in
Section IV, and their usage in other parts of the proof is
checked for correctness. All changes have been integrated into

the master branch of CVC4, which is available online through
CVC4’s GitHub repository at https://github.com/CVC4.

CVC4 outputs the proofs it generates as terms in the
Logical Framework with Side Conditions (LFSC) [24]. Based
on a simply typed λ-calculus with dependent types, LFSC
reduces proof checking to type checking: proof rules are
encoded as (higher-order) constants, with their premises and
conclusions encoded as types, and a proof is a term whose
constants are proof-rule names. An LFSC checker takes as
input a proof term t and a signature S, a collection of type
and constant declarations that includes the various proof rules,
and checks that t is well-typed with respect to S. We extended
the signature S from Hadarean et al. [15] to support the TUF
and TAX rules mentioned in Section V.

We first compared the lazy and eager proof generation
approaches for TUF and TAX. Figure 9 shows the results
on all QF UF and QF AX benchmarks from the SMT-LIB
library [4]. For QF UF benchmarks, the eager approach was
slower than the lazy one on almost all instances and incurred
an average performance overhead of 30%. For QF AX bench-
marks, the eager approach was 25% slower on average. Both
cases thus indicate a clear advantage for the lazy approach.

Figure 9: Eager vs. Lazy proof production runtimes, in
seconds.

We then ran a more extensive experiment to test our
ability to correctly generate and check proofs (lazily for the
TUF and TAX solvers) for unsatisfiable benchmarks from all
the relevant logics (including theory combinations) in the
SMT-LIB library [4]: QF UF, QF AX, QF BV, QF UFBV,
QF ABV and QF AUFBV. Table I shows the results. The
Default columns describe the performance of CVC4 with
proof production disabled; the Generate and Check Proof and
Generate Proof columns describe performance when produc-
ing a proof with and without checking it, respectively. Also
shown in the table are results on a set of industrial QF ABV
benchmarks encoding symbolic execution problems, which
were provided to us by collaborators from GrammaTech, Inc.
These results appear in the row labeled Symbolic Execution.

CVC4 was able to produce proofs for over 99% of all
instances that it could solve without proof generation. We
were similarly able to check most of the generated proofs
using LFSC’s external proof checker. In the future, we plan to
improve proof checking time by optimizing the LFSC checker
and using more efficient LFSC encodings for our proofs.

99

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

https://github.com/CVC4

Benchmark Default Generate Proof Generate and
Category Check Proof

Solved Time Solved Time Solved Time

QF UF 4083 7523 4067 19097 4029 61650
QF AX 277 450 264 3170 260 3193
QF BV 20517 49884 20430 67072 17602 132975
QF UFBV 12 1391 12 2623 4 170
QF ABV 4487 16223 4410 19900 4127 22768
QF AUFBV 31 93 31 245 30 1751

Symbolic 94 1735 89 4364 71 2348
Execution

Table I: Producing and checking proofs. All times are in
seconds. Experiments were run with a 600 second timeout.

VII. RELATED WORK

Various SMT solvers have taken different approaches to
proof production over the years (see Barrett et al. [3] for
a recent survey). To the best of our knowledge, the only
other SMT solver that is both actively maintained and able to
produce independently-checkable proofs is veriT [9], which
supports eager proof-production for TUF and the theory of
linear arithmetic. Our approach for eager proof production in
TUF is similar to that of veriT [14]. However, veriT does not
support lazy proof production or proofs for TAX or TBV.

The Z3 solver produces proof traces, essentially a record
of propositional inferences plus a listing of theory lemmas
used [6]. Extending such a proof trace to a full proof
requires an external tool capable of proving theory lemmas
independently, which can be quite challenging, for instance
for bitvector theory lemmas [8]. Our approach differs from
Z3’s approach in that it produces full, fine-grained proofs that
are checkable by simple checkers.

The LFSC format [24] allows us to use a generic LFSC
checker to check proofs. Other approaches for checking
SMT-generated proofs include using custom checkers [20] or
skeptical interactive theorem provers such as HOL Light [19]
or Isabelle/HOL [14].

VIII. CONCLUSION AND FUTURE WORK

Adding proof production capabilities to complex tools like
SMT solvers can greatly increase our level of confidence
in their results. We presented here a technique that allows
DPLL(T)-style SMT solvers to produce unsatisfiability proofs
for queries involving combinations of theories. Our approach
requires that each theory solver provide proofs for its theory-
specific deductions; and these sub-proofs are then interwoven
into a complete, cohesive proof by the main SAT engine.
Our approach is modular and extensible in the sense that any
new proof-producing solver can be readily integrated with
existing ones. We also explored lazy proof generation and
demonstrated its advantages for TUF and TAX.

For the near future, we plan to improve CVC4’s ability
to prove rewrite steps, as discussed in Section IV. Another
planned enhancement is the addition of proof support for
arithmetic and quantified logics—with the aim of eventually
being able to produce proofs for unsatisfiable formulas in the
full input language supported by CVC4.

REFERENCES

[1] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and
B. Werner. A Modular Integration of SAT/SMT Solvers to Coq
through Proof Witnesses. In CPP, 2011.

[2] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jo-
vanović, T. King, A. Reynolds, and C. Tinelli. CVC4. In
CAV, 2011.

[3] C. Barrett, L. de Moura, and P. Fontaine. Proofs in Satisfiability
Modulo Theories. All about Proofs, Proofs for All, 2015.

[4] C. Barrett, P. Fontaine, and C. Tinelli. The Satisfiability Mod-
ulo Theories Library (SMT-LIB). http://www.SMT-LIB.org.

[5] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Split-
ting On Demand in SAT Modulo Theories. In LPAR, 2006.

[6] N. Bjørner and L. de Moura. Proofs and Refutations, and Z3.
In LPAR, 2008.

[7] J. Blanchette, S. Böhme, and L. Paulson. Extending Sledge-
hammer with SMT Solvers. J. of Automated Reasoning, 2013.

[8] S. Böhme, A. Fox, T. Sewell, and T. Weber. Reconstruction of
Z3’s Bit-Vector Proofs in HOL4 and Isabelle/HOL. In CPP,
2011.

[9] T. Bouton, D. Caminha B. de Oliveira, D. Déharbe, and
P. Fontaine. veriT: an Open, Trustable and Efficient SMT-
Solver. In CADE, 2009.

[10] R. Bruttomesso, A. Cimatti, A. Franzen, A. Griggio, and
R. Sebastiani. Delayed Theory Combination vs. Nelson-Oppen
for Satisfiability Modulo Theories: a Comparative Analysis.
Annals of Mathematics and Artificial Intelligence, 2009.

[11] J. Chen, R. Chugh, and N. Swamy. Type-Preserving Compi-
lation of End-to-End Verification of Security Enforcement. In
PLDI, 2010.

[12] L. de Moura and N. Bjørner. Generalized, Efficient Array
Decision Procedures. In FMCAD, 2009.

[13] B. Ekici, G. Katz, C. Keller, A. Mebsout, A. Reynolds, and
C. Tinelli. Extending SMTCoq, a Certified Checker for SMT.
In HATT, 2016.

[14] P. Fontaine, J. Marion, S. Merz, L. Nieto, and A. Tiu. Expres-
siveness + Automation + Soundness: Towards Combining SMT
Solvers and Interactive Proof Assistants. In TACAS, 2006.

[15] L. Hadarean, C. Barrett, A. Reynolds, C. Tinelli, and M. Deters.
Fine-grained SMT Proofs for the Theory of Fixed-width Bit-
vectors. In LPAR, 2015.

[16] M. Heule and A. Biere. Proofs for Satisfiability Problems. All
about Proofs, Proofs for All, 2015.

[17] S. Krstić and A. Goel. Architecting Solvers for SAT Modulo
Theories: Nelson-Oppen with DPLL. In FROCOS, 2007.

[18] J. Marques-Silva and K. Sakallah. GRASP: A Search Algo-
rithm for Propositional Satisfiability. IEEE Transactions on
Computers, 1999.

[19] S. McLaughlin, C. Barrett, and Y. Ge. Cooperating Theorem
Provers: A Case Study Combining HOL-Light and CVC Lite.
In PDPAR, 2005.

[20] M. Moskal. Rocket-Fast Proof Checking for SMT Solvers. In
TACAS, 2008.

[21] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT
and SAT Modulo Theories: From an abstract Davis-Putnam-
Logemann-Loveland procedure to DPLL(T). J. of the ACM,
2006.

[22] A. Reynolds, C. Tinelli, A. Goel, and S. Krstić. Finite Model
Finding in SMT. In CAV, 2013.

[23] A. Reynolds, C. Tinelli, and L. Hadarean. Certified Interpolant
Generation for EUF. In SMT, 2011.

[24] A. Stump, D. Oe, A. Reynolds, L. Hadarean, and C. Tinelli.
SMT Proof Checking Using a Logical Framework. Formal
Methods in System Design, 2012.

[25] C. Tinelli and M. Harandi. A New Correctness Proof of the
Nelson-Oppen Combination Procedure. In FROCOS, 1996.

100

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

http://www.SMT-LIB.org

Verifiable Hierarchical Protocols with Network
Invariants on Parametric Systems

Opeoluwa Matthews
Department of ECE

Duke University
luwa.matthews@duke.edu

Jesse Bingham
Intel Corporation

jesse.d.bingham@intel.com

Daniel J. Sorin
Department of ECE

Duke University
sorin@ee.duke.edu

Abstract—We present Neo, a framework for designing pre-
verified protocol components that can be instantiated and con-
nected in an arbitrarily large hierarchy (tree), with a guarantee
that the whole system satisfies a given safety property. We
employ the idea of network invariants to handle correctness for
arbitrary depths in the hierarchy. Orthogonally, we leverage a
parameterized model checker (Cubicle) to allow for a parametric
number of children at each internal node of the tree. We believe
this is the first time these two distinct dimensions of configuration
have been together tackled in a verification approach, and also the
first time a proof of an observational preorder (as required by net-
work invariants) has been formulated inside a parametric model
checker. Aside from the natural up/down communication between
a child and a parent, we allow for peer-to-peer communication,
since many real protocol optimizations rely on this paradigm.
The paper details the Neo theory, which is built upon the Input-
Output Automata formalism, and demonstrates the approach on
an example hierarchical cache coherence protocol.

I. INTRODUCTION

Formal verification of large-scale, modern systems protocols
is currently challenging. Although theorem proving is theo-
retically able to verify arbitrary protocols, the manual effort
required to guide a theorem prover through the verification of
a modern protocol is prohibitive. Model checkers are more
widely used, but they cannot handle complex, large-scale
protocols. As a result of the state explosion problem, model
checking proofs are successful for only a handful of protocol
components—generally not sufficient to exercise all the be-
haviors exhibited in industrial-scale systems. Hence, there is
strong motivation for architects to design protocols specifically
to be verifiable with state-of-the-art model checking tools. Our
solution is to construct a set of protocol components, instances
of which are composed into an arbitrary hierarchy, where each
component instance is independently scaled. The components
are pre-verified in such a way as to guarantee that the resulting
large and complex system is always correct.

Our approach involves the combination of two distinct ideas
from the model checking literature: network invariants and
parameterized model checking. Consider the hierarchical pro-
tocol depicted in Fig. I. We would like to design the leaf (L),
internal (I), and root (R) nodes1 so that any arbitrary nesting
in the vertical direction, and any arbitrary (and independent)
branching degree (number of children) at each internal and

1We use the terms component and node interchangeably.

root node, yields a system that is correct. Arbitrary nesting
is handled by network invariants; in particular we require
(and verify) that L is a network invariant. This means that
the observational behaviors of L subsumes that of any larger
composition of components. For instance, the behavior along
communication channel c2 over-approximates that of c1, c3,
etc. We formulate network invariants in a novel way that not
only captures the observational behaviors (messages) across
an interface, but also captures what we call the summary
state of a sub-hierarchy. These summary states are integral
in defining the safety property, which, like the system itself,
is hierarchically defined.

Beyond the hierarchical nesting afforded by network in-
variants, we employ parameterized model checking to allow
arbitrary branching degrees. This entails that we prove the
observational pre-order containment required of network in-
variants parametrically in a model checker; we believe this
is novel. Hence, L serves as a network invariant for not
just a particular I , but for all members of an infinite family
I(1), I(2), I(3), . . ., where I(n) is an internal node configured
to connect to n children.

We emphasize that network invariants and parameterized
model checking are both necessary ingredients in this story;
neither is capable of solving what the other does. Network
invariants deal with the connection of instances of components
into arbitrarily complex hierarchies, with relatively simple
interfaces between constituents; parameterized model checkers
typically do not support such a notion of “parameterization”
when the structure is nontrivial (e.g. a tree). On the other
hand, network invariants are not appropriate to deal with an
internal node that is parameterized on the number of children.
An example is a directory in a cache coherence protocol—the
directory is an array, with one entry per child. There is no clear
way to formulate this type of tightly coupled parameterization
as the composition of components along with a network in-
variant. Fortunately, parameterized model checkers are usually
targeted at precisely this style of parameterization.

Previous research on network invariants [12], [15], [1], [16],
[32] tends to focus on “flat” compositions of processes with
rather trivial structure; processes are arranged in a linear or
circular array with only neighbor-to-neighbor communication,
or the other extreme wherein each process talks to all others.
The work of Clarke, Grumberg, and Jha [7], is the most closely

101

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

L ILL

I II …

…

N
et

w
o

rk
 In

va
ri

an
ts

Parameterized
Model Checking

ILL

L I L I

L

R

LLL

L

c1 c2

c3

… …

Fig. 1. A Neo hierarchy. Nodes labels R, I , and L respectively indicate
root, internal and leaf nodes. Solid lines indicate parent/child communication
channels, while dotted lines indicate peer/peer communication. Arbitrary
nesting of tree structures in the vertical direction is handled by network
invariants. Arbitrary branching widths in the horizontal direction is handled
by parameterized model checking. The leaf L acts as a network invariant,
which means for example that the behavior along communication channel c2
over-approximates that of c1, c3, etc.

related to us, since they allow hierarchical structures. Like us,
they require that a small process serves as a network invariant
for all (larger) composite processes.2. However, we extend
their work in several ways:

• As mentioned above, we use parameterized model check-
ing to facilitate arbitrary branching degree

• We use an asynchronous/interleaved execution semantics
(I/O automata), while Clarke et al. use a synchronous.

• We make a (modest, but important) extension to allow
processes to be given “identifiers.”

• Our example cache protocol is significantly more com-
plex than their example (a protocol that computes a parity
function over the leaves of a tree).

• We express our state invariant property using summary
functions, which makes the property’s structure naturally
echo that of the Neo system’s hierarchy.

Other related work looks at the problem of verifying hi-
erarchical protocols with two levels, using abstraction and
assume/guarantee reasoning [5]. Similar to us, smaller systems
are verified to conclude coherence of a system for which model
checking is intractable, but the approach involves manual effort
and it’s unclear if it scales to more elaborate hierarchies.

Parameterized model checking approaches have been widely
explored in the literature [13], [2], [9]. The research includes
disparate techniques such as: assume/guarantee-style abstrac-
tion [21], [22], [6], [14], [33], predicate abstraction [17], invis-
ible invariants [26], flows [23], regular sets [4], Satisfiability
Modulo Theories (SMT) [11]. We elected to use Cubicle [8]

2In cases where a single terminal (what we call a leaf) process fails to
be a networks invariant, they are able to instead employ a non-terminal, but
suitably small, composition of processes.

as it has a clean language, has published encouraging results,
and is being actively maintained. Though our work is rather
agnostic to the underlying model checking technique, we
believe our leveraging of a parametric model checker to
parametrically prove an observational pre-order is novel.

Some prior work has proposed designing systems from pre-
verified components to enable scalable verification. Zhang et
al. propose designing cache coherence protocols such that
caches are organized in a tree hierarchy, with any scale of
the system being observationally equivalent to a pre-verified
small-scale system [34]. Unfortunately, [34] is not rigorously
formalized. Furthermore, the definition of observational equiv-
alence used focuses only on matching states and ignores
actions, which could permit safety violations in a larger scale
system. [31] and [30] present performance optimizations to
[34] and [20] adapts [34] to designing verifiable power man-
agement protocols. Hence, these works inherit [34]’s flaws.

Beu et al. propose a template that allows one to link pre-
verified cache coherence protocols into a hierarchy by allowing
directories of lower tiers to seek permissions from higher tiers
[3]. However, the work is also not rigorously formalized. Also,
the pre-verified protocols are not verified in an environment
where they interact with higher tiers, which could permit
incoherence when they are actually linked into a hierarchy.

To illustrate our verification methodology, we design a
hierarchical cache coherence protocol called NeoGerman by
composing a parameterized German protocol [6] into a Neo
hierarchy. We prove that our protocol is a Neo system, which
implies that it behaves correctly for any arbitrary configuration
of the hierarchy. While the flat German protocol is trivial, we
are not aware of any work that verifies an arbitrary-dimension
hierarchical version. We believe our framework is applicable
to more sophisticated protocols, and we pick the hierarchical
German protocol only to illustrate our approach.

We note that several proofs have been omitted due to length
constraints; these proofs can be found in the complete version
of this paper [19].

II. FORMALIZING THE NEO FRAMEWORK

Our framework can be thought of as a class of transition
systems for which certain properties hold, as a result of which
any member of this class is amenable to a much simpler
verification methodology. We hope many systems protocols
can be shown (or designed) to fit this class and thus inherit the
simplified verification. In this section, we will define this class
of transition systems and prove that given some automatedly
verifiable antecedents, all members of this class are safe.

For any n ≥ 0, we define Nn = {0, 1, . . . , n−1}; note that
N0 = ∅. Also, if x = (x0, . . . , xk) is a tuple or list, we denote
xi by x[i].

A. I/O Automata Theory

We start by giving a short description of the well-known I/O
automata theory upon which our framework is formalized. We
will only go into enough detail as is sufficient for our work;
for a more complete description of I/O automata, see [29].

102

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

An action signature S is a partition of a set acts(S) of
actions into three disjoint sets: in(S), out(S), and int(S),
respectively called the input, output, and internal actions. The
set int(S)∪out(S) is denoted by local(S). An I/O automaton
(IOA) A consists of the following:3

• an action signature S, denoted sig(A)
• a set states(A) called the states
• a nonempty set start(A) ⊆ states(A) called the start

states
• a transition relation steps(A) ⊆ states(A) × acts(S) ×

states(A)

acts(S) is also referred to as acts(A), in(S) is also referred
to as in(A), etc. The set in(A) ∪ out(A) of external actions
is referred to as ext(A).

An execution fragment e of A is a sequence e =
s0, a1, s1, . . . , ak, sk such that, for each i, (si, ai+1, si+1) ∈
steps(A). If s0 ∈ start(A), then e is an execution of A. The
set of executions of A is denoted by execs(A). If a state s is
the final state of an execution, then s is said to be reachable.

A set {S0, . . . , Sn−1} of action signatures is said to be
compatible if for all i 6= j, out(Si) ∩ out(Sj) = ∅ and
int(Si)∩acts(Sj) = ∅. A set of IOA are said to be compatible
if their action signatures are compatible.

The n-way composition S =
∏n−1

i=0 Si of compatible action
signatures {S0, . . . , Sn−1} is an action signature with in(S) =⋃n−1

i=0 in(Si) \
⋃n−1

i=0 out(Si), out(S) =
⋃n−1

i=0 out(Si) \⋃n−1
i=0 in(Si), and int(S) =

⋃n−1
i=0 int(Si)∪ (

⋃n−1
i=0 out(Si)∩⋃n−1

i=0 in(Si))
4.

The n-way composition C =
∏n−1

i=0 Ci of compatible IOA
{C0, . . . , Cn−1} is an IOA with the following:
• sig(C) =

∏n−1
i=0 sig(Ci)

• states(C) = states(C0)× · · · × states(Cn−1)
• start(C) = start(C0)× · · · × start(Cn−1)
• steps(C) is a set of tuples of the form (s, a, s′) ∈

states(C) × acts(C) × states(C) that satisfy the fol-
lowing for all i:

– a ∈ acts(Ci) implies (s[i], a, s′[i]) ∈ steps(Ci)
– a /∈ acts(Ci) implies s[i] = s′[i]

For IOA C =
∏n−1

i=0 Ci, for s ∈ states(C) and for all
i, define s|Ci = s[i]. Let e = s0, a1, s1, . . . , ak, sk be an
execution of C. Then, for all i, define e|Ci as the sequence
derived by modifying e as follows. Delete each aj , sj if aj /∈
acts(Ci). Then, replace all remaining sj with sj |Ci.

Lemma 1. Let IOA C =
∏n−1

i=0 Ci and e ∈ execs(C). Then,
for all i, e|Ci ∈ execs(Ci).

Proof. See Tuttle et al. [29].

B. Defining Neo Systems

We now formalize our framework by defining a class of
IOA and expressing what properties we require of processes

3We deviate from Tuttle’s thesis [29] in two ways: we preclude part(A),
and we don’t require input-enabledness. This is justified since both notions
are only relevant for fair executions, which for us is purely future work.

4Unlike in Tuttle’s thesis [29], by default, we hide messages sent between
component processes as internal.

in the class. We will eventually show that these properties can
be verified automatedly and indeed imply safety of the system.

For any set of actions Σ, we define Σ(n) = Σ × Nn and
Σ(n,m) = Σ × Nn × Nm. Let U be a finite set of upward
interface actions, let D be a finite set of downward interface
actions, and let P be a finite set of peer-to-peer interface
actions. We identify some classes of IOA below.
• An IOA I is an (n,m) (or n-child and m-peer) internal

node if it supports communication with a parent, n
children, and m−1 peers. Formally, out(I) = U∪D(n)∪
P(m− 1) and in(I) = D ∪U (n) ∪ P(m− 1).

• An IOA L is a leaf node if it is a (0,m) internal node, for
some m. Hence, out(L) = U ∪ P (m− 1) and in(L) =
D ∪P (m− 1). A leaf is a degenerate internal node with
no children.

• An IOA R is an n-child root node if out(R) = D(n) and
in(R) = U (n). An n-child root node caps a Neo hierar-
chy, and hence has no peer or parental communication,
but still has n children.

For example, the node shaded grey in Fig. I is a (4, 3)-internal
node. For each i ∈ Nm−1 and process A, we define the
function φi that derives a new process φi(A) with tag i by
modifying A’s action signature as follows. Let shift(i, j) = j
if j < i, otherwise j + 1.
• If a is an external action with a ∈ U ∪ D, or a is an

internal action, it is replaced with (a, i).
• Each input action (p, j) ∈ P (m − 1) is replaced with

(p, shift(i, j), i).
• Each output action (p, j) ∈ P (m − 1) is replaced with

(p, i, shift(i, j)).
Intuitively, each upward or downward interface action is

now augmented with φi(A)’s tag i, allowing it to com-
municate uniquely with its parent. Each internal action is
also augmented with φi(A)’s tag i, so as to ensure disjoint
sets of internal actions in compositions, as required by IOA
theory. To facilitate unique peer-to-peer communication, each
peer-to-peer interface action p in φi(A) appears in the form
(p, src, dst), where src is the tag of the source process and
dst is the tag of the destination process.

Given a set of leaves Ls = {L(1), L(2), . . .}, where each
L(m) is an m-peer leaf, a set of internal nodes Is , and a set
of root nodes Rs , we define the notions of open Neo systems
and closed Neo systems inductively as follows.
• Each L(m) is an m-peer open Neo system, supporting

communication with m− 1 peers.
• Given n n-peer open Neo systems Ω0, . . . ,Ωn−1 and

an n-child node A ∈ Is ∪ Rs , the (n + 1)-way IOA
composition

Ω = A ·
n−1∏
i=0

φi(Ωi) (1)

is an m-peer open Neo system (if A ∈ Is) or a closed
Neo system (if A ∈ Rs).

We will simply write Neo system if we are not concerned about
whether Ω is open or closed. Where Ω is an open Neo system,

103

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

we characterize IOA φi(Ω), for some i < m, as a tagged open
Neo system and Ω as an untagged open Neo system.

Lemma 2. For Neo system Ω (1), if Ω is an open Neo system,
then in(Ω) = D ∪ P(m − 1) and out(Ω) = U ∪ P(m − 1).
If Ω is a closed Neo system, then ext(Ω) = ∅.

C. Neo System Safety

1) Summary of States: Let Sum be a finite set of summary
states that contains a distinguished state bad . We associate
summary functions with each L(m) and the elements of Is
and Rs as follows
• sumL(m) has type states(L(m))→ Sum
• For each n-child A ∈ Is ∪ Rs , sumA : states(A) ×

Sumn → Sum is a “bad preserving” function, i.e. bad ∈
{s0, . . . , sn−1} implies sumA(s, s0, . . . , sn−1) = bad .

We extend the above elemental sum∗ functions to summa-
rize the state of an arbitrary non-leaf Neo system Ω as follows.
Ω is (1), where A ∈ Is ∪ Rs and Ω0, . . .Ωn−1 are open Neo
systems. Then sumΩ : states(Ω)→ Sum is defined by

sumΩ(sa, s0, . . . , sn−1) =

sumA(sa, sumΩ0
(s0), . . . , sumΩn−1

(sn−1))

2) Summary Sequence of Executions: Given an execution
e = s0, α1, . . . , αk, sk of a Neo system Ω, we define the
summary sequence sum(e) as follows. Let α′i = αi if
αi ∈ ext(Ω), otherwise α′i = λ. We start with the sequence

sumΩ(s0), α′1, . . . , α
′
k, sumΩ(sk)

and delete all α′i, sumΩ(si) such that α′i = λ and sumΩ(si) =
sumΩ(si−1).

3) Safety Definition: For Neo system Ω and state s ∈
states(Ω), we say that s is safe if sumΩ(s) 6= bad . We say that
Ω itself is safe if all its reachable states are safe. The primary
goal of this paper is to establish that all Neo systems are safe,
by only proving a handful of lemmas about the “ingredient”
IOAs (Ls, Is,Rs) and their summary functions.

D. Neo Pre-order �
We define a pre-order � on open Neo systems. Given two

m-peer open Neo systems Ω1 and Ω2 that are either both
tagged or untagged, the relation Ω1 � Ω2 holds if, for all
executions e1 of Ω1, there exists an execution e2 of Ω2 such
that sum(e1) = sum(e2).

Lemma 3. � is transitive.

Lemma 4. Θ � Ω if and only if φi(Θ) � φi(Ω).

Lemma 5. Let Neo systems Ω = A ·
∏n−1

i=0 φi(Ωi) and Θ =

A ·
∏n−1

i=0 φi(Θi), where A ∈ Is ∪ Rs. Suppose for some
k, Ωk � Θk and for all i 6= k, Ωi = Θi. Then, for all
executions e of Ω, there exists an execution e′ of Θ such that
sum(e) = sum(e′).

Lemma 6. Let Θ = A ·
∏n−1

i=0 φi(Θi) and Ω = A ·∏n−1
i=0 φi(Ωi) be open Neo systems such that Θi � Ωi, for

all i. Then, Θ � Ω.

Lemma 7. (Leaf as a Network Invariant) Suppose that the
m-peer open Neo system ΩL = A ·

∏n−1
i=0 φi(L(n)) satisifies

ΩL � L(m). Then, for any m-peer open Neo system Ω, Ω �
L(m).

Proof. If Ω is an m-peer leaf, then Ω = L(m) � L(m).
Otherwise, let Ω = A ·

∏n−1
i=0 φi(Ωi) be an m-peer open Neo

system. Assuming that each Ωi � L(n) (inductive hypothesis),
we will prove, by structural induction on the construction of
Ω, that Ω � L(m). By Lemma 6 and inductive hypothesis,
Ω � ΩL. By transitivity of � (Lemma 3) and ΩL � L(m)
(assumption in lemma statement), Ω � L(m).

Theorem 1. (Every Neo system is safe.) Suppose that for each
n-child node A ∈ Rs ∪ Is , ΩL = A ·

∏n−1
i=0 φi(L(n)) is safe.

Furthermore, suppose that if A is an m-peer internal node,
then ΩL � L(m). Then all Neo systems are safe.

Proof. Let Ω be an (open or closed) Neo system (1). From
the assumptions of this lemma and Lemma 7, Ωi � L(n)
for all i. Let e be an arbitrary execution of Ω. By an n-fold
application of Lemma 5, there exists an execution e′ of ΩL

such that sum(e′) = sum(e). By definition of sum , if no state
in e′ summarizes to bad , then no state in e summarizes to bad .
Therefore Ω is safe.

The significance of Theorem 1 is that if we establish ΩL’s
safety, for all A ∈ Rs ∪ Is , and ΩL � L(m), for all A ∈
Is , then any configuration of the Neo nodes (which would
typically be closed) is safe. Parameteric model checking comes
into play, since when the elements of Rs∪Is are paramterized
(by number of children n and number of peers m), these safety
and preorder checks are parameterized verification problems.

III. MAPPING PROTOCOLS’ SAFETY TO NEO SAFETY

We have defined safety of a Neo system (Sect. IV-D1) to
mean that no reachable state summarizes to bad , which is
somewhat removed from the actual invariant one might be
interested in. Here, we illustrate how an invariant of interest
can be expressed in the form of the Neo safety definition. The
key is that the summary functions must be forced to return bad
whenever the specific safety property of interest is violated.

A. Cache Coherence

In a typical MOESI cache coherence protocol [27], Sum =
{I, S,O,E,M, bad}, 5 and cache coherence means that if any
leaf summarizes to M or E, then all other leaves must sum-
marize to I . To ensure that Neo system safety (no reachable
state summarizes to bad) implies all reachable states are cache
coherent, we require some simple constraints on sumA for
each A ∈ Is ∪ Rs . Let us define an ordering < on Sum by
I < S,O < E,M < bad . Recalling that sumA has type
states(A) × Sumn → Sum , where n is the arity of A, the
cache coherence constraint on sumA is as follows6:

5The reasoning of this section can be extended to handle cases where Sum
includes more than just these 6 elements.

6Note that the constraints presented here are the weakest set of constraints
that allow us to prove Lemma 8 below; they do not preclude, e.g., that
inconsistencies between the state sa of A and s0, . . . , sn−1 yield bad .

104

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

• Whenever there exists distinct i, j ∈ Nn such
that si ∈ {M,E} and sj 6= I , we require
sumA(sa, s0, . . . , sn−1) = bad , and

• For all i ∈ Nn, si ≤ sumA(sa, s0, . . . , sn−1) (i.e. sumA

is monotonically increasing with <)

Lemma 8. If sumA satisfies the cache coherence constraint
for all A ∈ Is ∪Rs , then Neo safety implies cache coherence.

Proof. Let s be a state of a Neo system Ω. We argue,
by structural induction on Ω, that whenever s contains a
cache coherency violation, sumΩ(s) = bad . The base case
Ω ∈ Ls holds vacuously, since a leaf in isolation cannot
violate cache coherency. Now choose A ∈ Is ∪ Rs with arity
n. Then s = (sa, s0, . . . , sn−1), where sa ∈ states(A) and
si ∈ states(Ωi), 0 ≤ i < n. If s contains a cache coherency
violation then there exists a leaf L in s that summarizes to
M or E, and a distinct leaf L′ that summarizes to something
other than I . If L and L′ are both components of Ωi for some
i, then from our inductive hypothesis, sumΩi

(si) = bad , and
from Sect. II-C1, we have that sumΩ(s) = bad . On the other
hand, suppose L and L′ are respectively components in Ωi and
Ωj with i 6= j. Since the cache coherency constraint requires
sum to be monotonic, it follows that E ≤ sumΩi

(si) and
S ≤ sumΩj

(sj), and again the cache coherency constraint
requires sumΩ(s) = bad .

We envision that other types of Neo systems will need
similar side arguments to relate Neo safety to a more concrete
property of interest, and such arguments will be as straight-
forward as what was required to prove Lemma 8 above.

B. Distributed Lock Management (DLM)

Distributed Lock Management (DLM) protocols are used
to ensure safe access to shared resources such as disks and
files. Several DLM protocols are based on the DEC VMS’s
DLM implementation [28], including the Oracle Cluster File
System (OCFS2) that appears in the Linux Kernel [24] [18].
VMS’s DLM has 6 permissions—Null (NL), Concurrent Read
(CR), Concurrent Write (CW), Protected Read (PR), Protected
Write (PW), and Exclusive (EX). The following combinations
of permissions are prohibited: (CR,EX), (CW,EX), (CW,PW),
(CW,PR), (PR,EX), (PR,PW), (PW, EX), (PW,PW), (EX,EX).

For scalable resource management, one can organize
nodes in a cluster as a hierarchy according to the Neo
framework. This would facilitate verification, for arbi-
trary system sizes, that no two nodes hold a prohib-
ited combination of permissions. We could set Sum =
{NL,CR,CW ,PR,PW ,EX , bad} and define a partial order
< such that NL < CR < PR < PW < EX < bad and
NL < CR < CW < EX < bad ; < does not order PW and
CW . Then, imposing similar constraints to the sum functions
of Sect. III-A, one can show that sum not evaluating to bad
implies that the system never violates DLM safety.

IV. CASE STUDY: THE NEOGERMAN PROTOCOL

To illustrate our verification methodology, we design and
verify a hierarchical cache coherence protocol called NeoGer-

man. Using a parametric model checker, we verify that
NeoGerman is a Neo System and, consequently, satisfies the
coherence invariant for arbitrary configurations.

A. NeoGerman Description

German’s protocol is a simple, directory-based caching
protocol proposed as a challenge for parameterized verification
[10]. To make the protocol hierarchical, we made significant
modifications. In particular, the directory was modified to
communicate with a parent, hence serving as an internal node.7

1) The German Protocol: The German protocol is a flat
cache coherence protocol. We use the version specified in [6],
which is parameterized to have a single directory connected
to an arbitrary number of private caches. Each cache block is
in one of three states: I(nvalid), S(hared), or E(xclusive). The
protocol uses the directory to maintain the invariant that no two
caches are simultaneously in (S,E) or (E,E). The directory
maintains a list of all nodes in S or E, called sharers.

If a cache sends a message to the directory to request S
(GetS) when there is a cache in E, the cache in E gets
sent an Invalidate message, and the directory collects an
invalidation acknowledgement (InvAck) from it. The directory
then sends a GrantS message to the requesting cache to grant
it S permissions. If the directory receives a GetE , it invalidates
all sharers and collects all their InvAck ’s before sending a
GrantE message to the requesting cache.

2) Modifications to German: To turn German into an open
Neo system, we modify the directory so it behaves like a
private cache along a (previously non-existent) communication
channel shared with a parent. Upon receiving requests from its
children, the directory now has the ability to seek permissions
from its parent. We will refer to this modified directory as the
internal directory, to distinguish it from the original German
directory that we use as a root node to close the Neo hierarchy.

The internal directory maintains a variable called
Permissions O , which summarizes the permissions of
the open Neo system it heads as that of a single private
cache. The intent is that if, for example, Permissions O
is in I and the internal directory receives a GetS from
a child, the internal directory forwards the request to its
parent. Upon receiving a subsequent GrantS from its parent,
Permissions O changes to S and the internal directory sends
a GrantS to the requesting child and makes it a sharer. If
the internal directory receives an Invalidate from its parent,
it invalidates all sharing children and collects all InvAcks.
Finally, the internal directory sends an InvAck to its parent
and updates Permissions O to I .

B. Tying NeoGerman to the Neo Framework

In NeoGerman, we have U = {GetS ,GetE , InvAck},
D = {GrantS ,GrantE , Invalidate} and P = ∅. The pri-
vate caches correspond to tagged leaf processes of the form
φi(L), where L is a leaf node. Each individual leaf is tagged
with a parameter that enables unique communication with its

7The directory was used unmodified to create the root node.

105

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

directory. The directory/memory R(n) of the original German
protocol constitutes an n-child root node of NeoGerman. The
directory I(n) of the NeoGerman protocol constitutes an n-
child internal node. Armed with R(n), I(n), L and the Cubicle
process composition methods we discussed above, we have all
the ingredients to build NeoGerman as a Neo system.

C. Modeling NeoGerman in a Model Checker

We modeled NeoGerman in Cubicle [8]. Cubicle is a
symbolic model checker used to verify parameterized array-
based systems by using a backwards reachability algorithm
and an SMT solver. Its support for parametric verification
allows us to verify safety properties for arbitrary configurations
of a Neo hierarchy. Cubicle’s processes are parameterized
by indices of a built-in type proc. The state of an arbitrary
number of processes is represented by arrays indexed by proc.
Even though neither Cubicle nor our framework impose size
restrictions on communication buffers, we model NeoGerman
with a single-entry communication buffers for simplicity.

1) Representing a Process: To illustrate how we model
processes in Cubicle, let set B = {φi(A) : i ∈ Nn},
where A is a Neo leaf node with steps(φi(A)) =
{(s0, (a0, i), s1), (s1, (a1, i), s2), (s2, (a2, i), s0)}. Let
start(Ai) = {s0}, in(Ai) = {(a0, i)}, out(Ai) = {(a1, i)},
and int(Ai) = {(a2, i)}. We would model B in Cubicle as
follows 8:

1 type state a = s0|s1|s2 / / s ta te type declaration
2 array State A[proc] : s ta te / / s ta te array variable declaration
3

4 i n i t (i)
5 {State A[i]=s0 / / i n i t i a l i z e each proc ’ s s ta te to s t a r t s ta te}
6

7 t rans i t ion a0(i) / / input t rans i t ion
8 requires {State A[i]=s0} / / guard
9 { State A[i]:=s1 ; } / / s ta te update

10

11 t rans i t ion a1(i) / / output t rans i t ion
12 requires {State A[i]=s1}
13 { State A[i]:=s2 ; }
14

15 t rans i t ion a2(i) / / in ternal t rans i t ion
16 requires {State A[i]=s2}
17 { State A[i]:=s0 ; }

2) Representing Composition: For IOA B, let steps(B) =⋃n−1
i=0 {(S0, (a0, i), S1), (S1, (a1, i), S2), (S2, π, S0)}. Let

start(B) = {S0}, out(B) = {(a0, i)}, in(B) = {(a1, i)},
and int(B) = {π}. By combining the guards and state
updates of transitions with identical names, we represent the
composition C = B ·

∏n−1
i=0 Ai as follows:

1 type state b = S0|S1|S2 ; type state a = s0|s1|s2
2 var State B : state p ; array State A[proc] : state a
3

4 i n i t (i)
5 { State B=S0 & State A[i]=s0 }
6

7 t rans i t ion a0(i) / / in ternal t rans i t ion
8 requires {State B=S0 & State A[i]=s0}

8For all Cubicle code in this paper, we deviate slightly from Cubicle syntax
for conciseness.

9 { State B:=S1 ; State A[i]:=s1 ; }
10

11 t rans i t ion a1(i) / / in ternal t rans i t ion
12 requires {State A[i]=s1 & State B=S1}
13 { State A[i]:=s2 ; State B:=S2 ; }
14

15 t rans i t ion π() / / in ternal t rans i t ion
16 requires {State B=S2}
17 { State B:=S0 ; }
18

19 t rans i t ion a2(i) / / in ternal t rans i t ion
20 requires {State A[i]=s2}
21 { State A[i]:=s0 ; }

D. Proving the NeoGerman Hierarchy is Coherent

We leverage the Neo framework and Cubicle’s parametric
verification to prove that any NeoGerman configuration is
coherent. Our strategy is to first define sumA(n) for each
A ∈ {R, I} and n ≥ 1 such that it satisfies the constraints of
Section III-A. Then, we prove the conditions of Theorem 1
and Lemma 8, from which coherency of Ω follows. Let
ΩA(n) = A(n) ·

∏n−1
i=0 φi(L), and let Sum = {I, S,E, bad},

ordered I < S < E < bad . To leverage Theorem 1 and
Lemma 8, we model ΩR(n) and ΩI(n) in Cubicle and prove
the following for all n and each A ∈ {R, I}

ΩA(n) is safe (2)
∀i : si ≤ sumA(n)(s, s0, . . . , sn−1) (3)

∀i 6= j : si ∈ {M,E} ∧ sj 6= I
⇒ sumA(n)(s, s0, . . . , sn−1) = bad

(4)

ΩI(n) � L (5)

First, we define sumR(n) and sumI(n). Unlesss the
cache coherence constraints (Sec. III-A) require bad ,
sumR(n)(s, s0, . . . , sn−1) = E. Likewise, unless the cache co-
herence constraints require bad , sumI(n)(s, s0, . . . , sn−1) =
Permissions O , where Permissions O is a Cubicle variable
of I(n). Hence, Permissions O is a function of states(I(n)).

1) Safety and Monotonicity of Sum: 9 To prove (2), we
parametrically model check ΩR(n) and ΩI(n); after each ΩI(n)

transition, a variable Sum Output O representing the output
of sum∗ is updated to Permissions O . The following is
specified as a safety violation:

1 unsafe (i , j) CacheState [i]=Bad | | (CacheState [i]=E &
CacheState [j]!= I)

where, for all i, CacheState[i] ≡ sumL(φi(L)).
For (3), sumR(n) is monotonic by definition. To prove

sumI(n) is monotonically increasing, we model check ΩI(n),
specifying the following as safety violations:

1 unsafe (i) {Sum Output O!=E & CacheState [i]=E}
2 unsafe (i) {Sum Output O=I & CacheState [i]=S}

To prove (4), we model check ΩI(n) with the following:

9As a result of the limitations of Cubicle, we need to prove (3) and (4) for
reachable states, rather than writing code that clearly satisfies these constraints
for any state.

106

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

1 unsafe (i j) {not ((CacheState [i]=E &
CacheState [j]!= Invalid) => Sum Output O=Bad)}

2) Observational Process Pre-order: To prove (5), we em-
ploy a similar approach to Park et al. [25], with an important
difference that we generalize to a parametric setting to verify
our pre-order. Park et al. show how to prove that a process A
implements a process B in a model checker by expressing B
as a function. A is model-checked and, on each transition t,
B’s function is called to give B’s next state, given A’s state
at the start of t. An assertion checks that a simulation relation
holds, given t’s action and the states of A and B at the start
and end of t. Cubicle does not support functions and in-line
assertions due to its underlying algorithm, so we must rely
only on safety properties. As a result of these limitations, we
must prove a stricter pre-order �c based on a slightly different
function sumc defined below.

Let IOA A execution e = s0α1s1 . . . αksk. Then, sumc(e)
is a sequence derived as follows. Replace each si with
sumA(si). Replace each αi ∈ int(A) with the symbol λ.
For IOA A1 and A2, A1 �c A2 implies for any execution
e1 of P1, there exists an execution e2 of A2 such that
sumc(e1) = sumc(ee).

Lemma 9. Θ �c Ω implies Θ � Ω.

The definition of sumc implies that, to prove ΩI(n) �c L,
we must match every ΩI(n) execution with an equal-length
execution of L. Hence, we make a trivial modification to the
L IOA in NeoGerman by adding λ to int(L) such that, for all
s ∈ states(L), (s, λ, s) ∈ steps(L). This allows L to make as
many stuttering steps as needed to match execution fragments
of ΩI(n) that have only internal steps with no change in
summary state.

The key to our approach in proving the pre-order is that
in the same Cubicle file, we model both ΩI(n) and L 10 and
instrument the code of both processes such that they transition
in lockstep, starting with ΩI(n). Our instrumentation also
guides L to pick transitions that match each ΩI(n) transition.
We use a safety property to check that, after each L transition,
the states and actions of L and ΩI(n) correspond as required
for sumc to be equal. We also use a safety property to check
that, after each ΩI(n) transition, there always exists an L
transition that can fire. If both safety checks pass, then we
know that ΩI(n) �c L and, thus, ΩI(n) � L (Lemma 9).

Matching Executions:
1) To force ΩI(n) and L to transition in lockstep, a variable

L to run is initialized to false. It is set to true after each
ΩI(n) transition and set to false after each L transition. Then,
the expression L to run=False is conjuncted to the guard of
each ΩI(n) transition and L to run=True is conjuncted to
the guard of each L transition.

2) To access the most recent actions of L and ΩI(n), we
update a variable O action only at the end of each ΩI(n)

10Observe that L is identical to each φi(L), except L has no indices in
transitions and its state is not a proc array.

transition and variable L action only at the end of each L
transition. For external transitions, O action and L action
are updated to the transition’s name. Otherwise, they are
updated to lambda .

3) To guide L to make a matching external step to
each external step of ΩI(n)’s, we conjunct to the guard of
each L external transition named trans name the expression
O action=trans name .

4) To guide L to make a matching step to each internal
step of ΩI(n)’s, a variable Forced Transition is updated to
some value int name after each ΩI(n) internal transition.
Then, the guard of the desired L internal transition is con-
juncted with the expressions Forced Transition=int name
and O action=lambda .

Note that the above modifications maintain the integrity of
the pre-order check. All modifications to L’s guards involve
logical conjunctions, which could only restrict L’s transitions.
And the only modification to ΩI(n)’s guards is conjuncting
L to run=False , which holds after every L transition.

Safety Checks:
We must check that, after each L transition, the actions

and summaries of states of L and ΩI(n) match. Where
sumL(SL) ≡ Cache State L, the following illustrates our
safety checks.

1 unsafe () {Sum Output O!=Cache State L & L to run=False}
2 unsafe () {O action!=L action & L to run=False}

Finally, we must check that after each ΩI(n) transition,
there exists an L transition that can fire. To do that, we
express a safety property that says that if L to run=True , the
conjunction of the guards of all L transitions must not evaluate
to False . With both safety checks passing, we can conclude
that ΩI(n) �c L, and, consequently, ΩI(n) � L (Lemma 9).

This completes our proof that NeoGerman is a Neo hierar-
chy and thus CCsatisfies coherence for any arbitrary configu-
ration. The full NeoGerman Cubicle model and proofs can be
viewed at: http://people.duke.edu/∼om26/papers/FMCAD16.

V. CHARACTERIZING THE SCOPE OF OUR FRAMEWORK

To characterize the scope of our framework, we define
a fragment of first order formulas over leaf states that we
can verify using our approach and define summary func-
tions that are guaranteed to verify a given property. Let
LP = {`1, . . . , `m} be a set of predicates over the leaf states
states(L). We show how we can verify any invariant of the
form

∀x1, . . . , xk.Distinct(x1, . . . , xk)⇒ P (x1, . . . , xk) (6)

where the xi’s range over leaves, Distinct(x1, . . . , xk) indi-
cates that the xi’s are pairwise not equal, and P (x1, . . . , xk)
is a propositional formula over the atoms {`j(xi)|1 ≤ j ≤
m ∧ 1 ≤ i ≤ k}. For example, where LP = {E,S, I}, the
cache coherence invariant we verified for NeoGerman could be
expressed as ∀x1, x2.Distinct(x1, x2)⇒ (E(x1)⇒ I(x2)).

To verify that (6) is invariant, we construct summary func-
tions such that the state of a NEO hierarchy summarizes to bad

107

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

http://people.duke.edu/~om26/papers/FMCAD16

if and only if (6) is false of the system’s state. The summary
functions have co-domain Sum , where Sum is the (finite) set

Sum =
(
2LP → {0, . . . , k}

)
∪ {bad}

When bad is returned to node A’s summary function, this
indicates that (6) fails to hold of the sub-hierarchy rooted at
A. Otherwise, a function f is returned, with the interpretation
that f(LP ′) is the number of distinct leaves under A with
states satisfying exactly the predicates LP ′ ⊆ LP ; if there are
k or more such leaves, f(LP ′) = k.

The leaf summary function sumL simply returns the func-
tion that maps all sets to 0, except the exact subset of LP that
holds of the leaf’s state, which is mapped to 1. However, if
k = 1 and P does not hold of the leaf’s state, bad is returned.
Where A is an n-child internal or root node, it is relatively
straightforward to define how sumA (which is independent
of its first argument sA ∈ states(A)) depends on arguments
(g0, . . . , gn−1) ∈ Sumn and under what conditions it should
return bad . sumA returns the function that maps each LP ′ to
g0(LP ′) + · · ·+ gn−1(LP ′), saturating at k, unless any gi is
bad or the counts of (g0, . . . , gn−1) for each LP ′ indicate that
some xi’s below A violate P (x1, . . . , xk), in which case bad
is returned.

VI. CONCLUSION

We present the Neo framework that leverages network
invariants and parameterized model checking together to en-
able the design and automated verification of hierarchical
(tree) protocols that, for any size or configuration of the
hierarchy, satisfy a safety property. We use our framework
to design and verify a hierarchical cache coherence protocol
called NeoGerman, using Cubicle as our parameteric model
checker. Significantly, we prove an observational pre-order in
a parametric setting. We believe there are no fundamental
limitations that prevent our framework from being used to
design and verify more complex, industrial-strength hierar-
chical protocols, especially given that model checkers like
Cubicle have already been used to parametrically verify several
industrial-strength flat protocols.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under grant CCF-142-1167. We thank
John Erickson and Kenneth McMillan for providing helpful
advice for this work.

REFERENCES

[1] P. A. Abdulla and B. Jonsson. On the existence of network invariants for
verifying parameterized systems. In Correct System Design. Springer,
1999.

[2] P.A. Abdulla, F. Haziza, and L. Holı́k. All for the price of few. In
International Workshop on Verification, Model Checking, and Abstract
Interpretation. Springer, 2013.

[3] J. G. Beu, J. A. Poovey, E. R. Hein, and T. M. Conte. High-speed
formal verification of heterogeneous coherence hierarchies. In HPCA.
IEEE, 2013.

[4] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model
checking. In CAV, 2000.

[5] X. Chen, Y. Yang, M. Delisi, G. Gopalakrishnan, and C.-T. Chou.
Hierarchical cache coherence protocol verification one level at a time
through assume guarantee. In HLVDT. IEEE, 2007.

[6] C.-T. Chou, P. K. Mannava, and S. Park. A simple method for
parameterized verification of cache coherence protocols. In FMCAD.
Springer, 2004.

[7] E. M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized net-
works using abstraction and regular languages. In CONCUR. Springer,
1995.

[8] S. Conchon, A. Goel, S. Krstić, A. Mebsout, and F. Zaı̈di. Cubicle: A
parallel smt-based model checker for parameterized systems. In CAV.
Springer, 2012.

[9] Z. Ganjei, A. Rezine, P. Eles, and Z. Peng. Abstracting and counting
synchronizing processes. In International Workshop on Verification,
Model Checking, and Abstract Interpretation. Springer, 2015.

[10] S. German. Personal correspondence. 2008.
[11] S. Ghilardi and S. Ranise. Backward reachability of array-based systems

by smt solving: Termination and invariant synthesis. 2010.
[12] Y. Kesten, A. Pnueli, E. Shahar, and L. Zuck. Network invariants in

action. In CONCUR. Springer, 2002.
[13] J. Kloos, R. Majumdar, F. Niksic, and R. Piskac. Incremental, inductive

coverability. In CAV. Springer, 2013.
[14] S. Krstić. Parameterized system verification with guard strengthening

and parameter abstraction. In Automated Verification of Infinite-State
Systems, 2005.

[15] R. P. Kurshan and K. McMillan. A structural induction theorem for
processes. In PODC. ACM, 1989.

[16] M. Kyas. Verifying a network invariant for all configurations of the
futurebus+ cache coherence protocol. Electronic Notes in Theoretical
Computer Science, 2001.

[17] S. K. Lahiri and R. E. Bryant. Constructing quantified invariants via
predicate abstraction. In VMCAI, 2004.

[18] LWN.net. The ocfs2 filesystem. http://lwn.net/Articles/137278/.
[19] O. Matthews, J. Bingham, and D. J. Sorin. Verifiable hierarchical

protocols with network invariants on parametric systems. Extended
version of this paper (with proofs), 2016. http://people.duke.edu/∼om26/
papers/FMCAD16/fmcad16 neo extended.pdf.

[20] O. Matthews, M. Zhang, and D. J Sorin. Scalably verifiable dynamic
power management. In HPCA. IEEE, 2014.

[21] K. L. McMillan. Verification of infinite state systems by compositional
model checking. In CHARME, 1999.

[22] K. L. McMillan. Parameterized verification of the flash cache coherence
protocol by compositional model checking. In CHARME. Springer,
2001.

[23] J. O’Leary, M. Talupur, and M. R. Tuttle. Protocol verification using
flows: An industrial experience. In FMCAD, 2009.

[24] oss.oracle.com. General-purpose cluster file system. https://oss.oracle.
com/projects/ocfs2/.

[25] S. Park, S. Das, and D. L. Dill. Automatic checking of aggregation
abstractions through state enumeration. Computer-Aided Design of
Integrated Circuits and Systems, 2000.

[26] A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with
invisible invariants. In TACAS, 2001.

[27] D. J. Sorin, M. D. Hill, and D. A. Wood. A primer on memory
consistency and cache coherence. Synthesis Lectures on Computer
Architecture, 2011.

[28] D. W. Thiel. The VAX/VMS distributed lock manager. VAX cluster
Systems, page 29, 1987.

[29] M. R. Tuttle. Hierarchical correctness proofs for distributed algorithms.
Master’s thesis, Massachusetts Institute of Technology, 1987.

[30] G. Voskuilen and T.N. Vijaykumar. Fractal++: Closing the performance
gap between fractal and conventional coherence. In ISCA. IEEE, 2014.

[31] G. Voskuilen and T.N. Vijaykumar. High-performance fractal coherence.
In ASPLOS. ACM, 2014.

[32] P. Wolper and V. Lovinfosse. Verifying properties of large sets of
processes with network invariants. In Automatic Verification Methods
for Finite State Systems. Springer, 1990.

[33] M. Zhang, J. D. Bingham, J. Erickson, and D. J Sorin. Pvcoherence:
Designing flat coherence protocols for scalable verification. In HPCA.
IEEE, 2014.

[34] M. Zhang, A. R. Lebeck, and D. J. Sorin. Fractal coherence: Scalably
verifiable cache coherence. In MICRO. IEEE, 2010.

108

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

http://lwn.net/Articles/137278/
http://people.duke.edu/~om26/papers/FMCAD16/fmcad16_neo_extended.pdf
http://people.duke.edu/~om26/papers/FMCAD16/fmcad16_neo_extended.pdf
https://oss.oracle.com/projects/ocfs2/
https://oss.oracle.com/projects/ocfs2/

Modular Specification and Verification of a
Cache-Coherent Interface

Kenneth McMillan
Microsoft Research

Abstract—We consider the problem of constructing a modular
specification for a cache coherence protocol implementing a
weakly consistent shared memory model. That is, we wish to
specify the interface between components in a way that, if all
components locally satisfy their interface specifications, the com-
ponents collectively implement the desired memory semantics.
The problem we face is that the semantics involves an existential
quantifier over memory orderings that cannot be witnessed
locally. We solve this problem using a specification idiom based on
reference objects and circular assume-guarantee reasoning. The
specification is written using a language and a tool called Ivy.
We use Ivy to specify the TileLink coherent memory interface
protocol and to prove compositionally that interconnections of
TileLink components implement the memory semantics correctly.
The specification is also used for modular specification-based
testing of RTL components.

I. INTRODUCTION

Modular specifications have many advantages. Most im-
portantly, they allow us to reduce global reasoning about a
system to local reasoning about components and their local
specifications. But what if the system specification itself refers
to actions of all the components? How, then, do we write local
specifications?

This problem arose in a writing a modular specification for
TileLink, a coherent memory interface protocol implementing
a weakly consistent shared memory model. The specification
of memory consistency requires that for every system exe-
cution, there exists a consistent global ordering of all the
memory operations occurring in system components. This
ordering must respect a “happens-before” relation that defines
the consistency model. The difficulty this introduces is in
constructing the required global ordering. By simply writing
down a witness function for this object, we have already
destroyed the locality of the proof, since the witness depends
on the history of every system component.

While we consider a cache consistency protocol here, the
same problem could arise in other kinds of systems in which
distributed processes collectively implement some global se-
mantics. This class could include, for example, distributed
file systems and hash tables. We will refer to the general
problem addressed here as the collective semantics problem.
The problem is, in essence, to specify the role of a single
component within the larger computation, without reference
to the system as a whole.

TileLink [6] is a generic interface protocol that is im-
plemented by a variety of components, such as processor
cores, hierarchical caches, snooping hubs, directories, memory

banks, crossbars, and so on. It is proposed as a standard
memory architecture for systems based on the RISC-V in-
struction set architecture [17]. The intent is that components
satisfying the protocol specification can be composed into
correct memory hierarchies of arbitrary size. For this reason,
two important criteria for a modular TileLink specification
are genericity and scalability. That is, we don’t want distinct
specifications for caches, directories and so forth. Rather,
we want all TileLink components to obey the same generic
specification. Moreover, given a collection of components
satisfying the specification, we should be able to verify in
scalable way that arbitrarily large hierarchies constructed from
the components implement the weak memory model correctly.
A final criterion is that a the specification should be testable,
that its, it should be possible to automatically test a component
against its specification.

We satisfy these criteria for TileLink by introducing a
particular assume-guarantee idiom. In this idiom, we define
a reference object that constructs the memory ordering as
the system executes. The components call into this object to
indicate when particular memory events should be serialized.
We then specify the allowed events at each system interface
relative to the reference object. The history of events at the
interface constrains the allowed serializations. These specifica-
tions are stitched into a modular assume-guarantee proof that
ensures the constructed memory ordering is consistent.

Applying our assume-guarantee idiom, we arrive at a spec-
ification for TileLink that is modular, generic, scalable and
testable. This specification can act as a reference document
for engineers implementing TileLink components. Moreover,
engineers without a formal methods background can use the
specification for rigorous testing of components. We im-
plemented a modular specification-based constrained random
testing framework, and used it to find latent bugs in TileLink
components under development.

Finally, we validated the specification by formally verifying
that a number of abstract components implement it. These
proofs are parametric in several dimensions, including address
space, data width and cache line size. This gives the first
modular proof that a cache coherence protocol implements
a weak memory model.

II. CASE STUDY: TILELINK

TileLink [6] is an open protocol specification that is in-
tended to connect the memory hierarchy components of a

109

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

system-on-chip. These components can include CPU’s, mem-
ories, caches, directories, and adapters to other protocols.
TileLink components are connected using a common interface
protocol. Our goal is to give a modular specification that
allows us to prove that arbitrary hierarchies built from such
components implement a weakly consistent memory model.
The protocol itself is too complex to give its full specification
here. Instead, we will focus on the high-level structure of the
specification and in particular how we solve the collective
semantics problem. The formal specification is given in a
language called Ivy. Full source code for the specification and
the Ivy tool are available online [14].

A. The reference specification

To begin with, we must define the memory model. A
memory history is a sequence of operations. A operation can
be a read, a write, or an atomic memory operation, such
as compare-and-swap (CAS). An operation has a locale that
identifies the processor that executes it. A memory history is
consistent if the data value of every read matches that of the
most recent write of the same address (and if the semantics
of any other atomic operations is similarly respected).

A memory history H is sequentially consistent if there
is some permutation π such that πH is consistent and π
preserves the relative order of operations with the same locale
(a permutation operates on a sequence by re-ordering its
elements). We will call π a consistent serialization. Sequential
consistency is seldom implemented, since it rules out some
common optimizations. In a weak consistency model, the
serialization is allowed to re-order some events with the
same locale. It must, however, preserve the “happens-before”
relation between operations. Here, we say that operation A
happens-before B if they have the same locale and either
they have the same address, or one is an atomic operation.
This is sufficient to guarantee Partial Store Ordering (PSO)
if the atomic operations are fences, and Release Consistency
(RCsc) [10] if they are lock acquires and releases. The high-
level specification approach is not dependent on the exact
happens-before relation, however.

The chief difficulty in writing a modular specification using
this model is that the correctness criterion is global and
existential: it requires that a consistent serialization exists for
each global behavior of the system. Because the serialization
is global, we cannot provide a witness for it that refers to
only one system component. Thus, there is no obvious way to
localize the proof.

We solve this problem using by creating an abstract service
that progressively constructs a consistent serialization. This
imaginary service can be called by components of the system
to indicate that a given memory operations should be serialized
at the current global time (or to constrain the serialization in
other ways). Thus, the system components cooperate through
the abstract service to build the witness for the existential
quantifier in the correctness criterion. If at any point the
partially constructed serialization becomes inconsistent, the
abstract service fails. We will call the object implementing

1 object reference = {
2

3 instance evs(T:ltime) : memop
4 function mem(A:address) : data
5

6 relation happensBefore(T1,T2) =
7 T1 < T2
8 & evs(T1).loc = evs(T2).loc
9 & (evs(T1).addr = evs(T2).addr

10 | evs(T1).atomic | evs(T2).atomic)
11

12 method serialize(lt:ltime, loc:locale) = {
13

14 assert ˜evs(T).serialized
15 assert happensBefore(T,lt) −> evs(T).serialized
16

17 evs(lt).serialized := true;
18

19 var a : address := evs(lt).addr
20

21 if evs(lt).op = read {
22 evs(lt).data := mem(a)
23 }
24 else if evs(lt).op = write {
25 mem(a) := evs(lt).data
26 }
27 }
28 }

Fig. 1. Reference object specifying consistency model.

this service the reference object. A simplified version of the
reference object is show in the Ivy language in Fig. 1.

The state of the reference object consists of a map evs
from local time (as measured by the local CPU clocks) to
memory operations, and a map mem from addresses to data,
representing the current state of memory. Here, the types ltime,
address and data are uninterpreted. Thus, this specification is
independent of the size of the address the address space or
data words. We assume only that ltime is totally order by <.

The happens-before relation is defined as above, with re-
spect to local time. The serialize method tells the reference
object to add one event to the serialization. It has an addi-
tional parameter loc that gives the locale of the serializing
component. It isn’t used here, but as we will see later, it
is important for constructing assume-guarantee specifications.
The serialize method makes key assertions at lines 14 and 15.
These state that, when a memory operation lt is serialized,
it has not previously been serialized, and all operations that
happen-before lt have already been serialized (the variable T
here is implicitly universally quantified). This ensures that the
set of serialized operations is always weakly consistent. If the
operation is a read, its data value is taken from the current state
of memory, or, if it is a write, the current state of memory is
updated (the assignment at line 25 mutates the map mem). In
the Ivy language, all methods execute atomically, so multiple
calls to serialize cannot interleave.

Typically, a cache or memory component will call serialize
when a memory operation is executed. These calls are “ghost”

110

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

CORE

CORE

CORE

L2$

NET

DIR

DIR

MEM

MEM

L2$

Fig. 2. Example TileLink hierarchy. Arrows are TileLink interfaces.

code, which we add to witness the serialization. Other kinds of
components, such as store buffers, can also serialize memory
operations. A store buffer requires a richer interface, since
it may constrain a read to be serialized after the future
serialization of a write. We will not discuss this generalization,
however. Also, we need a method for processors to create
memory events. From the point of view of the memory system,
however, evs is an arbitrary sequence of memory events, about
which we make no assumptions.

Our next task will be to specify the component interfaces
in a way that allows us to prove the assertions in reference
using modular assume-guarantee reasoning.

B. The TileLink protocol

The TileLink protocol has two roles: client and manager.
Roughly speaking, clients act like processors and managers
act like memories. Some components can take both roles,
however. For example, a first-level (L1) cache plays the role
of manager when speaking to a processor, and client when
speaking to the second-level (L2) cache. We can also create a
hub or crossbar that routes messages between multiple clients
and managers. By layering clients on top of managers we can
create an arbitrarily deep memory hierarchy. An example of
such a hierarchy is shown in Fig. 2.

In the simplest case, the TileLink interface connects one
client and one manager. The manager provides three meth-
ods: Acquire, Finish and Release while the client provides
two: Grant and Probe. In hardware, these are implemented
by signaling across the interface using a simple handshake.
These atomic methods are combined into larger, non-atomic
transactions. The typical flow of transactions is shown in
Fig. 3. A client calls Acquire to request a shared or exclusive
copy of a cache line. The manager makes a sequence of
calls to Grant providing the data for that cache line. When
the entire cache line is received, the client calls Finish to
acknowledge completion of the transaction. If another client
requires exclusive access to the cache line, the manger calls
the Probe method of the client. The client responds by calling
Release to indicate it has given up its copy of the line, and
if necessary, return modified data. Alternatively, the client
may call Release voluntarily, in which case the manager
acknowledges with a special Grant call.

Since multiple transactions can interleave, each is given a
transaction ID (txid) that remains unique while the transaction
is in progress. Multiple transactions on the same cache line
may be merged into a single transaction with a single txid.
This may occur, for example, if a read to a line is followed

client

manager

Acquire Grants Finish Probe Release

Fig. 3. Transaction flow in TileLink.

immediately by a write, which requires a rapid upgrade from
shared to exclusive privileges.

The protocol also supports clients without caches. Such
a client submits memory operations directly to the manager
using special Acquire calls. The manager returns results using
special Grant calls. The manager is allowed to cache the data,
and to coalesce multiple operations from a client into single
operations transmitted to its own manager.

The protocol is designed to be resilient to reordering of
messages transmitted between client and server. Much of the
subtlety in the protocol is involved in managing concurrent
transactions (especially the management of txid’s) and in man-
aging race conditions. For example, the protocol must handle
the case in which the Finish that completes a transaction is
overtaken by the Acquire that starts the next transaction with
the same txid, and the case in which a Probe message and a
voluntary Release message cross in the channel.

C. The interface specification

Now we would like to give a formal specification of the
TileLink interface protocol. The primary purpose of a cache
coherence protocol is to coordinate the serialization of memory
events. Thus, our specification will define not only the correct
histories of events at the interface, but also the relation
between these interface events and serialization events.

The specification consists of a collection of temporal prop-
erties and assume-guarantee relationships between the proper-
ties. Here, we will use the shorthand C : φ → ψ to mean
that component C guarantees always ψ assuming always φ.
This could also be read as “the proof that φ implies ψ
is localized to component C”. The specification is in the
“circular” assume-guarantee style [12]. That is, we prove a
collection of temporal properties by mutual induction over
time. We will write φ− → ψ to mean that, always, if φ held
always in the strict past, then ψ holds now. An example of a
valid “circular” inference would be the following:

C1 : φ− → ψ
C2 : ψ− → φ

C1, C2 : true → (φ ∧ ψ)

That is, we prove locally that neither φ nor ψ is the first
property to fail, thus both are always true.

Since the protocol is too complex to formally specify here,
we will simply state a few representative properties informally
in English. The most basic properties are the ones that define
the protocol rules, without consideration of semantics. For
example:

Prop. C[0]: A new cached Acquire may not have the same
block address and privileges as a pending Acquire.

111

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Prop. M [0]: A new Grant may not acknowledge a Release
if there is a pending Acquire for the same cache block for
which at least one Grant has been issued.

Here, we use C[i] for guarantees of the client side of the
interface and M [i] for guarantees of the manager side. In the
full specification there are approximately 40 properties such
as these that relate purely to the interface protocol.

A further group of properties relates events at the interface
to the reference model, in order to ensure consistency. For
example, for cached operations, we have:

Prop. M [1]: If a cached Grant has data for address addr,
it must match reference.mem(addr).

Prop. C[1]: If a Release has data for address addr, it must
match reference.mem(addr).

That is, data exchanged in cached transactions must always
be up-to-date with respect to all serialized operations. For
uncached clients, an Acquire is really a request for the manager
to perform an operation. We have, for example

Prop. C[2]: If an uncached Acquire is issued for operation
lt, then lt has not been serialized, and every operations that
happens-before lt has previously been requested.

This property represents a key design decision of TileLink:
uncached clients must take charge of maintaining the happens-
before order at the interface. In practice, since channels may
re-order requests, this means that the client must wait for
the Grant of any operations that happen-before an operation
before requesting it. Also, notice that this property refers to
the local time lt of an Acquire. This is a “ghost” parameter of
the method that is added to aid in the specification.

Prop. M [2]: If an uncached Grant is issued for operation
lt, then reference.evs(lt).serialized is true.

That is, a Grant indicates that the manager has serialized
the requested event. We also require data correctness for these
operations:

Prop. C[3]: If an uncached Acquire is issued for operation
lt with data, then the data match reference.evs(lt).

Prop. M [3]: If an uncached Grant is issued for operation
lt with data, then the data match reference.evs(lt).

There are approximately 20 properties of this type, relating
interface events to the reference object.

Finally, we have properties relating interface events to
serialization events. At its core, the purpose of the protocol
is to coordinate serializations among the system components.
This is the function of the cache permission states, invalid,
shared and exclusive. The interface specification records the
permission state for each cache block, based on the history
of Grant and Release operations. The permission state reflects
the capabilities of all the components on the client side of the
interface. In particular, we have:

Prop. SC[0]: Components on the client side of the interface
may serialize read operations only if the permission state is
shared or exclusive and write operations only if the permission
state is exclusive.

Prop. SM [0]: Components on the manager side of the
interface may serialize read operations only if the permission

reference object

…… 𝑐𝑜𝑚𝑝𝑃𝑐𝑜𝑚𝑝

𝐶𝑚

𝑺𝑴𝒎

𝑹𝑨𝑷

𝑴𝒎 𝑪𝒄 𝑀𝑐

𝑆𝐶𝑚

𝑆𝑀𝑐

𝑺𝑪𝒄

Fig. 4. Assume-guarantee flow for TileLink. Boldface indicates guarantees
for P . Arrows indicate “non-strict” dependency.

state is shared or invalid and write operations only if the
permission state is invalid.

Recall that the serialize method has an additional parameter
giving the locale of the serialized component. This is what
allows us to state properties SC[0] and SM [0]. The locales
are partially ordered in a way that respects the hierarchy,
with lower locales on the client side and higher locales on
the manager side. The client-side components have locales
lesser than the interface and manager-side components have
locales greater. The locale parameter of serialize allows us
to determine which side the call is from. This still leaves a
question: how do we localize the proof of these properties,
since they seem to depend on many components? We will
deal with this problem shortly.

For uncached operations, the situation is slightly different.
A pending Acquire requesting an operation lt gives permission
to the manager side to serialize just the one operation lt.

D. Assume-guarantee

With the properties specified, we must now give the assume-
guarantee relationships. For interface i in the system, we’ll
use Ci, Mi, SCi and SMi to represent the four groups of
properties at that interface (that is, client guarantees, manager
guarantees, client-side serialization guarantees and manager-
side serialization guarantees). Now consider a component P
with one client interface c and one manager interface m (for
example, P could be an L2 cache module). This situation is
depicted in Fig. 4. The localizations for component P are as
follows:

P,R : C−
m,M

−
c → Cc,Mm

P,R : SCm, C
−
m,M

−
c → SCc

P,R : SMc, C
−
m,M

−
c → SMm

P,R : C−
m,M

−
c , SM

−
c , SC

−
m → RAP

Here R is the reference object. Each localization contains
one system component and the reference object. The first says
that to prove the protocol guarantees of P , we assume the
protocol guarantees of its neighbors in the strict past. In other
words, we show that component P is not the first to violate
the protocol. The second and third localizations show how we
deal with the collective semantic properties. This is essentially
by induction over the hierarchy. In the second line, we are
showing that all the serializations performed on the client side
of interface c are correct with respect to c. We get to assume
that those on the client side of m are correct with respect
to m. Component P must then guarantee that they are also

112

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

correct with respect to c (among other things, this means that
the permissions at m must be a subset of the permissions
at c). If it can further show that its own serializations are
correct, then we have SCc. Notice here that we are assuming
SCm to hold at the current time and not just in the strict past.
This is essential, since P can only guarantee properties of its
own outputs. The third line gives a similar argument for the
manager-side serialization properties. The main difference is
that this proof flows from the manager-side to the client side.

Finally the last line shows that the reference object as-
sertions hold. Here RAP means that these assertions are
true when serialize is called by P . If this is true for all
components P , the reference object assertions hold always
(this is called a “temporal case split” in [13]).

When we instantiate the above assume-guarantee specifi-
cations for all the components in the hierarchy, they should
form a valid assume-guarantee proof. In other words there
should be no dependency cycles that do not contain a strict past
operator. This is easy to check algorithmically for arbitrarily
large hierarchies (thus the specification is scalable). Intuitively,
the proof is valid because the non-strict dependency chains
flow only from left to right or right to left, and therefore cannot
form cycles. All such paths terminate either in processors
(which have only client ports) or memories (which have only
manager ports).

The key point about this specification idiom is how it deals
with the collective semantic properties SC and SM . The
proofs of these are localized by a combination of induction
over the hierarchy and circular compositional reasoning. In
this way, we arrive at localized specifications which together
imply global semantic correctness using a scalable machine-
checkable argument.

E. Specifications in Ivy

The TileLink specification described above was written in
the Ivy language [14]. Ivy supports modular assume-guarantee
specifications in a flexible way that allows us to apply our
specification idiom and to check the assume-guarantee proof.

Properties in Ivy are expressed not as temporal logic formu-
las but as monitors. A monitor is an object with internal state
that can synchronize its actions with method calls of other
objects. For example, here is one way to write a monitor that
reflects property SC[0]:

1 module sc0(intf) = {
2 before reference.serialize(lt:ltime,loc:locale) {
3 var state := intf.state(block(reference.evs(lt).addr))
4 var op := reference.evs(lt).op
5 assert loc < intf.loc −>
6 (op = read −> (state = shared | state = exclusive)) &
7 (op = write −> state = exclusive)
8 }
9 }

Here, the monitor specifies an action that is to be executed
before every call to reference.serialize. The assertion effec-
tively specifies a temporal safety property.

Monitor objects can contain state variables that store history
information. For example, the TileLink interface specification

stores in history variables information about pending transac-
tions across the interface. This makes it possible to specify
properties such as C[0] that depend on the history of the
interface. Ivy can verify that monitors are non-interfering, that
is, their actions always terminate, and do not modify the state
of the object specified.

Assume-guarantee relationships are mostly implicit in Ivy.
That is, usually an assertion made as a pre-condition to a
method will be a guarantee of the caller, while a post-condition
will be a guarantee of the callee. In some case, however, an
explicit declaration is required. Consider, for example, the
properties SCm and SCc in Fig. 4. These are both pre-
conditions to method reference.serialize, relating it respec-
tively to the manager and client interfaces of component P .
When proving SCc, we need to assume that SCm holds for the
same call. In Ivy, we can specify that the monitor action for
SCc be scheduled before the monitor action for SCm. This,
in effect, gives the desired assume-guarantee relationship.

Given a configuration of components with their respective
assume-guarantee specifications, Ivy can check the validity of
the over-all proof and also allows us to locally verify that each
component meets its specification.

F. Component proofs

With the TileLink specification defined, we can formally
verify that some simple abstract component designs meet their
specifications. The primary motivation for this is to validate
the specification itself. Without verifying components, it would
be quite easy to write a specification that is unrealizable, or
rules out certain intended implementations or optimizations.

For example, a key objective of the protocol design is to
tolerate communication over unordered channels. To test this,
we built a model of an unordered channel that implements
the client role on one side and the manager role on the other.
Actions initiated on one side are delayed arbitrarily before
being reproduced on the other. We can then attempt to verify
that this model actually satisfies the component specification.
This means that we can insert a reordering channel at any
point in the hierarchy without affecting correctness.

This proof was carried out using the Ivy tool, first with
bounded model checking, then by constructing an inductive
invariant interactively [15]. The proof was done for arbitrary
address space, data word and cache line size, as well as
unbounded message buffers. The Ivy language guarantees that
all the verification conditions, for both bounded checking and
inductive invariant checking remain in a decidable fragment of
first-order logic called the Bernays-Schönfinkel fragment, or
EPR. This made it possible to check proofs about an infinite-
state system reliably, without relying on fragile quantifier
instantiation heuristics.

Proving this one simple component uncovered many errors
in the formal specification itself (in fact, 25 were discovered
after bounded model checking). It should be noted that these
were errors in the formal specification. It is difficult to tell
to what extent this specification corresponds to the designer’s
informally stated intentions.

113

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

The unbounded proof required the generation of a fairly
large number of auxiliary invariants. This was done interac-
tively, by considering graphically represented counterexamples
to induction. About 30 of these formulas are generic invariants
of the interface specification. Here are a few, stated informally:

Inv. I[0]: A voluntary Release cannot be pending while an
cached Acquire is awaiting a Grant for the same block.

Inv. I[1]: While a Release is pending, the interface state of
its cache block is invalid.

Inv. I[2]: If an uncached Acquire has received a Grant, its
operation has been serialized.

These invariants are stated as universally quantified first-
order formulas in terms of the state variables of the interface
specification.

In addition, about 100 invariant formulas were needed
relating the buffer state to the state of its two interfaces. Here
are a few representative examples:

Inv. B[0]: For any cache block, the privileges on the
manager interface are a subset of the privileges on the client
interface.

Inv. B[1]: Every Acquire pending on the client interface is
pending on the manager interface.

Inv. B[2]: Two Acquires for the same address cannot exist
in the buffer.

Some of these properties, such as B[0], are generic, while
others are specific to the unordered buffer. By proving the
the buffer model satisfies its specification, we show that in
fact the protocol as formally specified is resilient to message
reordering.

In a similar way, we proved that a generic hierarchical cache
(with one manager and multiple client ports) and a generic
directory (a backing store with multiple client ports) and a
generic CPU (with one manager port) satisfy the protocol
specification. These proofs also required interactive invariant
construction, with an additional approximately 50 invariant
formulas.

Having verified these components, we can now construct
and prove arbitrary hierarchies built from these components
with no additional complexity or manual effort. Showing cor-
rectness of systems of generic components was an important
step in developing the specification, clarifying many issues in
the informal protocol definition.

G. Modular specification-based testing

A modular specification for TileLink, once established,
can be used as a reference by designers of components.
One important aspect of this is testing. The actual RTL-
level TileLink components, such as the L2 cache bank or the
snooping hub, are complex designs. Formally verifying them
against their specification would be a substantial undertaking
requiring significant expertise in formal methods. On the other
hand, the formal specification can be used to rigorously test the
components, for example, using constrained random testing
methods. This can be accomplished by engineers without
formal methods expertise.

The modular specification allows us to automatically pro-
duce testers that both generate legal inputs for the design and
act as an oracle to validate the design outputs. While formal
specifications have been used for testing before [4] what is new
here is modularity. That is, because we have a proof that the
component specifications imply system correctness, we know
that any system error must be reflect in a specification violation
by some component. Thus, all system-level errors are exposed
to component-level testing.

To apply this idea, we built a tool that can extract from the
Ivy specification a constrained random test generator and a
test oracle (both in C++) for TileLink components. The test
generator uses the Z3 SMT solver [7] to generate inputs for
the component that are legal relative to the current interface
state, and the oracle checks correctness of the outputs. This
allows us to unit-test RTL designs in simulation against the
formal specification, rather than using an ad-hoc test bench.
Perhaps not surprisingly, this revealed a number of ways in
which the formal specification diverged from the designer’s
intention. It also revealed a number of latent bugs in the
component designs. These are protocol violations that cannot
be stimulated in integration tests of the current system, but
may crop up later when the component is integrated in other
systems.

As an example, the protocol allows the Release of a cache
block to occur before the final Finish message for the Acquire
has arrived. This is unavoidable, since the Release may bypass
the Finish in a channel. The release has to be handled to
avoid potential resource deadlocks. Specification-based testing
of the L2 cache bank design revealed that the Release was not
handled. A subsequent redesign assigned the task of handling
the unexpected Release the to state machine handling the
Acquire. Testing again revealed cases in which the Release
was handled improperly. These errors and others that were
discovered did not arise in integration testing (simulating in-
struction sequences executing on the processor cores) because
the existing L1 cache design could not produce the timing that
stimulated the errors in the L2 cache. Therefore, these bugs
would have waited to be discovered in some future application
of the L2 cache design, perhaps after fabrication. Using
modular compositional testing, these errors were discover for
the most part within the first 100 clock cycles of testing.

This illustrates a general advantage of unit testing. That is,
with direct control of the inputs signal of a component, it is
much easier to stimulate corner-case behaviors. The disadvan-
tage of unit testing is that it is biased by the designer of the unit
tests and his or her understanding (or misunderstanding) of the
interface specification. Passing informal unit tests thus give no
direct evidence of system correctness. Using a modular formal
specification removes this bias, allowing us to gain confidence
in system correctness from unit testing.

III. RELATED WORK

Many prior works have addressed verification of parameter-
ized cache coherence protocols. An early effort was [11] which
includes a parameterized proof using network invariants. The

114

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

present approach can be seen to have some similarities to
network invariants. That is, the collective semantics properties
are proved in effect by induction over the hierarchy. There
is considerably more flexibility here, however, as induction
in two directions is combined with circular assume-guarantee
(that is, mutual induction over time). Moreover, the finite-state
approach in [11] was not able to prove memory consistency.

This issue can be seen in other work on cache coherence
verification. For example, some recent work exploits com-
positionality to reduce the complexity of hierarchical cache
protocol verification [2], [3]. These methods can prove proto-
col properties such as coherence, but cannot prove semantic
properties such as weak consistency, in part because they
are based on finite-state methods, and in part because they
lack the ability to specify relative to a reference object. A
key enabler for the present methodology is the ability to do
assume-guarantee reasoning with arbitrary temporal properties
relating various components of a system. A strictly hierarchical
approach to compositional verification does not allow this.

Recent work uses Coq to specify the behavior of a memory
hierarchy [16]. This is at a much higher level of abstraction,
however, and does not provide a modular specification for
RTL-level components such as caches, hubs and directories.
Moreover, the approach we take here allows us to apply a
much higher level of automation, using an SMT solver to
check the localized verification conditions.

It is also interesting to consider to what extent existing tools
and compositional frameworks would support the specification
idiom applied here. We can divide these roughly into two
categories we might call procedure-modular and process-
modular. The former are based on Hoare logic and include
systems such as Dafny [9] and VCC [5]. They allow us to
abstract a procedure by a logical expression of its transition re-
lation. Because there is no direct support for temporal assume-
guarantee reasoning, it would be challenging to apply the
methodology described here (though perhaps not impossible,
for example by encoding the necessary temporal reasoning
into the system’s logic as in [8]). In a process-modular system,
the basic abstraction is the process, which communicates with
other processes by signals, messages or shared variables. A
good example is the Reactive Modules framework of Alur and
Henzinger et al. [1]. This supports a hierarchical approach,
which, as noted above, lacks the flexibility to express the
relational specifications used here. Cadence SMV [12] would
support our general specification pattern. However, it lacks
procedural abstraction. In developing the TileLink specifica-
tion, procedures were found to be a convenient and powerful
tool for structuring the specification. As an example, it is easy
in Ivy to describe a component that serializes two memory
operations in a single atomic action, but this would be quite
awkward in Cadence SMV. It is not clear how difficult it would
be to do the component proofs in Cadence SMV. It is possible
that model checking and abstraction could be applied to reduce
some of the manual effort (approximately one person week to
produce the invariants).

IV. CONCLUSION

The TileLink case study illustrates the advantages of a
modular specification, both as a design artifact and as a
proof construct. However, TileLink is also an example of a
class of systems that performs an abstract computation in a
distributed way. It is difficult to localize the proof of such
systems because the witness for their correctness (in this case
a serialization of memory operations) cannot be constructed
locally. To solve this problem, we introduced a specification
idiom. In this idiom, a reference object takes the role of
constructing the witness, based on input from all of the system
components. The required collective properties of the system
were proved in an inductive manner, using “circular” assume-
guarantee reasoning. The result is a local specification for each
component, in terms of assume-guarantee relations. The local
specifications collectively form a global proof of semantic
correctness that can be checked in a scalable way. It seems
plausible that this paradigm might be applied to other similar
systems, such as distributed file systems, replication protocols
and so on.

The modular specification, once obtained, can be used
for a variety of purposes. It can serve as a reference for
designers, and can be used for modular specification-based
testing, to reveal latent design errors that cannot be stimulated
in integration testing. The hope is that such a methodology will
result in more robust re-usable components that can be rapidly
and reliably assembled into systems-on-chip. Ultimately, we
can use the specification to formally verify the implemented
components, if this effort is deemed justifiable.

The specification was constructed using a tool called Ivy
that supports the necessary forms of compositional reasoning,
and allows bounded and unbounded proof using decidable
logics. The tool also provides for generation of constrained-
random test benches from formal specifications. Work is in
progress on an extension of the system to handle liveness,
both in formal proofs and in a testing scenario (a preliminary
liveness specification for TileLink has also been developed).

A larger goal of this work is to find ways to use formal
methods to benefit engineers that may lack the skills or
resources to develop formal specifications themselves. One
way to do this is to provide specifications of common protocols
that are formally vetted and can be used in rigorous testing.

REFERENCES

[1] Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal
Methods in System Design, 15(1):7–48, 1999.

[2] Xiaofang Chen. Verification of Hierarchical Cache Coherence Protocols
for Futuristic Processors. PhD thesis, University of Utah, Salt Lake City,
UT, USA, 2008. AAI3322423.

[3] Xiaofang Chen, Yu Yang, Michael Delisi, Ganesh Gopalakrishnan, and
Ching-Tsun Chou. Hierarchical cache coherence protocol verification
one level at a time through assume guarantee. In High Level Design
Validation and Test Workshop, 2007. HLVDT 2007. IEEE International,
pages 107–114. IEEE, 2007.

[4] Koen Claessen and John Hughes. Quickcheck: A lightweight tool for
random testing of haskell programs. SIGPLAN Not., 35(9):268–279,
September 2000.

115

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

[5] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach,
Michal Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies.
Vcc: A practical system for verifying concurrent C. In Theorem Proving
in Higher Order Logics, 22nd International Conference, TPHOLs 2009,
volume 5674 of Lecture Notes in Computer Science, pages 23–42.
Springer, 2009.

[6] Henry Cook. Productive design of extensible on-chip memory hi-
erarchies. Technical Report UCB/EECS-2016-89, EECS Department,
University of California, Berkeley, May 2016.

[7] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient
SMT solver. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 14th
International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume
4963 of Lecture Notes in Computer Science, pages 337–340. Springer,
2008.

[8] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. Ironfleet:
Proving practical distributed systems correct. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP ’15, pages 1–
17, New York, NY, USA, 2015. ACM.

[9] K. Rustan M. Leino. Developing verified programs with Dafny. In David
Notkin, Betty H. C. Cheng, and Klaus Pohl, editors, 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA,
USA, May 18-26, 2013, pages 1488–1490. IEEE / ACM, 2013.

[10] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hen-
nessy, M. Horowitz, , and M. S. Lam. The Stanford Dash multiprocessor.
Computer, 25:63–79, March 1992.

[11] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, Norwell, MA, USA, 1993.

[12] Kenneth L. McMillan. Circular compositional reasoning about liveness.
In Laurence Pierre and Thomas Kropf, editors, Correct Hardware
Design and Verification Methods, 10th IFIP WG 10.5 Advanced Re-
search Working Conference, CHARME ’99, Bad Herrenalb, Germany,
September 27-29, 1999, Proceedings, volume 1703 of Lecture Notes in
Computer Science, pages 342–345. Springer, 1999.

[13] Kenneth L. McMillan. A methodology for hardware verification using
compositional model checking. Sci. Comput. Program., 37(1-3):279–
309, 2000.

[14] Oded Padon and Kenneth L. McMillan. Microsoft Ivy.
https://github.com/Microsoft/ivy. TileLink files are found in
examples/tilelink.

[15] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and
Sharon Shoham. Ivy: Safety verification by interactive generalization.
In PLDI, 2016. To appear.

[16] Muralidaran Vijayaraghavan, Adam Chlipala, Arvind, and Nirav Dave.
Modular deductive verification of multiprocessor hardware designs. In
Daniel Kroening and Corina S. Pasareanu, editors, Computer Aided
Verification - 27th International Conference, CAV 2015, San Francisco,
CA, USA, July 18-24, 2015, Proceedings, Part II, volume 9207 of
Lecture Notes in Computer Science, pages 109–127. Springer, 2015.

[17] Andrew Waterman, Yunsup Lee, David Patterson, and Krste Asanovic.
The RISC-V instruction set manual, volume I: User-level ISA version
2.0. Technical Report UCB/EECS-2014-52, EECS Department, Univer-
sity of California, Berkeley, May 2014.

116

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Proof Certificates for SMT-based Model Checkers
for Infinite-state Systems

Alain Mebsout Cesare Tinelli
The University of Iowa, Iowa City, IA, USA

Abstract—We present a dual technique for generating and
verifying proof certificates in SMT-based model checkers, fo-
cusing on proofs of invariant properties. Certificates for two
major model checking algorithms are extracted as k-inductive
invariants, minimized and then reduced to a formal proof term
with the help of an independent proof-producing SMT solver.
SMT-based model checkers typically translate input problems
into an internal first-order logic representation. In our approach,
the correctness of translation from the model checker’s input to
the internal representation is verified in a lightweight manner
by proving the observational equivalence between the results of
two independent translations. This second proof is done by the
model checker itself and generates in turn its own proof certificate.
Our experimental evaluation show that, at the price of minimal
instrumentation in the model checker, the approach allows one
to efficiently generate and verify proof certificates for non-trivial
transition systems and invariance queries.

I. Introduction

Model checkers are perhaps among the most successful
formal methods tools in term of industrial use, particularly
for the development of safety-critical systems. In addition to
traditional applications in hardware design, they are increasingly
used in model-based software development to analyze, for
instance, models of embedded systems in the aerospace or
automotive industry. One clear strength of model checkers, as
opposed to proof assistants, say, is their ability to return precise
error traces witnessing the violation of a given safety property.
In addition to being invaluable to help identify and correct
bugs, error traces also represent a checkable unsafety certificate.
In contrast, most model checkers are currently unable to return
any form of corroborating evidence when they declare a safety
property to be satisfied by a system under analysis. This is
unsatisfactory in general since model checker are complex
tools, based on a variety of sophisticated algorithms and search
heuristics, and so are not immune to errors.
To mitigate this problem, a possible approach is to use

a model checker whose correctness has been formally veri-
fied [10]. An alternative is to instrument the model checker
so that it is certifying, i.e. it accompanies its safety claims
with a proof certificate, an artifact embodying a proof of the
claim [16]. The certificate can then be validated by a trusted
certificate checker. While the former approach may seem better
at first, based on the fact that the model checker is verified once
and for all, it has a number of disadvantages. To start, the effort
is normally enormous since there are no general frameworks for

This work is partially supported by the National Aeronautics and Space
Administration under NASA contract number NNL14AA06C.

verifying modern model checkers. Moreover, any modifications
to the originally verified tool requires proofs to be redone.
In more extreme cases (e.g., an in-depth modification) one
may have to invest the same amount of effort as for the
original correctness proof. The main advantage of the second
approach is that it requires a much smaller human effort. A
disadvantage of course is that every safety claim made by the
model checker incurs the cost of generating and then checking
the corresponding certificate. This is feasible in general only if
such certificates are small and/or simple enough to be checkable
by a target certificate checker in a reasonable amount of time
(say, with at most an order of magnitude slowdown).

By reducing the trusted core to the certificate checker,
certifying model checking facilitates the integration of formal
method tools into safety critical processes such as those
endorsed by the DO-178C guidelines for avionics software.
In the spirit of the de Bruijn criterion [4], traditionally applied
to theorem provers, it redirects tool qualification requirements
from a complex tool, the model checker, to a much simpler
one, the proof checker.
We present an approach for generating and verifying proof

certificates for SMT-based model checkers. These tools use
a variety of model checking techniques and some of them
even employ a portfolio approach by running several engines
in parallel. Input models are typically represented internally
as transition systems encoded in some fragment of first-order
logic. Safety properties are expressed as invariant properties
and reasoning about invariance is reduced to checking the
satisfiability of formulas in certain logical theories such as
integer or real linear arithmetic. The latter problem is then
delegated to off-the-shelf SMT solvers.
We describe how to generate intermediate certificates that

show that a given safety property is satisfied the internal tran-
sition system. These certificates are designed to be checkable
by an SMT solver. Since SMT solvers themselves are complex
artifacts, we also show how to reduce the validity of these
certificates to proof objects obtained by a proof-producing SMT
solver. This reduction capitalizes specifically on the recent proof
production capabilities of the SMT solver CVC4 [5] and the
availability of an efficient proof checker for its proofs, which
are generated in LFSC format [24]. Most model checkers do
allow users to specify system models directly in this relatively
low-level logical representation. Instead, they support some pre-
existing modeling language (such as Simulink, Lustre, Promela,
SMV, or even just C). To account for possible problems
in the translation from the input modeling language to the

117

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Lustre
%PROPERTY P

Kind 2

JKind
frontend Obs Eq

Safety
Certificate

Kind 2
core

Front end
Certificate

CVC4

Proof Proof Proof…

Safety
LFSC proof

LFSC
checker

LFSC proofs of subgoals
(unsatisfiability)

Figure 1: Process for proof certificates generation and verification in
Kind 2.

internal logical representation, we include a second phase
which produces an additional proof certificate providing some
level of confidence in the correctness of the translation.

While the techniques we have developed are general enough
to be applicable to arbitrary SMT-based model checkers, we
have implemented them in a specific one: Kind 2 [7], an SMT-
based, multi-engine, symbolic model checker that can prove
or disprove safety properties of synchronous reactive systems
expressed in the Lustre language [11]. As a consequence, we
will describe our work in terms of Lustre and Kind 2, but with
the assumption that a knowledgeable reader will be able to see
how it generalizes to other SMT-based model checkers. In more
detailS, this work contains the following specific contributions:
(1) A technique for generating proof certificates for safety

properties of transition systems. We show how to extract and
simplify k-inductive invariants that are sufficient to summarize
proofs generated by the different kinds of SMT-based model
checking methods (in Section II) and how proofs can be
reconstructed (in Section IV).
(2) An approach to increase trust in the translation from

the external modeling language to an internal representation
language, described in Section III. A translation certificate is
generated in the form of observational equivalence between two
internal representations generated by independently developed
front ends. Their equivalence is recast as an invariant property;
checking that yields itself a second proof certificate from which
a global notion of safety can be derived and incorporated in the
LFSC proof. We improve on similar previous approaches [19],
[20] by adopting a weaker, property-based notion of observa-
tional equivalence, which is enough for our purposes.
(3) An implementation of these techniques in Kind 2. The

first certificate summarizes the work of its different engines:
bounded model checking (BMC), k-induction, IC3, as well
as additional invariant generation strategies. The certification
of the translation is applied to the Lustre language. The
intermediate certificates are SMT-LIB 2 scripts checked by
CVC4. CVC4’s own proof objects are used to construct an
LFSC proof term providing an overall proof of safety.
The full certification process for Kind 2 is depicted in

Figure 1. Kind 2 generates two sorts of safety certificates, in the
form of SMT-LIB 2 scripts: one certifying the faithfulness of the
translation from the Lustre input model to the internal encoding,

node add_two (a, b : real) returns (c : real) ;
var v : real;

let
v = a + b ;

c = 1.0 -> if (pre c) > v then (pre c) else v ;
--%PROPERTY (a > 0.0 and b > 0.0) => c > 0.0 ;

tel

Figure 2: Lustre model of running example.

and one certifying the invariance of the input properties for
the internal encoding of the input system. These certificates
are checked by CVC4, then turned into LFSC proof objects by
collecting CVC4’s own proofs and assembling them to form an
overall proof that can be efficiently verified by the LFSC proof
checker. Our initial experimental evaluation indicates that, at
the price of minimal instrumentation in the model checker, this
approach allows one to efficiently generate and check proofs
for non-trivial transition systems and invariance queries.

To illustrate our different techniques, we will rely on the toy
model in Figure 2. In Lustre, reactive components are modeled
as nodes. The node add_two in the figure encodes a component
that initially outputs 1.0, in variable c, and at each execution
step afterwards outputs the maximum between the previous
value of c and the sum of the current values of input variables
a and b. The model is annotated with an invariance property
stating that the output c is positive whenever both inputs are.

A. Technical Preliminaries

We define a transition system as a tuple S = (x, I,T) where x
is a tuple of distinct (typed) variables; I is a formula of typed
first-order logic with free variables from x, which characterizes
the initial states of the system; and T is a formula with free
variables from x and a renamed copy x′ of x, which describes
the system’s transition relation. If F is a formula with free
variables from x, we write F[y] to denote the instance of F
obtained by replacing its free variables by the corresponding
ones in y. We write T[y, y′] similarly for T . We adopt the usual
notions and notations of first-order logic. In particular, for an
intepretation M and a formula ϕ, we write M |= ϕ to mean
M satisfies the formula ϕ. We also write |= for the logical
entailment in a theory (such as integer and real arithmetic)
that encodes the data types used in the transition system. A
state of the system S = (x, I,T) is a model that gives an
interpretation to the variables of x. A state M of a system
S = (x, I,T) is said to be reachable iff there exists an i ∈ N
such that,M |= ∃x0 . . . xi−1. I[x0]∧T[x0, x1]∧ . . .∧T[xi−1, xi].
State properties for a system S are described by first-order
formulas whose free variables are from x. Let P be a state
property for S = (x, I,T). P holds in, or is an invariant of,
S if every reachable state M of S is a model of P. Property
P is k-inductive for some k > 0 if (i) I[x0] ∧ T[x0, x1] ∧
. . . ∧ T[xi−2, xi−1] |= P[xi−1] for all i = 1, . . . , k, and (ii)
T[x0, x1]∧ . . .∧T[xk−1, xk] ∧ P[x0]∧ . . .∧P[xk−1] |= P[xk].
A k-inductive strengthening Q of P is a k-inductive formula
Q[x] such that Q[x] |= P[x]. One can show that k-inductive

118

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

state properties are invariant. It follows that every state property
having a k-inductive strengthening is invariant.

II. k-inductive Safety Certificates

In this section, we focus on transition systems and present a
certificate generation approach general enough to capture the
information produced by different SMT-based model checking
engines while proving invariance properties of a system S =
(x, I,T). We show that k-inductive strengthenings of original
properties are an adequate summary of the reasoning resulting
from the combination of these engines. We also show how
to combine and simplify them with the aim of generating the
most easily verifiable objects.

A. Extracting and Verifying Certificates
Kind 2 converts internally input models and properties,
expressed in Lustre, to a transition system that captures
the same input/output behavior. The translation is relatively
straightforward for single-node models, and is based on having
state variables corresponding to the node’s input and output
variables as well as any terms of the form pre t.1 For
multi-node models, the transition systems for the individual
nodes are combined according to Lustre’s synchronous parallel
composition semantics.

Certificate extraction. In Kind 2, an input property P can
be proved invariant by one of two main model checking
methods: k-induction [22] and IC3 [6], each implemented in
an independent engine. The job of either engine is facilitated
by a number of auxiliary invariant generation engines, which
discover and pass along auxiliary invariants that might be
helpful in proving the main property. Often these are local
invariants, for instance specific to a sub-component of the input
system. All of these engines, which run concurrently, generate
safety certificates of the form (k, φ) where k is a positive
number and φ is a k-inductive strengthening of some state
property. The content of the certificate depends on the engine:
• The k-induction engine tries to prove that the input property

P is invariant by proving that it is k-inductive for some k > 0.
When this succeeds, P is its own k-inductive strengthening
and a possible certificate is the pair (k, P).

• The IC3 engine also tries to prove that an input property
P is invariant. It succeeds when it is able to construct a
conjunction φ of formulas such that φ ∧ P is 1-inductive. In
this case, a possible certificate is (1, φ ∧ P).

• The invariant generation engines are based on variations of
the previous techniques. Every auxiliary invariant used in
the proof of an input property P is provided with its own
certificate, also of the form (k, φ).

Certificate combination. Kind 2 accepts as input multiple
properties for a given model, and attempts to verify them
individually. This means that it normally produces individual
certificates for a collection of user-specified and internally

1For each non-initial execution step, pre t denotes the value of t in the
previous step.

generated properties. These safety certificates are combined
together thanks to the following easily provable result.

Proposition 1. If (ki, φi) is a ki-inductive strengthening of
property Pi[x] for i = 1, 2, then (k, φ1 ∧ φ2) with k =
max(k1, k2) is a k-inductive strengthening of P1[x] ∧ P2[x].

Verifying Certificates. Checking a (combined) certificate (k, φ)
for a (conjunctive) property P reduces to verifying that φ is
indeed a k-inductive strengthening of P. This can be done
using any tool that can prove the following entailments:

I[x0] ∧ T[x0, x1] ∧ . . . ∧ T[xi−2, xi−1] |= φ[xi−1] for i ∈ [1, k] (basek)
T[x0, x1] ∧ . . . ∧ T[xk−1, xk] ∧ φ[x0] ∧ . . . ∧ φ[xk−1] |= φ[xk] (stepk)
φ[x] |= P[x] (implication)

Using an SMT solver to prove (basek), (stepk), and
(implication), effectively moves the burden of trust from the
model checker to the solver. As we describe in Section IV, the
latter can in turn be removed from the trusted core if it can
provide an LFSC proof of the three entailments.

B. Simplifying Certificates
Good certificates need to be simple and easily checkable
by an independent tool or method. In particular, there is an
expectation that checking a certificate should not take more
time than proving the original property. A common approach
in the certificate production literature is to simplify and/or
reduce the certificate a posteriori [2], [8], [25]. This extra
effort at construction time can pay large dividends at checking
time. In our case, a safety certificate (k, φ) can be simplified
by reducing the value of k or the size/complexity of φ, or
both. Currently, Kind 2 tries to reduce k before simplifying
φ. Empirical evaluation, discussed in Section V, suggests that
this sort of post-processing is always worth the overhead.

Reducing k. Referring back to the entailments (basek) and
(stepk) from the previous section, because of the k checks
in (basek), checking a certificate (k, φ) requires a number of
sub-checks proportional to k. Each of sub-checks in turn take
time proportional to k, making the whole process quadratic in
k. Due to the concurrent nature of Kind 2, proofs obtained by
its k-induction engines are not guaranteed to have a minimal k.
Consequently, lowering k can often be the most effective way of
simplifying a certificate. To do that, after it constructs an initial
combined certificate (k, φ), Kind 2 will replay the inductive
step (stepk) for φ for values k ′ smaller than k, following one
of three different strategies, chosen heuristically:
• forward enumeration: progressively try all values of k ′ from
1 to k and stop at the first where k ′-inductiveness holds;

• backward enumeration: try values of k ′ from k down to 1,
stopping as soon as k ′-inductiveness is lost;

• binary search: partition [1, k] into subintervals [1, k ′] and
[k ′+ 1, k] of similar size and recursively consider the first or
the second interval depending on whether ϕ is k ′-inductive
or not.

Simplifying φ. Because of how combined certificates (k, φ) are
generated, the invariant φ, which is a conjunction ψ1∧ . . .∧ψn

119

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Algorithm 1. Two-phase simplification of invariants
Input: R = {ψ1, . . . , ψn }: invariant set to be reduced,

P: input property set, T : Transition relation

Function trim(R, P)
if R(0..k − 1) ∧ P(0..k − 1) ∧
T (0..k) |= P(k) then
// P is k-inductive wrt R
U = get-unsat-core();
R′ = {ψ ∈ R | ψ occurs in U };
if R′(0..k − 1) ∧ P(0..k − 1) ∧
T (0..k) |= R′(k) ∧ P(k) then
// R′ ∧ P is k-inductive
return R′ ∪ P

else // R′ is not strong enough
trim(R \ R′, R′ ∪ P)

else error “Not k-inductive”;

Function cherry-pick(R, P)
if P(0..k − 1) ∧ T (0..k) |= P(k)
then
// P is k-inductive
return P

else
// Find cex to induction
M = get-cex();
// . . . and a blocking invariant
ψ = choose({ψ ∈ R | M 6 |= ψ });
cherry-pick(R\{ψ }, P ∪ {ψ })

cherry-pick(trim({ψ1, . . . , ψn }, P), P);

of formulas, can contain unnecessary information (redundancy,
useless auxiliary invariants, etc.). We tighten φ with a process
based on two fixpoint computations applied in sequence and
described in Algorithm 1. There, we use the notation ϕ(i),
ϕ(0..i) and T (0..i) as an abbreviation, respectively, of ϕ[xi],
ϕ[x0] ∧ · · · ∧ f [xi] and T[x0, x1] ∧ · · · ∧ T[xi−1, xi]. Also,
we treat finite sets of formulas as the conjunction of their
elements. For entailment checks, we assume the availability of
a function get-unsat-core that returns an unsatisfiable core
of the premises and the negated conclusion of the entailment
when the entailment holds, and a function get-cex that returns
a counterexample when the entailment does not hold. Both of
these functionalities are provided by most SMT solvers.
Algorithm 1 uses two functions, trim and cherry-pick,

both of which take a set P of properties and a set R of
auxiliary invariants for P. Function trim aims at identifying
and removing from R invariants that are not needed to prove
P k-inductive. It relies on unsat cores to progressively reduce
the set R as long as R ∪ P remains k-inductive. Function
cherry-pick recursively checks that P is k-inductive and, if
it is not, adds to it any of the auxiliary invariants from R that
eliminate the k-induction counter-example found by the SMT
solver. One can prove that each function, and so the whole
process, is terminating—the main point being that the input
set R is finite and gets strictly smaller with each recursive
call. The process is also sound in the sense that its returned
formula is a k-inductive strengthening of P whenever the input
φ = ψ1 ∧ · · · ∧ψn ∧ P is. However, it is not guaranteed to yield
the smallest k-inductive strengthening of P contained. This is
intentional, for practical efficiency.

Practical considerations. In principle, applying trim is com-
putationally expensive because of the cost of its entailment
checks. In practice, it terminates after a very small number
of iterations—generally less than three on our benchmarks.
Moreover, it is very effective at removing large unnecessary
parts of the certificate. Considering that certificates with
hundreds of conjuncts are common, the cost of running
cherry-pick on the original certificate can become prohibitive.

In our experiments, it was always beneficial to apply the coarse
reduction performed by trim before calling cherry-pick.
We observe that the effect of trim is similar to one of the

reduction steps proposed by Irvii et al. [14] for invariants
produced by SAT-based IC3-like model checkers. While
potentially increasing precision, many of their other steps
require a number of satisfiability checks linear in the size
of φ, which is already prohibitive for the SMT case.
It could be useful to try to reduce k and simplify φ at the

same time in the hope of getting closer to a minimal k than we
do currently with our algorithm. This, however, would be more
expensive, so further empirical evidences would be needed
to assess the practical effectiveness of more sophisticated
approaches in practice.

III. Front End Certification
The certificates discussed in the previous section are

produced for Kind 2’s internal FOL representation of the
input system and properties. Although the translation to this
internal representation from the Lustre input is fairly direct,
Kind 2’s front end also applies a number of optimizations
and simplifications to the input, such as slicing, constant
propagation, and so on. This raises the question of whether the
front end can be trusted to be correct. We rule out the option
of formally proving its correctness for the reason we gave in
Section I. In alternative, we have the translation phase generate
certificates of its own.

Comparing independent translations. Our goal is to keep the
whole certification process lightweight and entirely automatic.
As a consequence, instead of proving a semantic preservation
between the input Lustre model and its internal representation
as a transition system, we prove the observational equivalence
of two internal representations obtained independently from
the same input. This technique for certifying translations has
already been employed in the SAT based toolchain of Prover
Technologies [20] and in the Systerel Smart Solver [19]. In
our case, instead of developing another front end for Kind 2
we can rely on a pre-existing third-party tool: JKind, a Lustre
model checker inspired by Kind but developed independently
at Rockwell Collins [21]. JKind too converts input models to
an FOL representation. It is a good candidate because it is
sufficiently different from Kind 2: it has a completely different
code base (it is written in Java whereas Kind 2 is written in
OCaml) and was developed independently by a different team.
While our approach does not actually guarantee the correctness
of the Kind 2 translation, it provides some formal evidence of
its trustworthiness.

Our certificate encodes the claim that the transition relations
constructed by the two independent front ends are behaviorally
equivalent over a set of relevant state variables. In essence,
the certificate consists of a transition system that observes the
internal states of the two systems generated by each front end.
This observer system feeds its two subsystems the same inputs
and verifies that their externally visible behavior is the same.
For i = 1, 2, let Si = (xi, Ii[xi],T1[xi, x′i]) be the internal

transition system, and Pi the property, respectively generated

120

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

by JKind and Kind 2, with x1 and x2 sharing no components.
We construct an observer system Sobs and a safety property
Pobs = (S1, P1) ∼ (S2, P2) expressing a suitable notion of
observational equivalence (∼) between the two systems. Then
we check the correctness of this observer in the same way as we
would check the correctness of S2 with respect to the original
safety property. This process is illustrated as part of Figure 1,
where Obs Eq is the observer described below and the module
Kind 2 Core is the core part of Kind 2, which works directly
with the internal FOL representation of a transition system.

Observational equivalence. A standard definition of observa-
tional equivalence would require the two systems S1 and S2
to produce the same outputs when given the same inputs at
each step. This is, however, is unnecessarily stringent for our
purposes and, depending on how different the two translations
are, it might not even be the case. A better notion of equivalence
is property-based: we consider S1 and S2 equivalent if, for
the same input, they agree at each step on the truth value they
assign to their respective version of the original input property
in the Lustre model. For j = 1, 2, let i j be the subtuple of x j
that corresponds to the input variables of the Lustre model.
Then Pobs and Sobs = (xobs, Iobs,Tobs) are defined as follows:
Pobs = (P1[x1]⇔ P2[x2]) Iobs = i1 ≈ i2 ∧ I1[x1] ∧ I2[x2]
xobs = x1, x2 Tobs = i′1 ≈ i′2 ∧ T1[x1, x′1] ∧ T2[x2, x′2]

where, for two tuples a = (a1, . . . , an) and b = (b1, . . . , bn),
the expression a ≈ b denotes the formula

∧
i=1, ...,n ai = bi .

The set of state variables of the observer system Sobs is the
(disjoint) union of the variables of S1 and S2. The system itself
is effectively the parallel composition of S1 and S2 after their
corresponding input variables have been pairwise identified.

Front end certificates. To recap, the equivalence observer Sobs
and the associated property Pobs constitute an intermediate
certificate of Kind 2’s translation from the input Lustre model
and properties to Kind 2’s internal representation. Checking it
consists in proving that the property Pobs is invariant for Sobs.
Since Sobs and Pobs are generated in a format that corresponds
directly to Kind 2’s internal representation of transition systems
and properties, this invariance proof can be done by Kind 2
itself without relying on its front end. Moreover, the proof is
provided with its own safety certificate, which we call a front
end certificate, of the sort discussed in Section II.
One possible problem with this approach is the small

likelihood that the property Pobs is k-inductive for Sobs, and for
a small k, so as to be easily provable by Kind 2. We mitigate
this by identifying pairs of corresponding state variables from
x1 and x2 and suggesting their equality as a candidate auxiliary
invariant for Kind 2 to try. Some of these equalities may indeed
be proven invariant and so they can potentially help in the
proof of Pobs. Note that while this harks back to the stronger
notion of observational equivalence we mentioned earlier, it is
not the same since the equivalence between certain non-input
variables is only suggested, not required.

Example 1. Consider again the Lustre model and property
of Figure 2. The systems S1 and S2 respectively generated by

JKind 2.12 and Kind 2 from that model are the following, in
abstract syntax and modulo variable renaming:

S1 S2
x1 = {a1, b1, c1, v1 }

I1 = R[>, x1, x′1]
T1 = R[⊥, x1, x′1]
R[g, x1, x′1] = (v′1 = a′1 + b′1 ∧

c′1 = ite(g, 10
10 , ite(c1 > v′1, c1, v

′
1)))

P1 = a1 >
0
10 ∧ b1 >

0
10 ⇒ c1 >

0
10

x2 = {i, a2, b2, c2, v2 }

I2 = (i ∧ v2 = a2 + b2 ∧ c2 = 1)
T2 = (¬i′ ∧ v′2 = a′2 + b′2∧

c′2 = ite(c2 > v′2, c2, v
′
2))

P2 = a2 > 0 ∧ b2 > 0⇒ c2 > 0

The equivalence observer Sobs is defined by

xobs = x1, x2 Iobs = (a1 = a2 ∧ b1 = b2 ∧ I1 ∧ I2)
Pobs = (P1 ⇔ P2) Tobs = (a′1 = a′2 ∧ b′1 = b′2 ∧ T1 ∧ T2)

Suggested auxiliary invariants in this case will be the equalities
a1 = a2, b1 = b2, c1 = c2, and v1 = v2 between corresponding
state variables in the two systems. �

IV. From Certificates to LFSC Proofs
The last step of our approach, once the various safety

certificates have been produced and checked, is to gather the
proofs of the various entailment checks performed by the SMT
solver and assemble them into a self-contained overall proof
of safety for the original system.

LFSC proofs. The entailment proofs are obtained specifically
from CVC4 as proof terms in LFSC, an extension of the Edin-
burgh Logical Framework (LF) [12] with side conditions [25].
In LFSC, which is in essence a dependently typed λ-calculus,
proof systems are encoded as type systems. Proof checking
then reduces to type checking, performed by a highly optimized
checker developed by Stump et al. [24]. This particular LFSC
checker takes as input a type system S and a term t in that
system, and checks whether t is well typed in S. The efficiency
of this framework for proof checking lies in the use of side-
conditions, defined as small functional programs, which can
be pre-compiled by the checker. Using proof rules with side
conditions generally leads to both smaller proof sizes and faster
proof checking times.
A proof system is formally defined in LFSC through

signatures, which contain a definition of the system’s language
together with axioms and proof rules. The proof system used
by CVC4 is defined over a number of signatures, which are
included in its source code distribution. Those relevant to this
work include signatures for propositional logic and resolution
(sat.plf); first-order terms and formulas, with rules for CNF
conversion and abstraction to propositional logic (smt.plf);
equality over uninterpreted functions (th_base.plf); and real
and integer linear arithmetic (th_int.plf and th_real.plf).

Extending CVC4’s proof system. We have extended CVC4’s
proof system with an additional signature (kind.plf) for k-
inductive reasoning, invariance and safety.3 This signature also
specifies the encoding for state variables, initial states, transition

2We produce S1 by having JKind 2.1 write a dump file from which we can
extract its internal representation.

3The LFSC checker with all the necessary signatures are distributed with
Kind 2 and publicly available.

121

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Inv+Obs
InvImpl

K-Ind
k ∈ N

Smt

...

Bk |= ⊥
Smt

...

Sk |= ⊥

invariant(I,T, φ)
Smt

...

φ |= P

invariant(I,T, P)
ObsEq

InvImpl
K-Ind

...

invariant(Io,To, φo)
Smt

...

φo |= Po

invariant(Io,To, Po)

woe(I,T, P, I ′,T ′, P′)
safe(I,T, P)

Figure 3: Sketch of derivation tree for LFSC proofs of safety produced by Kind 2

InvImpl
∀k ∈ N. P1(k) |= P2(k) invariant(I,T, P1)

invariant(I,T, P2)

K-Ind
k ∈ N Bk |= ⊥ Sk |= ⊥

invariant(I,T, P)

[
Bk = base(I,T, P, k)
Sk = step(T, P, k)

]

unroll(T, P, k) = match k with
| 0 7→ P(0)
| 1 7→ P(0) ∧ T (0, 1)
| _ 7→ unroll(T, P, k − 1) ∧ P(k − 1) ∧ T (k − 1, k)

step(T, P, k) = unroll(T, P, k) ∧ ¬P(k)

Figure 4: A sample of LFSC rules for k-induction proofs

relations, and property predicates. State variables are encoded
as functions from natural numbers to values. This way, the
unrolling of the transition relation done in (basek) and (stepk)
does not need the creation of several copies of the state variable
tuple x. For example, for the state vector x = (y, z) with y of
type real and z of type integer, the LFSC encoding will make
y and z functions from naturals to reals and integers, respec-
tively. So we will use the tuples (y(0), z(0)), (y(1), z(1)), . . .
instead of (y0, z0), (y1, z1), . . . where y0, y1, . . . , z0, z1, . . . are
(distinct) variables. Correspondingly, our LFSC encoding of
a transition relation formula T[x, x′] is parametrized by two
natural variables, the index of the pre-state and that of the
post-state, instead of two tuples of state variables. Similarly, I,
P and φ are parametrized by a single natural variable.
The signature defines several derivability judgments, includ-

ing one for proofs of invariance, which has the following type:

invariant : Π I : N→ formula. Π T : N→ N→ formula.
Π P : N→ formula. Type

It also contains rules to build proofs of invariance by k-
induction, as illustrated in Figure 4 in abstract syntax. There,
proof rule InvImpl states that weakenings of invariants are
invariants. Rule K-Ind encodes the k-induction principle as
presented in Section II. It has two side-conditions that compute
formulas for the subgoals of k-induction. As an example, we
provide the definition of step, which uses an auxiliary function
to compute unrollings of the transition relation.
This signature also specifies how to encapsulate proofs

for the front-end certificates by providing a additional judg-
ment, safe(I,T, P, I ′,T ′, P′), which can be derived only when
invariant(I,T, P) is derivable and the observational equivalence

between (I,T, P) and (I ′,T ′, P′) is provable (judgment woe).
Self contained proofs of safety follow the sketch depicted
in Figure 3, where Smt stands for an unsatisfiability rule
whose proof tree is obtained, with minor changes, from a
proof produced by CVC4.

In practice, running Kind 2 in proof production mode on a
Lustre model generates an LFSC proof (in a text file) that
can be then fed together with the various signature files
({sat,smt,th_int,th_real,kind}.plf) to the LFSC proof checker.

V. Experimental Evaluation

We evaluated our certificate generation and checking tech-
niques on a set of academic benchmarks and a smaller set
of industrial-grade benchmarks.4 They come from different
sources (academic and industrial users, published case studies,
etc.) and are of various nature (memory coherence protocols,
reactive controllers from railway and aerospace industry,
counter systems, simulation of systems, . . .). We selected
only benchmark problems consisting of a Lustre model with
properties that Kind 2 could prove with a 5 minutes timeout.

We first focus on the effect of minimization on intermediate
certificate checking by the SMT solver CVC4 and then
evaluate our complete certification chain, including front end
certification and LFSC proof checking.
We ran our tests on a Linux machine with two 12-core

64-bits AMD Opteron processors and 32GB of memory. We
used a certifying version of Kind 2 based on Kind 2 v0.8. The
CVC4 binary was from version 1.5-prerelease (git proofs
7ba546df). Tools were given a timeout of 5 minutes.

Certificate simplification. The plot in Figure 5 focuses on the
effects of the certificate simplification techniques presented
in Section II. It shows how many problems a particular
configuration can cumulatively process within a certain amount
of time. We compare various measures: S measures the time
needed by Kind 2 to solve the model checking problem and
generate an initial safety certificate, i.e., before simplification;5
mE measure the time to reduce the safety certificate using the
easy simplification technique (i.e., only trim in Algorithm 1);
m is the time to do the full simplification (i.e. both trim and
cherry-pick); finally, cvc4 measures the time necessary for
CVC4 to check the safety certificate—we exclude front end
certificates in this analysis. We can see from the plot that

4Kind 2 is available at https://kind.cs.uiowa.edu and benchmarks are available
at https://github.com/kind2-mc/kind2-benchmarks/tree/fmcad16.

5We do not show the time to just solve the problem because its difference
with S is negligible.

122

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

https://kind.cs.uiowa.edu
https://github.com/kind2-mc/kind2-benchmarks/tree/fmcad16

��

�����

�����

�����

�� ��� ���� ���� ���� ���� ���� ���� ���� ����

�
��
�

�
��

�
�

�������������������������

�
����
���
������
���������
�������������

��

�����

���� ����

Figure 5: Overhead and improvements of minimization.

��

����

����

����

����

�� ��� ���� ���� ���� ���� ����

�
��
�

�
��

�
�

�������������������������

�
��������
����������
�������������
���������������

Figure 6: Evaluation of proof certification chain.

without any simplification (S+cvc4) we can check a lot less
certificates and take much more time than with simplification.
We can also see that, even if the full simplification process
is more expensive (S+m vs. S+mE), it yields a larger number
of checked certificates within the time limit (S+m+cvc4 vs.
S+mE+cvc4). The superiority of full simplification is confirmed
by an analysis of the full results. It reduces the size of
the invariants on average by 74% (removing on average 19
invariants per certificate) for 42% of the benchmarks. For
one benchmark, it removes 236 invariants out of 243. The
value of k is reduced in 11% of the benchmarks, by 10 on
average, the maximum being a reduction from 36 down to
2. The bump at 428 is due to the simplification overhead for
a single benchmark, which is larger than the solving time.
However, even with this outlier, the cumulative benefit of full
simplification on certificates is clear.

Checking full certificates. The plot in Figure 6 refers to the
complete proof certification chain. The measurements show the
time necessary up to produce the proofs (S+m+cvc4) (which
involve an intermediate checking phase, cvc4, with CVC4) and
to check them with the LFSC proof checker (p). The second
and third curves are for the invariance property while the last
two also include the overhead for the front end proof (I+F).
The latter includes the time to: prove the input property; fully
minimize its safety certificate and generate the corresponding
proof; construct the equivalence observer, including the time
to call JKind and extract its transition system; model check the
observer with Kind 2; minimize and produce the proof for the
front end certificate; and finally check the combined resulting
proof with LFSC.

We are able to generate and check the proof of invariance for
around 80% of benchmarks that Kind 2 succeeds in verifying;
we produce and check a complete proof including the front end
for 60% of them. Most of the cases where we fail to generate
the proof are due to CVC4’s current limitations in its proof
producing capabilities. The biggest bottlenecks are the model
checking of the equivalence observer and the simplification of
certificates. Despite that, the time cost of the full certification
chain is overall within one order of magnitude of the cost of
just proving the input property. We find the overall level of
performance, which we think we could improve further, already
rather good, especially considering that a lot of the benchmarks
we used are non-trivial.

VI. Related Work
Formally verified model checkers. A natural approach to the
certification of verification tools consists in proving the program
(here the model checker) correct once and for all. This is
possible to a large extent for programs written in programming
languages with (largely automated) verification toolsets such
as ESC Java 2, Frama-C, VCC, F? etc. Proving full functional
correctness of a model checker, however, is currently a very
challenging job because these tools are often rather complex and
tend to evolve quickly with the ongoing advances in the field.
When feasible, one great advantage of this approach of course
is that the performances of the model checker is minimally
impacted by the verification process. One example of this kind
of certification effort is the modern SAT solver versat which
was developed and verified using the programming language
Guru [17]. We are, however, not aware of similar results for
model checkers.
Another possibility is to prove the underlying algorithms

of a model checker correct in a descriptive language of
interactive proof assistants such as Coq or Isabelle, and obtain
an executable program from these tools through a refinement
process or code extraction mechanism. Although the first
formal verification of a model checker in Coq for the modal
µ-calculus [23] goes back to 1998, only recently have certified
verification tools started to emerge. Amjad [1] shows how to
embed BDD-based symbolic model checking algorithms in the
HOL theorem prover so that results are returned as theorems.
This approach relies on the correctness of the backend BDD
implementation. Esparza et al. [10] have fully verified an
automata-based model checker for finite state systems with
the Isabelle theorem prover. Using successive refinements, they
built a correct by construction model checker from high level
specifications down to functional (SML) code.
A recent approach for the certification of SAT and SMT

solvers [2] consists in having the solver produce a detailed
certificate in which each rule is read and verified by a
combination of several small certified checkers, written and
proved correct in Coq. This approach also allows one to import
inside Coq proof terms from these solvers [3].

Certifying model checkers. A number of techniques have
been proposed to produce certifying model checkers. Earlier
solutions (e.g., [15], [16], [18]) were limited to finite-state
systems. The first certifying model checker for infinite-state

123

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

systems was perhaps the C model checker BLAST [13], which
produced certificates for a control flow automaton internally
generated from an input C program. BLAST provided proof
certificates in the Edinburgh Logical Framework (LF) [12],
which limits the scalability of certificate checking when proofs
involve reasoning modulo the theory of C’s data types.

A more recent certifying model checker is SLAB [9], which
produces certificates in the form of inductive verification
diagrams to be checked by SMT solvers. We go one step further
by relying on SMT solvers that are in turn proof producing.
Also, we address the issue of certifying the translation from
the input model to the internal representation.
For model checking of parameterized systems, the model

checker Cubicle generates certificates as Why3 files that
can be independently checked by several SMT solvers and
automated theorem provers [8], where trust is claimed through
the redundant use of multiple solvers.

VII. Conclusion and Future Work
We have presented a dual technique for generating and

checking proof certificates for SMT-based model checkers,
and applied it to the model checker Kind 2. Given a Lustre
model and one or more invariance properties for it, Kind 2
generates LFSC proofs for the properties it can verify. These
proofs have two parts. The first attests that the model and
the properties are encoded correctly in Kind 2’s internal
representation format. It does that by proving the observational
equivalence, with respect to the properties, between the internal
system and another one produced from the same Lustre input
by an independent, third-party tool. The second part attests that
the encoded properties are invariants of the internal transition
system encoding the Lustre model. Initial certificates, which
we call safety certificates, are generated as (possibly combined)
k-inductive invariants, and simplified before being verified by
the CVC4 SMT solver. The eventual proof certificates, in LFSC
format, are assembled from the proofs generated by CVC4 after
verifying these safety certificates.

The trusted core of our approach consists in:
1) The LFSC checker (5300 lines of C++ code).
2) The LFSC signatures comprising the overall proof system

in LFSC (CVC4’s sat.plf, smt.plf, th_base.plf, th_int.plf,
th_real.plf and our own kind.plf, for k-induction and safety),
for a total of 444 lines of LFSC code.

3) The assumption that Kind 2 and JKind do not have identical
defects that could escape the observational equivalence
check.
A current but temporary limitation of our certificate gen-

eration process is that LFSC proofs may contain an unsound
proof rule, trust_f, which derives any formula. This rule is
used by the current version of CVC4 to fill in present gaps
in its proof generation code. However, it will be progressively
phased out as the instrumentation of CVC4 to produce full
proofs is completed.
Kind 2 has the ability to do compositional and modular

analyses of Lustre models extended with assume-guarantee-
style contracts. A possible line of future research is to extend the

work described here to apply to such analyses by incorporating
their underlying abstraction mechanisms.

Kind 2’s proof certificate generation is being leveraged in an
ongoing project funded by NASA and the FAA as an innovative
way to reduce the cost of tool qualification with respect to
DO-178C requirements.

Acknowledgments. We would like to thank Lucas Wagner and
Konrad Slind for their feedback on this work and Andrew
Gacek for his assistance with JKind.

References
[1] H. Amjad. Programming a symbolic model checker in a fully expansive

theorem prover. In TPHOL, pages 171–187. Springer, 2003.
[2] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Wener.

Verifying SAT and SMT in Coq for a fully automated decision procedure.
In PSATTT, 2011.

[3] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner. A
modular integration of SAT/SMT solvers to Coq through proof witnesses.
In CPP, pages 135–150. Springer, 2011.

[4] H. Barendregt and F. Wiedijk. The challenge of computer mathematics.
Philos Trans A Math Phys Eng Sci, 363(1835):2351–2375, 2005.

[5] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli. CVC4. In CAV, pages 171–177. Springer,
2011.

[6] A. R. Bradley. SAT-based model checking without unrolling. In VMCAI,
volume 6538 of LNCS, pages 70–87. Springer, 2011.

[7] A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli. The Kind 2 model
checker. In CAV, pages 510–517. Springer, 2016.

[8] S. Conchon, A. Mebsout, and F. Zaïdi. Certificates for parameterized
model checking. In FM, pages 126–142. Springer, June 2015.

[9] K. Dräger, A. Kupriyanov, B. Finkbeiner, and H. Wehrheim. SLAB: A
certifying model checker for infinite-state concurrent systems. In TACAS,
volume 6015, pages 271–274. Springer, 2010.

[10] J. Esparza, P. Lammich, R. Neumann, T. Nipkow, A. Schimpf, and J.-G.
Smaus. A fully verified executable LTL model checker. In CAV, volume
8044, pages 463–478. Springer, 2013.

[11] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data flow programming language Lustre. Proceedings of the IEEE,
79(9):1305–1320, 1991.

[12] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the ACM (JACM), 40(1):143–184, 1993.

[13] T. A. Henzinger, R. Jhala, R. Majumdar, G. C. Necula, G. Sutre, and
W. Weimer. Temporal-safety proofs for systems code. In CAV, pages
526–538. Springer, 2002.

[14] A. Ivrii, A. Gurfinkel, and A. Belov. Small inductive safe invariants. In
FMCAD, pages 115–122. IEEE, 2014.

[15] O. Kupferman and M. Y. Vardi. From complementation to certification.
Theor. Comput. Sci., 345:83–100, November 2005.

[16] K. S. Namjoshi. Certifying model checkers. In CAV, pages 2–13. Springer,
2001.

[17] D. Oe, A. Stump, C. Oliver, and K. Clancy. versat: A verified modern
SAT solver. In VMCAI, volume 7148, pages 363–378. Springer, 2012.

[18] D. Peled and L. Zuck. From model checking to a temporal proof. In
SPIN, pages 1–14. Springer, 2001.

[19] M. Petit-Doche, N. Breton, R. Courbis, Y. Fonteneau, and M. Güdemann.
Formal verification of industrial critical software. In FMICS, pages 1–11.
Springer, 2015.

[20] Prover Technology. Prover tools. http://www.prover.com/products.
[21] Rockwell Collins. JKind - a Java implementation of the KIND model

checker. http://loonwerks.com/tools/jkind.html.
[22] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties

using induction and a SAT-solver. In FMCAD, pages 108–125, London,
UK, 2000. Springer.

[23] C. Sprenger. A verified model checker for the modal µ-calculus in coq.
In TACAS, pages 167–183, London, UK, 1998. Springer.

[24] A. Stump. Proof checking technology for satisfiability modulo theories.
ENTCS, 228:121–133, 2009.

[25] A. Stump, D. Oe, A. Reynolds, L. Hadarean, and C. Tinelli. SMT proof
checking using a logical framework. FMSD, 42(1):91–118, 2013.

124

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

http://www.prover.com/products
http://loonwerks.com/tools/jkind.html

Routing under Constraints
Alexander Nadel

Intel Corporation, P.O. Box 1659, Haifa 31015 Israel
Email: alexander.nadel@intel.com

Abstract—Routing is an essential stage in physical design,
where already placed components are connected by wires. Rout-
ing must satisfy various manufacturing requirements, referred to
as design rules. We formalize the problem of design-rule-aware
routing and introduce a solver, called DRouter, for the resulting
problem. Plain routing is often modeled as follows: given an
undirected weighted graph and a set of m disjoint nets (each
net being a set of vertices), a routing is a (minimal) forest of m
disjoint trees, where each tree spans a net. DRouter’s input
comprises a plain routing instance and a bit-vector formula,
whose variables include the edges of the graph as Boolean
variables (along with other variables). DRouter looks for a
satisfying assignment to F , such that the satisfied edges comprise
a routing. DRouter implements an A*-based router inside a SAT
solver. It overrides the solver’s decision and restart strategies
and enhances its learning with routing-aware algorithms. We
demonstrate that, on a set of crafted routing instances, DRouter
has substantially better capacity than either plain reduction to
bit-vector reasoning or Monosat, a solver that is able to reason
about SAT and graph predicates. We show that DRouter can
route large clips from Intel designs while obeying up to millions
of applications of the design rules–a task two industrial routers
failed to accomplish.

I. INTRODUCTION

Wire routing (or, simply, routing) is an essential stage in
the process of the physical design of integrated circuits [17]
and printed circuit boards [1]. A router routes (that is, con-
nects) components laid out during the placement stage. Design
rules specify restrictions on the routing process originating in
manufacturing requirements.

Plain routing (that is, routing without design rules) is often
modeled as the Steiner tree packing problem [1], [4], [8], [9],
defined as follows: Let G = (V,E) be a positively weighted
simple graph. Let Ni∈{0...m−1} ⊆ V be m pairwise disjoint
non-empty subsets of G’s vertices, called the nets, where the
vertices of each net are called the terminals. A routing is a
forest of net routings Ei∈{0...m−1} ⊆ E, such that (V (Ei), Ei)
is a tree that spans all Ni’s terminals, where all the net routings
are pairwise vertex-disjoint and the optimization requirement
of minimizing the routing’s total weight is met. An example is
provided in Fig. 1. To solve plain routing, heuristic approaches,
relaxing the optimization requirement to some extent, are
commonly applied – see [1] for a survey.

In practice, routing must conform to design rules. For
example, the short rule [18] states that no edge may touch
two distinct net routings.

This paper extends the plain routing formulation to model
design-rule applications. We let the user provide a SAT or bit-
vector instance F along with a plain routing instance, where
F ’s Boolean variables include the edges. The router must

satisfy F , while guaranteeing that the satisfied edges comprise
a routing. We refer to the resulting problem as Routing Under
Constraints (RUC).

It is well-known that plain routing (in various flavors) can be
reduced to SAT [6], [19]. It has also been observed that design
rules can be reduced to SAT [16], [18]. The apparent advantage
of any SAT-based router to a heuristic router is that SAT can
handle arbitrary constraints (corresponding to applications of
arbitrary design rules) efficiently based on its sophisticated
conflict analysis. In addition, modeling a new design rule for a
heuristic router involves non-trivial modification of the router,
whereas in a SAT-based approach any design rule reducible to
SAT does not require modification of the router. Furthermore,
unlike any heuristic router, a SAT-based router is complete.

The main challenge for any SAT-based approach to routing
is scalability. As we shall see, a straightforward reduction of
RUC to SAT through bit-vector reasoning does not scale.

To overcome the scalability issue, we designed a RUC
solver, called DRouter. Essentially, DRouter implements
a router inside a SAT solver. It overrides the SAT solver’s
decision and restart strategies with routing-aware strategies
and enhances its learning with routing-aware conflict analysis.

The usefulness of applying a graph-aware decision strategy
and conflict analysis inside a SAT solver (in contrast to full re-
duction to bit-vector reasoning) was advocated and highlighted
in a recent work on solving the NP-hard problem of finding
a bounded-path (that is, a path whose weight falls within a
user-given range) in a graph [7]. In [7], the decision strategy
replaces the majority of the constraints; it guides the solver
towards the solution, while taking additional optimization
requirements into account. The decision strategy’s role in our
work is no less prominent.
Monosat [3] is a recent tool which can reason about

graph reachability and bit-vectors. The RUC problem can
be easily formulated in Monosat language. Let Pathfind-
ing under Constraints (PFUC) be a restriction of RUC to
one 2-terminal net. DRouter’s PFUC solving algorithm
is conceptually similar to that of Monosat. We shall see
that DRouter is substantially more efficient than Monosat
for the generic RUC problem. Sect. V provides a detailed
comparison between Monosat and DRouter.

We shall show that DRouter can route large clips of Intel
design while obeying up to millions of applications of the
design rules, whereas two industrial routers failed to do so.

In what follows, Sect. II contains preliminaries. Sect. III in-
troduces our PFUC solving algorithm, called DPF. DRouter,
introduced in Sect. IV, uses DPF as the underlying building

125

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

block. Sect.V compares DRouter to Monosat. Experimental
results are presented in Sect. VI. Sect. VII concludes our work.

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

(a) Input

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

(b) Solution

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

(c) Conflict in
DRouter

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

(d) Conflict in
Monosat

Fig. 1: Plain routing example on a 10× 10 solid grid graph, given
two nets of two terminals each N0 = {(0, 5), (9, 5)} and N1 =
{(5, 0), (5, 8)}. Assume the edges’ weights are 1.

II. PRELIMINARIES

A. Bit-vector Reasoning and SAT

A bit-vector (BV) solver decides formulas comprising fixed-
sized bit-vectors, Boolean variables and a variety of bit-
vector and Boolean operators. An eager BV solver works
by preprocessing the given BV formula, bit-blasting it to
Conjunctive Normal Form (CNF) and solving with a SAT
solver. We assume that the reader is familiar with the basics
of SAT and eager BV solving. See [10] for a recent overview.

B. Modeling of Routing Under Constraints (RUC)

Our basic RUC modeling extends the plain routing mod-
eling, presented in Sect. I. Let G = (V,E) be a graph,
Ni∈{0...m−1} =

{
ti0, t

i
1 . . . t

i
|Ni|−1

}
⊆ V be the pairwise

disjoint nets and F (E∪U) be a bit-vector formula (where U is
a set of bit-vector and Boolean variables). Given a model for
F , α, let Eα ⊆ E be a subset of edges assigned to 1 in α. The
problem of Routing Under Constraints (RUC) is about finding
a model α for F , such that any two terminals of the same net
Ni are connected in (V (Eα), Eα) and any two terminals of
two different nets are disconnected in (V (Eα), Eα).

Note that we leave out the requirement that the routing solu-
tion be a forest of trees and also the optimization requirement
as to the overall weight. Similarly to heuristic routers, our
algorithm will strive to heuristically reduce the overall weight
of the satisfied edges.

For convenience, we extend our modeling as follows.

First, we let F use the vertices V (along with the edges) as
Boolean variables. Given a RUC model α, an edge or vertex
b ∈ V ∪ E is active iff α(b) = 1.

Second, for every vertex v, we introduce a bit-vector vari-
able 0 ≤ nid(v) < m of width dlog2m− 1e to represent the
unique net id of active vertices, where the net id of net Ni is
the index i. For each vertex v, we encode the net boundary
constraint 0 ≤ nid(v) < m into F .

Third, we encode the following edge consistency constraints
into F : for each edge e = (v, u), e =⇒ v ∧ u ∧ (nid(v) =
nid(u)).

The short rule, mentioned in Sect. I, can now be encoded
as follows: for each (not necessarily active) edge e = (v, u),
v ∧ u =⇒ (nid(v) = nid(u))). Note that the short rule does
not hold for the synthetic example in Fig. 1b.

C. Routing Complexity
Routing is a difficult problem. Plain routing is NP-hard

even for one net [11] (in which case it is reduced to the
classical problem of finding a Steiner tree). For multiple nets,
plain routing is NP-complete even without the optimization
requirement [13]. RUC is NExpTime-hard, since BV logic
is trivially reducible to RUC, and BV logic is NExpTime-
hard [12] (although various subsets of BV logic that are
relevant in practice are NP-complete [5]).

D. Reducing RUC to Bit-Vector Reasoning
The following BV encoding for RUC can be applied if the

nets are restricted to two terminals only. Assuming the edge
consistency constraints are encoded (Sect. II-B), it remains
to ensure that for each net i, its pair of terminals ti0 and ti1
is connected. That can be done by encoding the following
cardinality constraint for each vertex: each terminal has one
active neighbor edge and each non-terminal vertex has two
active neighbor edges. One can extend the modeling to multi-
terminal nets by encoding the construction of directed trees
with a terminal sink for each net. We omit further details due
to space restrictions. As we shall see, BV encoding does not
scale well.

E. A* Algorithm
A* is a commonly used algorithm for finding a path in a

graph from a source vertex s to a target vertex t, given an
under-estimation, h(v), of the weight from any vertex v to
t. If h(v) = 0 for every v, A* operates identically to Di-
jkstra shortest-path algorithm. Having an accurate heuristical
estimation helps A* converge faster.

We are interested in graphs having a grid-like structure,
that is, graphs, whose vertices represent nodes of a two-
or three-dimensional grid. This is because routing in the
original physical design problem is carried out in a grid. One
example of a grid-like graph is a solid grid graph, whose
vertices correspond to the points of a two-dimensional grid and
whose edges connect any two vertices at distance one (see the
example in Fig. 1). Our algorithms apply Manhattan distance
as the A* heuristic in a grid-like setting and set h(v) = 0 for
each vertex v, otherwise.

126

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

We need a slightly modified version of A*.
First, the modified A* can receive an optional parameter:

a set of bad edges and vertices Bad, which cannot be used
for connecting s to t. The implementation of this feature is
straightforward: whenever A* visits an edge or vertex b ∈ Bad,
it abandons the exploration of the path containing b.

Second, the modified A* can receive another optional pa-
rameter: a set of edges, whose weight should be set to 0 for
that particular A* invocation.

Third, in cases where s is not connected to t in G, given
a set of bad edges and vertices A* returns a special value
⊥ and generates a conflict cut. Intuitively, a conflict cut is a
subset of the bad edges and vertices that prevented A* from
connecting s to t. An empty conflict cut would mean that s is
disconnected from t in G, independently of the bad set. Below,
we provide a more precise definition of the conflict cut.

1) Let Visited ⊆ V ∪ E be the set of vertices and edges
visited by A* during the graph traversal (that is, vertices
and edges connected to s, Bad included)

2) Let Unvisited ⊆ V ∪ E be the set of all vertices and
edges, unvisited by A*

3) Let the frontier Frontier ⊆ V ∪ E be a set, including:
a) All the vertices from Visited which have at least one

neighbor edge in Unvisited, and
b) All of the edges from Visited whose other vertex is in

Unvisited
4) The conflict cut is the set of vertices and edges that belong

to both Bad and Frontier.

III. PATHFINDING UNDER CONSTRAINTS

Let the Pathfinding under Constraints (PFUC) problem
be RUC, restricted to one 2-terminal net. We propose an
algorithm for solving PFUC, called DPF.

Given a graph G = (V,E), a single net N = {s, t} and
a BV formula F (E ∪ V ∪ U), DPF should return either a
model α for F , such that there exists a path from s to t
in (V (Eα), Eα), or UNSAT, if no such model exists. DPF
is designed to heuristically reduce the overall weight of the
satisfied edges.

For the rest of this section, we assume that the constraint
e =⇒ v∧u for each edge e = (v, u) is encoded into F . The
net boundary and edge consistency constraints from Sect.II-B
are unnecessary for pathfinding, since pathfinding involves a
single net.

A. DPF Algorithm

DPF is implemented inside an eager BV solver’s SAT solver.
It overrides the SAT solver’s decision strategy with an A*-
based algorithm and records additional conflict clauses when-
ever s becomes disconnected from t because of propagation
in F . DPF disables the SAT solver’s restart strategy.

During DPF’s invocation, an edge or vertex b can either
be: a) active–if b is assigned 1, b) inactive–if b is assigned
0, or c) unassigned.
DPF’s decision strategy tries to connect s to t by activating

edges (that is, assigning 1 to edges) in a queue σ, where σ

1: class PATHFINDER
2: members:
3: vertex s; . source vertex
4: vertex t; . target vertex
5: walk π = s ≡ π0π1 . . . π|π|−1 ≡ f ;
6: path σ = f ≡ σ0σ1 . . . σ|σ|−1 ≡ t;
7: methods:
8: INIT(vertex s′, vertex t′, BV Formula F) → Is

Conflict?
9: s := s′; t := t′

10: σ := A*(s,t)
11: if A* returned ⊥ then return ⊥ else return >

12: DECIDE() → SAT literal
13: if t ∈ π then . π connects s to t
14: if Unassigned edge e exists then return ¬e
15: return SAT-DECIDE()
16: return (σ0, σ1)

17: PROPAGATE() → Is Conflict?
Require: Invoked right after BCP if there was no conflict
18: while |σ| = 1 or (σ0, σ1) is active do
19: Pop σ0 from σ’s front; push it to π’s back
20: if σ is not violated then return >
21: σ := A*(π|π|,t,inactive vertices and edges,active

edges)
22: if A* returned ⊥ then
23: Add a clause comprising the conflict cut
24: return ⊥
25: while |σ| = 1 or (σ0, σ1) is active do
26: Pop σ0 from σ’s front; push it to π’s back
27: return >

28: BACKTRACK()
Require: Invoked after completing SAT solver’s backtracking
29: while π contains unassigned edges do
30: Pop the latest vertex from π’s back
31: σ := {} . Clear σ

Fig. 2: DPF Solver for Pathfinding under Constraints.

is initialized to the shortest path from s to t using A*. The
activated edges of σ are moved from the front of σ to the
back of the actual path stack π. Before each decision point,
the concatenation π ◦ σ comprises a walk from s to t in G,
where π’s edges are active and σ’s edges can be unassigned or
active. When the algorithm is finished, π contains a walk from
s to t. π might be a walk rather than a path for reasons which
will be discussed later. We suggest a simple post-processing
algorithm targeting cycle elimination in π in Sect. III-B.

We say that σ is violated when one of its vertices or edges
becomes inactive.

Consider the class implementing DPF in Fig. 2. The mem-
bers of the class (lines 3– 6) comprise s, t, π and σ. Consider
also the DPF invocation trace example in Fig. 3.

The method INIT (line 8) is invoked before the SAT solver
is launched. In INIT, DPF initializes s and t and then checks
whether there exists a path from s to t in G using A*. If no
such path exists, the problem is unsatisfiable. Otherwise, the
algorithm stores the path in σ. The modified SAT solver is then
invoked. Fig. 3a illustrates the situation after initialization for

127

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

our example.
The method DECIDE (line 12) overrides the SAT solver’s

decision heuristic. If the target is already reached (that is,
t ∈ π), DECIDE deactivates (that is, assigns 0) an unassigned
edge, if any, to minimize the overall active edge weight. If all
the edges are assigned, the algorithm invokes the default SAT
decision strategy. If the target is not reached, DECIDE simply
returns the first σ’s edge (σ0, σ1). The methods PROPAGATE
and BACKTRACK guarantee that (σ0, σ1) is unassigned when
DECIDE is invoked.

Consider the method PROPAGATE (line 17). It is invoked
right after the SAT solver’s BCP (Boolean Constraint Propa-
gation) if BCP did not encounter a conflict. Similarly to BCP,
PROPAGATE should return whether it found a conflict (> and
⊥, respectively, are returned for “no conflict” and “conflict”).

PROPAGATE starts by moving any active edges from σ’s
front to π’s back. Afterward PROPAGATE returns > if σ is
not violated. We call the situation when σ is violated path
violation. A path violation occurs in Fig. 3b of our example.

In case of path violation, we run A* so as to create a new σ
to continue the path π towards t using active and unassigned
edges only. We also set the weight of active edges to 0 for
A*, in order not to “pay” for a single edge more than once
in case A* reuses already assigned edges. This can happen,
for example, if there is no path from π|π|−1 to t anymore as
is the case in Fig. 3b. This also explains why π might be a
walk, rather than a path.

If A* was successful in finding a new σ, PROPAGATE moves
any active edges from σ’s front to π’s back and returns. This
is the case in our example. Fig.3c illustrates the situation just
after PROPAGATE’s completion.

Assume now that A* could not find a new path. This is
the case in Fig. 3d continuing our example. In this case the
algorithm adds the conflict cut as a conflict clause and returns
⊥. The conflict cut is a subset of the inactive vertices and
edges that blocks any path from s to t. In our example, the
conflict cut comprises the following set {(2, 0), (3, 1)}. The
conflict cut, seen as a clause, must always be falsified by the
current partial assignment, since all its members are inactive.
Hence recording it as a conflict clause triggers SAT solver’s
conflict analysis.

During conflict analysis, the solver will learn the 1UIP
conflict clause and backtrack, so as to have one and only
one asserting literal of the conflict clause unassigned. The
method BACKTRACK (line 28) is invoked whenever SAT
solver’s backtracking is completed. The method aligns π with
the current partial assignment (by popping all the unassigned
edges from π) and clears σ. After backtracking, the solver
flips the asserting literal and applies BCP, followed by a
PROPAGATE invocation. Note that σ is populated again by
PROPAGATE.

In our example, the learned 1UIP conflict clause is ¬(2, 0)∨
¬(3, 2) (we omit derivation details due to space constraints).
The situation after backtracking, propagating and finding a
new σ in our example is shown in Fig. 3e. The vertex (3, 2)
is rendered inactive because of BCP in the new clause.

This completes the description of our PFUC algorithm.
Fig. 3f shows a completed routing for our example.

As we mentioned, after completing the routing, the solver
deactivates any unassigned edges to reduce the weight and
then falls back to the default decision heuristic.

Note that even after the initial routing has been completed,
the solver might still backtrack and change the routing. In
our example in Fig. 3, replacing the clause ¬(3, 2) ∨ ¬(3, 1)
by an equivalent set of clauses ¬(3, 2) ∨ ¬(3, 1) ∨ x ∨ y,
¬(3, 2) ∨ ¬(3, 1) ∨ ¬x ∨ y, ¬(3, 2) ∨ ¬(3, 1) ∨ x ∨ ¬y,
¬(3, 2)∨¬(3, 1)∨¬x∨¬y, where x, y are auxiliary variables,
would cause the solver to generate a “bad” routing through
the vertices (3, 2) and (3, 1) which it would only fix later
following conflict analysis and backtracking.

B. Optimization with the Decision Strategy

As we have seen, DPF applies the following two techniques
as part of its decision heuristic to heuristically reduce the
routing weight: a) using the shortest path A* algorithm,
and b) deactivating any unassigned edges after the routing is
completed.

In addition, one can apply the following post-processing
algorithm to eliminate cycles in π (if any) to reduce the
total edge weight. The algorithm below reuses the SAT solver
instance created by DPF. The instance is updated and invoked
incrementally. First, assuming DPF returned a model α, iden-
tify a simple tree in (Eα, V (Eα)) and provide its edges as unit
clauses to the SAT solver. Second, run a plain SAT solver with
the following single modification to the decision heuristic:
deactive unassigned edges first.

0 1 2 3
0
1
2

(a) After init.

0 1 2 3
0
1
2

X
X

(b) σ is violated

0 1 2 3
0
1
2

X
X

(c) New σ found

0 1 2 3
0
1
2

X
X

X

(d) A conflict

0 1 2 3
0
1
2

X
X

X

(e) Conflict resolved

0 1 2 3
0
1
2

X
X

X

(f) Routing done

Fig. 3: DPF trace example. Assume that s = (0, 0) and t = (3, 0)
and that the following CNF is provided: ¬(1, 0)∨¬(2, 0), ¬(1, 0)∨
¬(1, 1), ¬(3, 2)∨¬(3, 1). Dotted edges correspond to σ, while bold
edges correspond to π. “X” marks inactive vertices.

IV. ROUTING UNDER CONSTRAINTS

This section introduces DRouter – our RUC solution.
Similarly to DPF, DRouter is implemented inside a SAT
solver. Sect. IV-A below adjusts DPF to routing. Our basic
DRouter algorithm is presented in Sect. IV-B. Sect. IV-C,
Sect. IV-D and Sect. IV-E introduce three enhancements to
the basic algorithm which are crucial for scalability.

A. Routing-Aware Pathfinding

We need to make simple yet essential modifications to DPF
to make it routing-aware. Our goal is to be able to apply DPF
inside DRouter to connect terminals within a net.

128

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

First, net boundary and edge consistency constraints must
be applied (recall Sect. II-B).

Second, the class PATHFINDER should have an additional
member nid, representing the net id of the routed net, which
will be initialized during INIT to a new (third) parameter.

Third, DECIDE will not be invoked after s is connected to t;
hence the code in Fig. 3 between lines 13– 15 can be ignored.

Fourth, a crucial modification should be applied to
PROPAGATE when a path violation is identified (line 21).
When this happens, A* is invoked to find a new path to t.
We disallow A* from using the vertices of any net other than
the current net (in addition to the disallowed inactive vertices
and edges). After this change, line 21 looks as follows:
σ := A*(π|π|,t,inactive vertices and edges ∪ any active
vertex v, such that nid(v) 6= nid, active edges)
Furthermore, the conflict clause, created at line 23, will

contain additional literals as follows: any vertex v of net id
nid(v) 6= nid will contribute to the conflict clause one bit on
which the values of nid(v) and nid differ.

For example, assume that the modified DPF is invoked to
connect the two terminals of N1 after N0 is routed as shown
in Fig. 1c. A* will fail, since all the possible paths are blocked
by N0. The conflict clause will contain the only bit of nid(v)
for every vertex v of row 5.

B. The Basic Algorithm

We can now present the basic algorithm of DRouter.
A class implementing the algorithm for 2-terminal nets is

depicted in Fig. 4 (an extension for multi-terminal nets is
proposed later in this section). The class maintains an array
of net ids nids, the current index to nids, and an array of the
class PATHFINDER. We assume that PATHFINDER is modified
to be routing-aware as explained in Sect. IV-A.

The idea is simply to route the nets one by one using a fresh
pathfinder (that is, a fresh instance of the class PATHFINDER)
for each net.

The method INIT initializes nids and then initializes a
pathfinder for net id 0.

The method DECIDE simply applies the DECIDE method of
the currently routed net, if such exists. If all the nets are routed,
DECIDE deactivates unassigned edges, if any, and, otherwise,
lets the SAT solver take the decision.

PROPAGATE operates in a loop as long as non-routed nets
exist. Within the loop, it tries to propagate in the currently
routed net, which might result in a conflict, in which case
PROPAGATE returns ⊥. Otherwise, if the net is not yet routed,
the method returns >. If the net is routed, PROPAGATE
initializes a pathfinder for the next net, if any, pushes it to
the pathfinders vector and continues the main loop.

BACKTRACK backtracks over any fully routed nets, and then
it backtracks within the currently routed net (if one exists).

Our algorithm can easily be extended to treat any multi-
terminal net by connecting routing previously created for that
net to any new terminal until the net is fully routed. A*
can be applied, without modifications, for connecting multiple
sources to a single target.

1: class DRouter
2: members:
3: number[] nids;
4: number currNidInd;
5: PATHFINDER[] pfs;

6: methods:
7: INIT() → Is Conflict?

Require: SAT solving has not yet started
8: nids := {0, 1, . . . ,m− 1}
9: PATHFINDER p;

10: if P.INIT(t01,t02,0) == ⊥ then return ⊥
11: Push p to the back of pfs
12: currNidInd := 0;
13: return >

14: DECIDE() → SAT literal
15: if currNidInd ≤ m then
16: p := back of pfs
17: return P.DECIDE()
18: if Unassigned edge e exists then return ¬e
19: return SAT-DECIDE()

20: PROPAGATE() → Is Conflict?
Require: Invoked right after BCP if there was no conflict
21: while currNidInd < m do
22: p := back of pfs
23: if P.PROPAGATE() == ⊥ then return ⊥
24: if p.t /∈ p.π then return >
25: currNidInd := currNidInd + 1
26: if currNidInd == m then return >
27: PATHFINDER p;
28: n := nids [currNidInd]
29: if P.INIT(tn1 ,tn2 ,n) == ⊥ then return ⊥
30: Push p to the back of pfs

31: BACKTRACK()
Require: Invoked after completing SAT solver’s backtracking
32: while currNidInd ≥ 0 do
33: p := back of pfs
34: P.BACKTRACK()
35: if |p.π| > 1 then return
36: Pop from pfs’s back
37: currNidInd := currNidInd − 1

Fig. 4: Basic DRouter for 2-terminal nets.

One can also apply a post-processing algorithm for cycle
elimination to reduce the overall solution weight, similarly to
Sect. III-B

C. Early Net Conflict Detection

Let net conflict be a situation during DRouter invocation
when a certain conflicting net Ni cannot be routed anymore,
since there exists no path in the graph between two of its
terminals tiq and tiw (q 6= w).

Our algorithm might encounter a net conflict when A* is

129

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

applied to route a new terminal of the conflicting net. A net
Nj blocks the conflicting net, if any vertex v, which belongs
to Nj (that is, a vertex v, such that nid(v) = j), is part of the
conflict cut.

A net conflict situation appears in Fig. 1c, where net N0

blocks the conflicting net N1.
Our basic algorithm identifies net conflicts only when it gets

to routing the conflicting net, but it is desirable to discover
and handle such situations earlier. By “handling” we mean
recording a clause, which will cause the solver to backtrack
and re-route.

We propose the following early net conflict detection algo-
rithm. After any net is routed, we check, for every unrouted
net, if it can still be routed by applying A* for connecting
terminal i to terminal 0, for every i > 0. If a conflicting net is
discovered, we record a conflict clause comprising the conflict
cut found by A*.

To speed things up, one can keep, for each net and each
terminal i > 0, a pre-routed path β to terminal 0 of that net,
and check if β is still not violated before invoking A*. If A*
has to be invoked and it finds a path, β can be updated to that
path.

D. Net Swapping

Net ordering is crucial for our algorithm. Consider the
example in Fig. 1a. If DRouter picks N1 as the first net,
the solution in Fig. 1b will instantly be found without any
net conflicts. Picking N0 as the first net would result in a
net conflict, shown in Fig. 1c. The algorithm described so far
would have to record conflict clauses to disqualify a variety of
paths connecting N0’s terminals until it discovers a path which
does not block N1. Such an approach might cause run-time
and/or memory explosion issues in practice.

We propose two solutions for this problem. The first is
net swapping, presented next. The second is net restarting,
presented in Sect. IV-E.

Net swapping is applied after a net conflict is discovered and
the corresponding conflict clause recorded. Assume Ni is the
contradicting net. It might be blocked by several previously
routed nets. Let Nj be the net routed last out of all nets
blocking Ni. In that case, the nids array, which defines routing
order, should appear as follows: {A, j,B, i, C} (where A, B,
and C each represent a sequence of net ids). Net swapping
backtracks to the decision level just before the algorithm
started routing Nj and swaps between the nets Nj and Ni. In
addition, it moves Ni to immediately follow Nj . nids will look
as follows after net swapping: {A, i, j, B,C}. Hence, after net
swapping, the algorithm will attempt to route Ni, followed by
Nj .

Net swapping solves the problem in Fig. 1a even if N0 is
picked as the first net simply by swapping the nets after the
first net conflict.

Net swapping might not be sufficient for finding a routable
net ordering, because it is restricted to two nets only. For
example, a problem might occur if the two nets block each
other, regardless of the order, because of previously routed

nets. In such a case, the algorithm will keep swapping the two
nets. The algorithm would still complete because of conflict
clause recording, but it might be inefficient. Net restarting,
presented next, is another, more global, algorithm for changing
the net ordering, based on information derived during net
conflict analysis.

E. Net Restarting

Net restarting is the following simple yet effective technique
for net conflict-aware net reordering.

We associate a conflict counter with each net which is
increased whenever the net becomes conflicting in a net
conflict. Once the counter reaches a user-given threshold T
(10 by default) for some Ni, DRouter restarts and places i
before all the other nets in nids, so as to start routing Ni right
after the restart. The conflict counters for all nets are set to 0
following a net restart.

Assume that N0 is the first net in our example in Fig. 1a.
Applying net restarting alone (without net swapping) will
solve the problem after T net conflicts by restarting, placing
N1 before N0, and routing.

Sect. VI will demonstrate that combining net swapping and
net restarting yields the best results in practice.

V. COMPARING DRouter TO Monosat

Monosat [3] is a recent solver that can reason about a BV
formula F and various graph predicates, given one or more
graphs sharing edges with F . In particular, Monosat can rea-
son about graph reachability predicates, where a reachability
predicate reach(v,u) holds iff vertex v is connected to vertex
u through active edges (that is, edges assigned 1).

The RUC problem can easily be modeled in Monosat as
follows. First, the BV formula F and the graph G are pro-
vided as input to Monosat. Second, a reachability predicate
reach(tk0 ,tki) is created and globally asserted for each terminal
tki for i > 0 for each net Nk. That guarantees that each net
Nk is routed. Third, a reachability predicate reach(tk0 ,tl0) is
created and its negation ¬reach(tk0 ,tl0) is globally asserted for
each pair of the first terminals tk0 and tl0 for each pair of nets
Nk and Nl for k < l. That guarantees that all the nets are
routed disjointly.
Monosat takes advantage of dedicated conflict analysis

techniques for reasoning about reachability predicates. It ap-
plies the Ramalingam-Reps incremental shortest path algo-
rithm [15] to keep track of the status of reachability predi-
cates. Whenever an asserted predicate reach(v,u) is violated,
that is, whenever v and u are no longer connected through
active edges, Monosat creates a conflict clause comprising
the conflict cut, similarly to our DPF algorithm. Whenever
an asserted negated predicate ¬(reach(v,u)) is violated, that
is, whenever v and u become connected through active edges,
Monosat records a conflict clause comprising the shortest
path connecting v to u through active edges.
Monosat can also be configured to apply a dedicated

130

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

decision heuristic for globally asserted reachablity predicates.1

Monosat’s decision heuristic connects the vertex v to u, for
each asserted predicate reach(v,u) in the user-given order, by
shortest path, using the Ramalingam-Reps algorithm, similarly
to our DPF algorithm, the difference being that DPF uses
the cheaper A* algorithm lazily, whereas Monosat uses the
incremental Ramalingam-Reps eagerly.

Let us compare the functionality of DRouter without
net swapping and net restarting to that of Monosat with
the decision heuristic on the very simple routing instance in
Fig. 1a.

Assume that N0 is routed first. Both Monosat and
DRouter will easily route N0. The key difference is that
DRouter will identify a net conflict immediately after N0

is routed, since N0 blocks N1 (see Fig. 1c), while Monosat
will start routing N1 and discover a conflict only when the nets
become connected, as shown in Fig. 1d. Then Monosat will
learn a clause consisting of all the active edges in the bottom-
left sub-grid (0, 0)− (5, 5) in Fig. 1d. Monosat will have to
create an exponential number of clauses to falsify any single
N0 routing blocking N1 (including that shown in Fig. 1c),
whereas DRouter falsifies any single N0 routing at once.

Assume now that N1 is routed first. DRouter solves such a
problem instantly without any conflicts. Monosat might still
encounter an exponential number of conflicts before finding a
solution, since after routing N1 it will keep trying to route N0

using its shortest path heuristic right through N1 routing.
For these reasons, DRouter, even without the advanced

techniques of net swapping and net restarting, is expected to
be considerably more efficient than Monosat for the RUC
problem. Net swapping and net restarting make DRouter
substantially more efficient.

All in all, unlike DRouter, Monosat is not routing-aware,
although it is reachability-aware. In addition, Monosat is
less optimization-aware than DRouter as Monosat neither
tries to deactivate unassigned edges nor has a post-processing
optimization loop (recall Sect. III-B).

VI. EXPERIMENTAL RESULTS

In this section, we describe various experiments on crafted
and industrial instances. For all the experiments, the run-time
is measured in seconds, the memory is measured in Gb, and
“TO” stands for time-out.

A. Crafted Instances

This section presents experiments with crafted instances.
Detailed results and all the benchmarks are publicly avail-
able at [14]. We used Intelr Xeonr CPU E3-1270 v3
machines with 32Gb of memory and 3.50GHz frequency. We
set the time-out to 20 min. The following RUC solvers were
used: a) DR: shortcut for DRouter, b) DR-S: DRouter

1The decision heuristic is not mentioned at all in the conference paper [3]
and is only briefly mentioned in the paper’s extended version [2]. We
are grateful to the first author of [3] for sharing the details in private
communication.

Size First Net DR DR-S DR-SR DR-R BV Mn Mn+D
10 N0 0 0 0 0 0 55 TO
1000 N0 25 31 TO 26 TO TO TO
10 N1 0 0 0 0 0 222 TO
1000 N1 25 25 25 25 TO TO TO

TABLE I: Run-time comparison on several crafted instances.

without net swapping, c) DR-R: DRouter without net restart-
ing, d) DR-SR: DRouter with neither net swapping nor
net restarting, e) Mn: shortcut for default Monosat (ver-
sion 1.2.0), f) Mn+D: Monosat with the decision heuristic
for reachability (-decide-theories switch is applied), g) BV:
Sect. II-D’s reduction of RUC to BV and application of Intel’s
eager BV solver Hazel.

1) Basic Comparison: The goal of our first experiment is to
confirm the conclusion of Sect. V that DRouter should scale
much better than Monosat for RUC even on very simple
instances without any constraints. To that end, we created two
benchmarks comprising the RUC instance in Fig. 1 for the
two different possible initial net orderings. We also created
two instances for two net orderings for a larger benchmark,
structurally similar to that in Fig. 1, comprising a 1000×1000
grid with two nets: N0 = {(0, 500), (999, 500)} and N1 =
{(500, 0), (500, 998)}. The results appear in Table I (“First
Net” stands for the first net in the net ordering).
Monosat with the decision heuristic (Mn+D) cannot solve

a single instance, whereas DRouter with either net swapping
or net restarting (or both) enabled instantly solves both 10×10
instances and easily solves both 1000× 1000 instances. This
result confirms our analysis in Sect. V.

Interestingly, DRouter without net swapping and net
restarting (DR-SR) can easily solve the 10 × 10 instances,
but can solve the 1000 × 1000 benchmark only when N0 is
routed first, that is, when there are no net conflicts. This is
because when N1 is routed first, there are too many conflict
clauses to record for DR-SR.

Default Monosat can solve the 10× 10 benchmark, but it
is substantially slower than the other solvers. Hence, it comes
as no surprise that default Monosat cannot solve the 1000×
1000 benchmark.

2) Extended Comparison: We now present experimental re-
sults on RUC benchmarks crafted as follows (where N = 20):

1: for all M ∈ {3, 5, 7} do
2: for all C ∈ {0, 10, 20, 30} do
3: Generate a solid grid graph having N ∗M rows

and columns
4: Create N 2-terminal nets, with randomly picked

terminals
5: Let V = (N ∗ M)2 be the number of vertices.

Generate C/100 ∗ V binary clauses as follows. Pick a
random vertex v = (x, y) and another random vertex u
sharing either x or y coordinate with V . Add the clause
¬v ∨ ¬u.

Note that M regulates the grid size and C regulates the
number of generated clauses. We created 10 instances for each
M × C combination.

Consider Table II. DRouter is the only solver able to
solve all the instances. Monosat in either mode, BV, and

131

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

M C DR DR-S DR-SR DR-R BV Mn Mn+D
3 0 10 10 0 0 0 0 0
3 10 10 0 0 10 0 0 0
3 20 10 0 0 0 0 0 0
3 30 10 0 0 0 0 0 0
5 0 10 10 0 0 0 0 0
5 10 10 10 0 0 0 0 0
5 20 10 10 0 0 0 0 0
5 30 10 10 0 10 0 0 0
7 0 10 10 0 0 0 0 0
7 10 10 0 0 0 0 0 0
7 20 10 0 0 0 0 0 0
7 30 10 0 0 0 0 0 0

TABLE II: Comparison of the number of solved crafted instances.

Area in µm2 Nets Vertices Constraints Time Memory
24 110 42,456 484,008 25 0.7
24 230 42,456 484,008 391 1
32 352 63,740 667,764 705 2.2
129 788 127,480 2,669,056 14,733 6.5
129 891 127,480 2,669,056 92,950 6.5

TABLE III: DRouter performance on industrial instances. “Con-
straints” represent the number of design rule applications.

DR-SR cannot solve a single instance. Some instances are
solved solely with net swapping and some others are solved
solely with net restarting, but only their combination renders
DRouter scalable.

B. Industrial Instances

This section shows that DRouter can scale to large clips
from Intel designs which could not be routed by two modern
industrial routers without violating design rules.

Consider Table III. We used Intelr Xeonr CPU E7-4870
machines with 2.40GHz frequency and 528Gb of memory.
DRouter solves large industrial instances having hundreds
of nets and up to millions of design rule applications, where
the number of vertices reaches into the hundreds of thousands.

Two industrial routers we tested failed to route these clips.
First, a typical heuristic router was only able to find routings
that violated some of the rules. Second, an incomplete router
based on enumerating some of the potential solutions and then
picking an actual solution out of the potential ones using a SAT
solver [16], failed to route these clips due to memory-outs
(despite the machines’ having as much as 528Gb of memory).

These results demonstrate that DRouter gives clear added
value in industrial settings.

VII. CONCLUSION

This paper proposed a formal model for the problem of
design-rule-aware routing. Our model combines graph theory
(for representing the routing problem) and bit-vector logic (for
representing applications of the design rules). We introduced
a solver for the resulting problem, called DRouter. Essen-
tially, DRouter implements an A*-based router inside a SAT
solver, overriding the solver’s decision and restart strategies
and enhancing its learning with routing-aware algorithms. We
demonstrated that DRouter has substantially better capacity
than either plain reduction to bit-vector reasoning or the
Monosat solver. Furthermore, we showed that DRouter
can route large clips from Intel designs while obeying up
to millions of design rule applications–a task two industrial
routers failed to accomplish.

VIII. ACKNOWLEDGMENTS

We are grateful to Kostas Malinauskas for carrying out
the experiments, presented in Sect. VI-B. We thank Suto
Gyuszi, Nina Lane and Kostas Malinauskas for many useful
discussions. We are grateful to Sam Bayless for his essential
help with Monosat and to Paul Inbar for editing the paper.

REFERENCES

[1] N. Abboud, M. Grötschel, and T. Koch. Mathematical methods for
physical layout of printed circuit boards: an overview. OR Spectrum,
30(3):453–468, 2008.

[2] S. Bayless, N. Bayless, H. H. Hoos, and A. J. Hu. SAT modulo
monotonic theories. CoRR, abs/1406.0043, 2014.

[3] S. Bayless, N. Bayless, H. H. Hoos, and A. J. Hu. SAT modulo
monotonic theories. In B. Bonet and S. Koenig, editors, Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January
25-30, 2015, Austin, Texas, USA., pages 3702–3709. AAAI Press, 2015.

[4] S. Chopra. Comparison of formulations and a heuristic for packing
steiner trees in a graph. Annals of Operations Research, 50(1):143–171,
1994.

[5] N. Dershowitz and A. Nadel. Is bit-vector reasoning as hard as nexptime
in practice? In 13th International Workshop on Satisfiability Modulo
Theories, 2015.

[6] S. Devadas. Optimal layout via boolean satisfiability. In 1989 IEEE
International Conference on Computer-Aided Design, ICCAD 1989,
Santa Clara, CA, USA, November 5-9, 1989. Digest of Technical Papers,
pages 294–297. IEEE, 1989.

[7] A. Erez and A. Nadel. Finding bounded path in graph using SMT for
automatic clock routing. In D. Kroening and C. S. Pasareanu, editors,
Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II, volume
9207 of Lecture Notes in Computer Science, pages 20–36. Springer,
2015.

[8] P. J. Esrom. Combinatorial algorithms for integrated circuit layout.
Robotica, 9(1):118, 1991.

[9] M. Grötschel, A. Martin, and R. Weismantel. The steiner tree packing
problem in VLSI design. Math. Program., 77:265–281, 1997.

[10] L. Hadarean. An Efficient and Trustworthy Theory Solver for Bit-vectors
in Satisfiability Modulo Theories. Dissertation, New York University,
2015.

[11] R. M. Karp. Reducibility among combinatorial problems. In R. E.
Miller and J. W. Thatcher, editors, Proceedings of a symposium on the
Complexity of Computer Computations, held March 20-22, 1972, at the
IBM Thomas J. Watson Research Center, Yorktown Heights, New York.,
The IBM Research Symposia Series, pages 85–103. Plenum Press, New
York, 1972.

[12] G. Kovásznai, A. Fröhlich, and A. Biere. On the complexity of fixed-
size bit-vector logics with binary encoded bit-width. In P. Fontaine and
A. Goel, editors, 10th International Workshop on Satisfiability Modulo
Theories, SMT 2012, Manchester, UK, June 30 - July 1, 2012, volume 20
of EPiC Series, pages 44–56. EasyChair, 2012.

[13] M. Kramer and J. van Leeuwen. The complexity of wire-routing and
finding minimum area layouts for arbitrary VLSI circuits. Advances in
computing research, 2:129–146, 1984.

[14] A. Nadel. Routing under constraints: Benchmarks and detailed results.
https://goo.gl/OUXido.

[15] G. Ramalingam and T. W. Reps. An incremental algorithm for a
generalization of the shortest-path problem. J. Algorithms, 21(2):267–
305, 1996.

[16] N. Ryzhenko and S. Burns. Standard cell routing via boolean satisfia-
bility. In P. Groeneveld, D. Sciuto, and S. Hassoun, editors, The 49th
Annual Design Automation Conference 2012, DAC ’12, San Francisco,
CA, USA, June 3-7, 2012, pages 603–612. ACM, 2012.

[17] N. A. Sherwani. Algorithms for VLSI physical design automation.
Kluwer, 3 edition, November 1998.

[18] B. Taylor and L. T. Pileggi. Exact combinatorial optimization methods
for physical design of regular logic bricks. In Proceedings of the 44th
Design Automation Conference, DAC 2007, San Diego, CA, USA, June
4-8, 2007, pages 344–349. IEEE, 2007.

[19] R. G. Wood and R. A. Rutenbar. FPGA routing and routability
estimation via boolean satisfiability. IEEE Trans. VLSI Syst., 6(2):222–
231, 1998.

132

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

https://goo.gl/OUXido

A Consistency Checker for Memory Subsystem Traces

Matthew Naylor, Simon W. Moore, Alan Mujumdar
Computer Laboratory, University of Cambridge, UK

{matthew.naylor, simon.moore, alan.mujumdar}@cl.cam.ac.uk

Abstract—Verifying the memory subsystem in a modern
shared-memory multiprocessor is a big challenge. Optimized
implementations are highly sophisticated, yet must provide subtle
consistency and liveness guarantees for the correct execution of
concurrent programs. We present a tool that supports efficient
specification-based testing of the memory subsystem against a
range of formally specified consistency models. Our tool operates
directly on the memory subsystem interface, promoting a com-
positional approach to system-on-chip verification, and can be
used to search for simple failure cases – assisting rapid debug. It
has recently been incorporated into the development flows of two
open-source implementations – Berkeley’s Rocket Chip (RISC-
V) and Cambridge’s BERI (MIPS) – where it has uncovered a
number of serious bugs.

I. INTRODUCTION

We are interested in verifying that the memory subsystem
in a shared-memory multiprocessor implements a well-defined
consistency model – a pre-requisite for the correct execution
of concurrent programs on such architectures [1]. We take
a specification-based testing approach inspired by the work
of Manovit et al. [2], [3], [4], [5] and their TSOtool [6].
TSOtool generates pseudo-random multi-threaded programs,
runs them on a multiprocessor, and compares the results
against the Total Store Order specification (TSO) to reveal
potential discrepancies. A key contribution of the work is a
state-of-the-art conformance-checking algorithm for TSO that
can handle long-running programs – on the order of millions
of memory operations and hundreds of cores – despite this
being an NP-complete problem [7]. TSOtool, and variants of
it, have been used with great success at Sun Microsystems [2]
and Intel [8].

In this paper, we both build on and deviate from TSOtool
in a number of useful ways, as outlined below.

Testing the memory subsystem in isolation Unlike TSOtool,
we feed memory requests directly to the memory subsystem
using an HDL-level test bench, not via software running on
processors connected to the memory subsystem. As a result:

• The memory subsystem can be tested as a reusable
component, not constrained to the usage pattern of
any particular processor implementation.

• Greater stress can be applied to the memory subsystem
directly than may be possible indirectly via software.

• It is faster to simulate the memory subsystem in the
absence of processor pipelines, allowing more tests
per unit time.

• We avoid the implicit traffic arising from execution of
software tests (e.g., fetching instructions, logging test
results), allowing simpler failure cases to be found.

Model Name & Reference

SC Sequential Consistency [10]

⊂ TSO Total Store Order [11]

⊂ PSO Partial Store Order [11]

⊂ WMO1 Weak Memory Order [11]

⊂ POW POWER model [12]

Fig. 1: Consistency models supported by Axe

More consistency models We can test memory subsystems
against a range of consistency models found in modern multi-
processors, not just TSO. For example, we can test Berkeley’s
Rocket Chip [9], which at the time of writing is intentionally
more relaxed than TSO.

Our conformance-checking tool – Axe – supports a spec-
trum of five consistency models shown in Figure 1, each one
permitting a subset of the behaviors allowed by the next.
In this paper, we focus on support for the SPARC models
(SC, TSO, PSO, WMO), which have been sufficient for the
memory subsystems we have tested thus far; support for the
POWER model (POW) is detailed in the Axe manual [14]. Our
checking algorithm for the SPARC models is a generalization
of TSOtool’s algorithm. Although this generalization leads to
a checker with a worse time and space complexity, we show
that it still performs very well in practice.

Simpler debugging The TSOtool authors say very little about
how best to report violations to the user. Simply indicating that
a violation exists is clearly not very helpful when large traces
are involved. However, due to the backtracking nature of the
checker, it may not be easy to give a concise error message.
To address this, we have developed a shrinking procedure that
attempts to isolate the smallest subset of a failing trace that
still violates the model.

While this procedure works very well for explaining why
the model has been violated, it does not always help in
understanding what went wrong in the implementation. For
this, we exploit one of the great benefits of specification-based
testing: we adjust the test-generation method to search for
small test-cases that fail.

Open-source tools While TSOTool is a “proprietary product
of Sun Microsystems” [6], Axe is open-source and freely-
available [14], as are the applications of Axe to open-source
processors Rocket Chip and BERI [9], [15].

Paper outline We begin by presenting the design and imple-
mentation of Axe. This includes the format of memory subsys-

1WMO is equivalent to SPARC RMO [11] except that it forbids reordering
of loads to the same address, making it a subset of POWER [12].

133

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

tem traces taken as input, the consistency models supported,
the checking algorithms we have implemented, performance
evaluations of these algorithms, and a tool for shrinking failing
traces to reveal minimal violations. After that, we present
experiences of using Axe to test the memory subsystem in
Berkeley’s open-source Rocket Chip [9], including details
of test benches developed and the bugs we found. Finally,
we compare our approach against litmus testing and with
other checking tools reported in the literature. This includes
experiences of testing the open-source BERI processor [15],
the value of searching for small failure cases, and bugs missed
by Axe.

II. AXE CONSISTENCY CHECKER

Given a memory subsystem execution trace containing a
set of top-level memory requests and responses (including
loads, stores, atomic read-modify-writes, memory barriers, and
optional timestamps) initiated by concurrent processor cores
(or “hardware threads”), Axe determines whether the trace
is valid according to one of the consistency models listed in
Figure 1. Unlike some heuristic algorithms, Axe is complete
in the sense that it will detect any violation of the model.

Following Gibbons [7] and Manovit [2], we assume that
the address-value pair of every store in a trace is unique, i.e.,
the same value is never written to the same address more than
once. This reduces the amount of nondeterminism in a model,
because the store read by any load can be uniquely identified.
The restriction is easily met by an automatic test generator, and
is justified by the fact that the actual values being stored do not
typically affect any interesting hardware behavior. But it does
mean that our tool cannot be used for checking memory traces
that arise during execution of arbitrary software applications,
which are unlikely to meet this restriction.

Another technique for reducing nondeterminism is to mod-
ify the hardware to emit extra trace information such as the
order in which writes reach a particular internal merge point
in the memory subsystem. However, we treat the memory
subsystem as a black box, and do not inspect or modify its
internals in any way: we would like our tool to be as easy as
possible to use, i.e., not requiring modifications to the system
under test.

A. Syntax of memory traces

Example 1 Here is a simple Axe trace consisting of five
operations running on two threads.

0: M[0] := 1
0: sync
0: M[1] := 1
1: M[1] == 1 @ 100 : 110
1: M[0] == 0 @ 115 :

The first number on each line denotes the hardware thread id;
M[a] denotes a memory location with address a; operators ==
and := denote loads and stores respectively; sync denotes a
full memory barrier; the optional timestamps beginning with @
denote the begin and end times at which the request was sent
and the response received, respectively.

The textual order of operations with the same thread id
is the order in which those operations were submitted to the

memory subsystem by that thread. We refer to this order as
the thread-order. No ordering is implied by the textual order
of operations from different threads.

The initial value of every memory location is implicitly
zero. For any load of a value other than zero, there must exist
a write of that value to the same address in the trace, otherwise
the trace is invalid. As explained above, we also require the
address-value pair of every write to be unique.

Load operations will typically contain two timestamps,
since they involve both a request and a response. Axe currently
forbids response timestamps on store operations, making it
clear that this information is not used by any of the supported
models. All timestamps are completely optional, for a few
reasons:

1) Some consistency models are unaffected by timestamps.
2) Timestamps may not be available, depending on how the

traces are produced.
3) Example traces are easier to read if only the interesting

or relevant timestamp information is supplied.

However, in some consistency models timestamps can affect
whether or not a trace is allowed. In the above example,
the timestamps indicate that the first load must have finished
before the second load begins, implying that the memory
subsystem could not have executed the operations out of order.
In the SPARC and POWER architectures, a programmer can
arrange such a dependency by having the address of the second
load be dependent on the result of the first – a so-called
address dependency [12]. Other kinds of dependency include
data dependencies (where the value of a store is dependent
on the result of a preceding load) and control dependencies
(where an operation is control-flow dependent on the result
of preceding load). These program-level dependencies become
observable in the memory trace as end-time-before-begin-time
dependencies.

For the SPARC models, Axe considers timestamps to be
local to each thread, i.e., it does not use timestamps to infer
ordering between operations that run on different threads.

There is no explicit support in Axe for canceled operations,
which often arise in modern CPUs due to speculative execution
or exceptions. Traces containing such operations can still be
checked by simply replacing them with no-ops. There is also
no support for mixed-width accesses at present: Axe abstracts
over the width of each memory location, and hence the width
may vary between traces – but not within a trace.

Example 2 Here is another trace, this time containing three
operations, the first of which is an atomic read-modify-write.

0: <M[0] == 0; M[0] := 1>
1: M[0] := 2
1: M[0] == 1

The first line can be read as thread 0 atomically reads value
0 from memory location 0 and updates it to value 1. The two
memory addresses in an atomic operation must be the same,
otherwise the trace is invalid. In the future, it may be desirable
to generalize read-modify-write (RMW) to allow any number
of operations on any number of addresses, i.e., transactional
memory [23].

134

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

A common way to express atomic operations in RISC in-
struction sets is via a pair of load-linked and store-conditional
operations. At the trace level, it is straightforward to convert
such a pair into a single read-modify-write:

• If the store-conditional fails, then remove it from the
trace and convert the load-linked to a standard load.

• Otherwise, convert both operations to a single read-
modify-write operation.

For read-modify-write operations, the response timestamp sim-
ply denotes the time at which the read-response is received.

B. Consistency models

We now introduce the supported consistency models by ex-
ample; a full operational semantics for each model is available
in the Axe manual [14]. Lamport’s sequential consistency [10]
is the strongest supported model; it requires that there exists
a sequential interleaving of each thread’s operations satisfying
the trace.

Example 3 (SB) Here is a trace, known as the “store buffer”
(SB) trace, that is forbidden by sequential consistency.

0: M[1] := 1
0: M[0] == 0
1: M[0] := 1
1: M[1] == 0

There are six possible interleavings of each thread’s operations
and none result in both reads returning zero. However, under
TSO [11], stores may be buffered locally by a thread, allowing
subsequent loads to complete before the buffered stores can be
observed globally.

Example 4 (SB+syncs) Under all consistency models, the
above behavior can be prevented by inserting a sync after
the store on each thread; sync has the effect of flushing the
store buffer of the calling thread. Such memory barriers are
necessary to implement Peterson’s mutual exclusion algorithm
[20], for example.

Example 5 (SB+RMWs) Under TSO, another way to prevent
the SB behavior is to replace each write with an atomic RMW,
which has the side-effect of flushing the store buffer.

0: <M[1] == 0; M[1] := 1>
0: M[0] == 0
1: <M[0] == 0; M[0] := 1>
1: M[1] == 0

Example 6 (MP) The following “message passing” trace is
forbidden under both sequential consistency and TSO.

0: M[0] := 1
0: M[1] := 1
1: M[1] == 1
1: M[0] == 0

However, under PSO [11], this is allowed: buffered stores (to
different addresses) can be evicted out-of-order. Hence, the
second store can be observed globally before the first.

Example 7 (MP+sync) Under PSO, the above behavior can
be disallowed by inserting a sync between the two stores.
However, MP+sync is still allowed by WMO, which permits
load buffering as well as store buffering. As a result, the first
load may now be buffered and overtaken by the second as they
access two different addresses.

Example 8 (MP+syncs) One way to prevent the two loads
from being reordered is simply to place another sync between
them; sync waits for all buffered loads to complete.

Example 9 (MP+sync+dep) Another situation in which
load reordering is disallowed is when a timestamp dependency
forbids it. This trace is disallowed by WMO:

0: M[0] := 1
0: sync
0: M[1] := 1
1: M[1] == 1 @ 100 : 110
1: M[0] == 0 @ 115

Example 10 (LB) The MP+sync example demonstrates
reordering of loads, but WMO also allows reordering of a load
followed by a store. The following trace is allowed by WMO.

0: M[0] == 1
0: M[1] := 1
1: M[1] == 1
1: M[0] := 1

Example 11 (LB+syncs & LB+deps) As expected, a
sync after each load will prevent the behavior. So too will
a timestamp dependency between each load and store.

In summary: TSO allows store-load reordering; PSO ad-
ditionally allows store-store reordering (when the addresses
differ); WMO additionally allows load-load and load-store
reorderings (when the addresses differ). It is quite easy to
see how all these behaviors could arise in the presence of
nonblocking L1 caches: any operation that misses in the L1
cache and is buffered may be overtaken by a subsequent
operation that hits. Such behavior is important for out-of-
order processors, where unnecessary dependencies between
operations must be avoided.

The common feature of all these models is the existence
(or illusion) of a single shared memory: if a write by one
thread is observed by another, then it must be observable to all
threads. Sometimes known as multi-copy atomicity or global
store atomicity, this property is provided by hardware that
implements a single-writer coherence protocol such as MESI.

C. Axiomatic definitions

We now present the axiomatic definitions for the con-
sistency models, upon which the Axe checking algorithm is
based. In these definitions, we consider a read-modify-write
operation to be both a “load” and a “store”.

To begin, it is helpful to distinguish between two different
orderings over operations in the trace:

• Thread Order: for any given thread, the textual order
of operations in the trace issued by that thread.

• Memory Order: a total order over all operations.

135

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

All valid traces under these models must satisfy the fol-
lowing property (value axiom): the value returned by a load
from address a equals the value of the latest store (in memory
order) from the set Local ∪Global where Local is the set of
stores to address a that precede the load in thread order and
Global is the set of stores to address a that precede the load
in memory order.

Depending on the model, the following local axioms on
operations i and j from the same thread must also be satisfied.

SC If i precedes j in thread-order, then i must precede j in
memory order.

TSO If i precedes j in thread-order, then i must precede j in
memory order when i is a load; or i and j are stores; or i is
a sync or j is a sync.

PSO If i precedes j in thread-order, then i must precede j in
memory order when: i is a load; or i and j are stores to the
same address; or i is a sync or j is a sync.

WMO If i precedes j in thread-order, then i must precede j
in memory order when: i is a load and j accesses the same
address; or i and j are stores to the same address; or i is a
sync or j is a sync; or i is a load with end-time t0 and j has
begin-time t1 and t0 < t1.

D. Checking algorithm

In this section, we generalize an algorithm for checking
traces against the TSO model to support the SC, TSO, PSO
and WMO models. The central data structure used by this
algorithm is the analysis graph – in which each node denotes
an operation from the trace, and each edge denotes that the
source node precedes the destination node in memory order.

Simple algorithm Starting with an empty analysis graph, a
simple checking algorithm is as follows.

1) Add each operation in the trace as a node to the analysis
graph and add the edges implied by the local axioms
defined above. (Redundant edges implied by transitivity
need not be added.)

2) Apply the two edge-introduction rules shown in Figure 2
to the graph.

3) Add an edge from each read M[x] == 0 to the first store
M[x] := v on each thread. This ensures that any read of
zero (initial value) from address x must happen before any
writes to address x.

4) Apply a standard topological sort procedure to the anal-
ysis graph with the following tweak: every time a store
operation M[x] := v is removed from the graph, add an
edge from each load M[x] == v to the next unpicked
store M[x] := w on each thread. This ensures that any
read of the current value at address x must happen before
any store of another value to address x.

5) If a topological sort can be found (i.e., a total order of op-
erations exists that satisfies the memory order constraints),
then the trace is valid; otherwise it is invalid.

The key inefficiency of this algorithm is the nondetermin-
ism present in the topological sort. At any stage, there may
exist several store operations that can be removed next. If a
bad choice is made, the algorithm must backtrack, because an

M[x] := v

M[x] == v

mo

7
to

(a)

M[x] := v

M[x] := w

M[x] == v

mo

moto

(b)

Fig. 2: Edge-introduction rules. Thread-order edges are la-
belled to and memory-order edges mo. In (a) the dotted edge
is introduced if the solid edge does not exist. In (b) the dotted
edges are introduced if the solid edge does exist and v 6= w.

M[x] := v

M[x] := w

M[x] == v

(a)

M[x] := w

M[x] := v

M[x] == w

(b)

Fig. 3: Edge-inference rules proposed by Manovit [2] (our
representation). All edges are memory-order edges. In each
case, if the solid edges are known to exist, either directly or
by transitivity, and v 6= w then the dotted edge can be inferred.

alternative choice might lead to success. (The order of stores
to each address is not known in advance.)

Reducing nondeterminism Manovit proposes the two rules
shown in Figure 3 as a way of inferring new edges in the
analysis graph, greatly reducing the amount of nondeterminism
in the topological sort. Notice that applying these rules can
introduce edges that enable the rules to be applied again.
Therefore, it is desirable to apply the rules repeatedly until
a fixed-point is reached, i.e., until no new edges are inferred.

This leads to two modifications of the simple algorithm
above: first, add a new step after step (2) that applies the
inference rules until a fixed-point is reached; second, every
time a store is removed from the graph in step (4), and new
edges are added, reapply the inference rules until a fixed-point
is reached.

Reducing rule-application sites Applying the inference rules
at all matching sites in the analysis graph would be extremely
inefficient and, fortunately, unnecessary. Manovit shows that
it is sufficient to apply each rule once for each store s of the
form M[x] := v with:

• for rule 3a, node M[x] := w bound to the earliest
store to address x that succeeds s in the analysis graph;

• for rule 3b, node M[x] == w bound to the earliest
load to address x that succeeds s in the analysis graph.

While there may exist several bindings that satisfy the above

136

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

constraints (the earliest successor may not be unique in a
partial order), the number of application sites to consider is
greatly reduced.

Determining the earliest successors The problem now is
this: starting from any store operation, how do we efficiently
determine the next load and store to the same address in the
analysis graph?

To answer this, we maintain two data structures. The first
is the mapping nextLoad(op, t, a) that gives the next load (in
the analysis graph) to address a on thread t from operation op.
(Since loads to the same address on a given thread are totally
ordered under all models, this mapping is a function, i.e.,
unambiguous.) Initially, it is computed by a backward analysis,
propagating the next load for each (a, t) pair backwards along
the edges of the graph, in reverse topological order. At a fork
point, the information at several nodes is merged by taking the
minimum load in thread order for each (a, t) pair. When a new
edge i → j is added to the graph, the nextLoad mapping is
updated by applying the same propagation method backwards
from node j until no new updates are made.

The second data structure we maintain is the mapping
nextStore, identical to nextLoad but giving the next store
instead of the next load. These two data structures have a
number of uses:

1) The inference rules from Figure 3 can be efficiently
applied. And when adding an edge, the backward-
propagation method used to update the nextLoad and
nextStore mappings will naturally visit all the nodes at
which the inference rules must be reapplied.

2) The existence of a path from a store to any load or store
can be determined in constant-time, avoiding the addition
of redundant edges to the graph.

3) Similarly, we can be determine in constant-time whether
or not the addition of an edge to the graph will lead to a
cycle, allowing immediate failure detection.

Comparison to Manovit’s algorithm When specializing the
algorithm to the TSO model, it is possible to simplify the
nextLoad and nextStore mappings. Instead of mapping each
(op, a, t) triple to the next load or next store, it is sufficient to
map each (op, t) pair. This is because all loads by the same
thread are totally ordered under TSO, as are all stores by the
same thread. Once the next load on some thread is determined,
the next load to a particular address on that thread can be easily
found by looking at the static thread order. Consequently, the
size of these data structures reduces from 2×N×A×T for N
operations, A addresses, and T threads to 2×N×T . Not only
does this save space, but it makes the backward analysis faster
as the amount of information being propagated is smaller. In
other words, the efficiency of our checker depends on the
number of different address locations used in the trace. This
is not the case for Manovit’s TSO-only checker.

E. Evaluation

Performance To evaluate the performance of Axe, we
have generated a range of traces2 with various numbers of

2Using a model cache implementation with load and store buffering, out-
of-order eviction, out-of-order responses, prefetching and invalidation-based
coherence. These traces are available at http://dx.doi.org/10.17863/CAM.794

8K 16K 24K 32K
number of memory operations

0

1

2

3

4

5

ru
n-

tim
e/

s

t=32
t=16
t=4

Fig. 4: Performance of the WMO checker

memory operations (n ∈ {8K, 16K, 24K, 32K}), threads
(t ∈ {4, 16, 32}), and addresses (a ∈ {4, 16, 32}). For each
combination of parameters, we generate 16 traces, giving
576 traces in total. Figure 4 shows how the performance of
the WMO checker varies with the number of operations and
threads present, averaged over the number of addresses present:
in practice, Axe allows rapid checking of large traces which,
for a fixed number of addresses and threads, scales linearly
with the number of operations.

Correctness Axe has been tested for equivalence against
an operational semantics for each model (defined in the Axe
manual [14]) and also an axiomatic semantics for each model
(defined in §II-C). The test traces include: (1) 199 litmus tests
from the PPCMEM distribution [13]; and (2) 200K randomly-
generated traces ranging from around 10 to 50 operations in
size (distributed with the Axe tool [14]). Axe also gives the
expected outcomes for all the traces used in our performance
evaluation.

F. Shrinking traces

Given a trace that violates a model, we would like to find
the smallest subset of the trace that still violates the model.
This is very useful for debugging (§III). Our shrinker works by
applying each of the following rewrite rules for retry attempts
before moving on to the next rule. Each rule is conditioned on
the resulting trace still violating the model.

1) Pick an address and drop all accesses to that address.
2) Drop a random subset (n%) of loads.
3) Drop a random subset (n%) of stores which write a value

that is never read.
4) Repeat (3) but for read-modify-write operations.

After that, in reverse trace order, it tries to drop each operation
in turn; this is repeated until a fixed-point is reached. For
suitable choices of retry and n, the shrinker is both effective
and fast, typically yielding fewer than ten operations and taking
between a second and a minute for traces between 1K and 32K
elements respectively.

III. CASE STUDY: ROCKET CHIP

Rocket Chip is an open-source system-on-chip generator
developed at UC Berkeley including support for multiple pro-

137

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

1: load-req 0x0000000008 #0 @64
1: store-req 5 0x0000100008 #1 @65
1: store-req 7 0x0000000010 #2 @66
0: store-req 2 0x0000000008 #0 @303
0: load-req 0x0000000008 #1 @304
0: store-req 6 0x0000100008 #2 @305
1: resp 0 #0 @96
0: resp 0 #0 @350
0: resp 2 #1 @351
0: load-req 0x0000000010 #3 @353
1: resp 0 #1 @149
1: load-req 0x0000000108 #3 @152
1: resp 0 #3 @184
0: resp 5 #2 @422
0: resp 0 #3 @424
1: resp 0 #2 @226

Fig. 5: A sample trace generated using our extensions to
Rocket Chip’s GroundTest framework: the first number on
each line of the trace is the thread-id; #n denotes a request-id
n; @t denotes a time t in clock cycles; hex numbers denote
addresses; remaining decimal numbers denote data values
being loaded or stored. This trace contains only loads, stores
and responses, but we also support generation of LR/SC pairs,
atomic operations, and fences. Notice that the timestamps are
not monotonically increasing: in simulation, the Rocket Chip
tiles are brought out of reset sequentially.

cessor cores and a cache-coherent shared-memory subsystem.
Available cores include implementations of the RISC-V ISA:
the in-order Rocket, the out-of-order BOOM, and the Z-scale
microcontroller – and (pending release) the Hwacha vector-
thread accelerator. Having been taped out 11 times between
2011 and 2015, Rocket Chip is fairly mature – but faces con-
stant change through extensions, redesigns, and refactorings.
Rocket Chip is written using the Chisel HDL [16].

The Rocket Chip developers have already recognized the
importance of making HDL-level test benches for the mem-
ory subsystem: “In order to test behaviors in our memory
hierarchy which are not easy or efficient to test in software,
we have designed a set of test circuits called GroundTest”
[9]. GroundTest plugs into the socket given to CPU tiles
and generates various kinds of memory traffic directly to the
memory subsystem, either via the L1 caches, or directly to the
L2, or via DMA.

Rocket Chip is highly parameterized, including the choice
of coherence protocol – which by default is MESI, at the time
of writing. Since MESI guarantees at most one writer to a
cache line at any time, it gives the illusion of a single shared
memory – despite the reality of multiple local caches – and
is thus expected to conform to one of the SPARC consistency
models.

Extending GroundTest We developed a trace generator that
plugs into the GroundTest framework. Given a random seed, it
generates random memory requests from each tile, and emits
a trace of events. To illustrate, Figure 5 shows an example of
a generated trace.

The number of tiles, requests, and addresses used when
generating a trace can all be controlled using compile-time pa-
rameters. Ideally though, the number of requests and addresses

would be taken as simulation-time parameters, allowing the
top-level testing script to gradually increase the sizes of traces
in the hope of finding smaller failures first. Unfortunately,
Chisel does not yet support a convenient way to read from
external sources (such as files or environment variables) during
simulation.

Converting traces to Axe format We made a simple script
to convert traces emitted by the trace generator into Axe
format. For example, given the sample trace from Figure 5,
this conversion script yields:

&M[2] == 0x0000000010
&M[0] == 0x0000000008
&M[3] == 0x0000000108
&M[1] == 0x0000100008
1: M[0] == 0 @ 64:96
1: M[1] := 5 @ 65:
1: M[2] := 7 @ 66:
0: M[0] := 2 @ 303:
0: M[0] == 2 @ 304:351
0: M[1] := 6 @ 305:
0: M[2] == 0 @ 353:424
1: M[3] == 0 @ 152:184

Notice that lines beginning with # are treated as comments by
Axe: we use these comments to record the mapping between
physical addresses and addresses used by Axe.

Testing against the SC model We made a script that repeat-
edly: (1) generates a trace with a random seed; (2) converts
the trace to Axe format; and (3) checks the trace against the
chosen consistency model. Running this script, we found a
260-element trace that fails to satisfy sequential consistency.
Passing this through our shrinking procedure (§II-F), we get:

1: M[1] := 185 @ 1921:
1: M[0] := 193 @ 1966:
0: M[0] == 193 @ 2207:2245
0: M[1] := 204 @ 2208:
0: M[1] == 185 @ 2209:2269

Similar to the MP example, this trace can be explained either
by thread 1’s stores being performed out-of-order (PSO) or
thread 0’s loads being performed out-of-order (WMO).

Testing against the PSO model We also found a 261-element
trace that violates PSO, which after shrinking is:

0: M[2] == 137 @ 1825:1948
0: M[0] := 154 @ 1886:
1: M[0] == 154 @ 1689:1725
1: M[2] := 137 @ 1690:

Similar to the LB example, this trace can be explained by the
load and store on thread 0 (or 1) being reordered (WMO).

Coherence bug We observed that a large number of traces
satisfy the WMO model, but eventually we hit a 260-element
counterexample – which after shrinking is:

0: M[2] := 46 @ 497:
1: M[2] == 46 @ 280:513
1: M[2] := 61 @ 729:
1: M[2] == 46 @ 854:979

138

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Note that the write of M[2] := 46 by core 0 is the only
write of 46 in the entire trace (the trace generator ensures that
all write values are unique). Also, the initial value of each
location is 0. Therefore, the write M[2] := 61 by core 1 has
seemingly been dropped. This is a coherence violation and
undesirable: if the write of 46 to M[2] is interpreted as “core
1, a message is available”, then core 1 might end up receiving
two messages as it effectively sees the write twice. (It sees 46
once on line 2, then it clears that value with a store on line 3,
and finally it sees 46 again on line 4). We reported this issue
to the Rocket Chip developers, who identified a race condition
in the coherence protocol and fixed it within a few days.

Livelock bug For the above testing we enabled only loads
and stores in the trace generator. When we enabled generation
of LR/SC pairs, we found a lock-up issue in which a store-
conditional would never return under some circumstances. We
reported this to the Rocket Chip developers, who diagnosed
the problem as a livelock issue in the coherence protocol.

Store-conditional bug With the livelock issue fixed, we found
a 228-element counterexample to WMO. After shrinking it is:

1: M[3] := 31 @ 340:
0: { M[3] == 31; M[3] := 178} @ 745:812
0: { M[3] == 178; M[3] := 198} @ 926:955
1: { M[3] == 178; M[3] := 59 } @ 759:761

Notice that the read-modify-write by thread 1 atomically
changes M[0] from 178 to 59. Furthermore, the second read-
modify-write by thread 0 atomically changes M[0] from 178
to 198. Of course, if these operations really were atomic, this
behavior would be impossible. After investigating the raw trace
emitted by the generator, we noticed this issue arises when
a store-conditional is issued before a load-reserve response is
received. We reported this issue to the Rocket Chip developers,
who identified it as a bug in which a cache line is not marked
as dirty when it should be.

Testing against the WMO model At the time of writing
(with loads, stores, LR/SC pairs, atomics, and fences all
being generated), Rocket Chip satisfies the WMO model on
thousands of large traces, each comprising 64K operations, 16
addresses, and 8 threads.

Liveness A key limitation of the above specification-based
testing approach is that it does not check for liveness, e.g.,
that a store-conditional operation actually succeeds when it
should. In response, we added a mode to the trace generator
in which it will generate only LR/SC pairs that are expected to
succeed. This is possible in Rocket Chip because of the way
it implements LR/SC: the L1 cache will hold on to a cache
line for a maximum of n cycles after an LR response. Thus,
provided the LR and SC are within n cycles of each other,
the SC should succeed. In this mode, we observed an LR/SC
success rate of 94%. The 6% of failures remain unexplained
and we plan to explore this in future work.

IV. COMPARISONS WITH RELATED WORK

A. Litmus testing

Litmus testing is a method of determining whether or not
specific memory behaviors are observable in a multiprocessor
implementation [17], [18]. Behaviors are captured by litmus

{ x=0; 0:r2=x; 1:r2=x; }
P0 | P1 ;
ll r1, 0(r2) | ll r1, 0(r2) ;
add r1, r1, 1 | add r1, r1, 1 ;
sc r1, 0(r2) | sc r1, 0(r2) ;

exists (0:r1=0 /\ 1:r1=0)

Fig. 6: A litmus test for MIPS in which two threads attempt to
concurrently increment a shared variable x using load-linked
and store-conditional operations. The test looks for the case
where both store-conditionals fail – a potential liveness bug.

tests – small concurrent program-fragments with pre- and
post-conditions. To a first approximation, a litmus testing tool
works by repeatedly: (1) establishing the test’s pre-condition;
(2) synchronizing all threads; (3) running the test; and (4)
recording the value of the post condition. Slight variations are
introduced on each iteration – for example by changing the
addresses of the shared variables used, by inserting random
delays, or by simply relying on random perturbations due to
context switching and other OS activities.

In our efforts to verify the memory subsystem of the BERI
multiprocessor [15], [19], we have found litmus testing to be
complementary to our Axe-based approach, which does not
cover liveness properties. For example, the litmus test shown
in Figure 6 caught a serious liveness bug in BERI to which
Axe was oblivious. Unlike in Rocket Chip, it is not possible
in BERI to capture static conditions under which a store
conditional is expected to succeed: concurrent LL/SC accesses
to the same address are resolved by a race, and whoever wins
invalidates the others. But regardless of who wins, there should
exist a winner. The litmus test was able to disprove this by
showing a case where all store-conditionals fail. This was
due to a bug in which even a failing store-conditional would
invalidate the load-linked reservations of other threads.

Litmus testing, as described in [18], is a whole-system
approach, covering the processor pipeline, the memory subsys-
tem, and even the compiler. This strength is also a weakness
when it comes to modular reasoning and debugging. For
example, our test framework for BERI – which employs Axe
alongside techniques for finding simple failures [19] – can find
a counterexample to sequential consistency containing just five
operations. Litmus testing can require hundreds of iterations,
with hundreds of memory accesses per iteration, to expose
the same behavior. Using the smaller counterexample, it is fat
easier to manually trace through the internal hardware state
transitions to understand why the behavior is occurring.

Another problem with a whole-system approach is that a
largely complete and largely working SoC is required before
testing can be attempted. The complex software mechanism
used to synchronize all threads at the beginning of each litmus
test iteration is, on its own, a very demanding test. In contrast,
our approach allows incremental development, starting out
with plain load and store requests, and later moving to fences
and atomics – all without the need for a CPU pipeline, a
compiler, or an OS.

Finally, litmus tests consider specific – not arbitrary –
sequences of memory operations, and we developed Axe to
support full specification-based testing.

139

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

B. Intel’s checker

We are not the first to generalize TSOtool’s checking
algorithm to a wider range of consistency models. Intel has
incorporated a variant of the algorithm into their MP RIT
(multiprocessor random instruction test) framework [8], with
support for any consistency model that provides global store
atomicity. This means that Intel’s algorithm is more general
than ours. However, this extra generality comes at a cost, and
its benefit is not clear cut.

Cost Intel’s algorithm represents the analysis graph as an
adjacency matrix and maintains the full transitive closure. Axe
exploits the fact that, in WMO, loads to the same address
on each thread are totally ordered, as are stores to the same
address. This means we don’t need to track all successors for
each node; we need only track the nearest successor of each
node for each (address,thread) pair. The extra cost of Intel’s
algorithm is apparent in their performance graph: despite
parallelizing the checker over multiple cores, a polynomial
growth in execution time is observed for traces up to just 8K
operations for a fixed 8 threads.

Benefit The benefit of the increased generality over WMO is
unclear. Both WMO and Intel’s checker require global store
atomicity. WMO additionally requires sequential-consistency-
per-location, but this property is provided by almost all
CPUs [24].

Unlike Axe, Intel’s checker is incomplete, i.e., there are
some model violations that the tool will inherently miss. And
as with TSOtool, Intel’s checker is not publicly available.

V. CONCLUSIONS

We have generalized a state-of-the-art TSO conformance-
checking algorithm to support a wider range of consistency
models increasingly being found in modern hardware. Al-
though the generalized algorithm has worse time and space
complexity – now dependent on the number of distinct memory
locations that are accessed – it still performs very well in prac-
tice. Using it, we have been able to test the memory subsystem
of Berkeley’s Rocket Chip, which supports load buffering
and out-of-order responses and is therefore intentionally more
relaxed than TSO. This testing has uncovered a number of
serious memory consistency bugs that have been reported to
the Rocket Chip developers in a clear and concise manner
using our trace shrinking procedure. In contrast to whole-
system approaches, we have focused on testing the memory
subsystem as a reusable component that can be understood
in isolation and verified incrementally. This not only permits
testing at much earlier stage in the development process, but
also leads to simpler failure cases. Axe is now part of the
standard test infrastructure for both the BERI and Rocket Chip
open-source processors.

Acknowledgements Many thanks to Henry Cook, Howard
Mao, Peter Neumann, Peter Sewell, Andrew Waterman, Jon
Woodruff, and the anonymous reviewers. This work was sup-
ported by DARPA/AFRL contracts FA8750-10-C-0237 (CT-
SRD) and FA8750-11-C-0249 (MRC2), and EPSRC grant
EP/K008528/1 (REMS). The views, opinions, and/or findings
contained in this paper are those of the authors and should not

be interpreted as representing the official views or policies,
either expressed or implied, of the Department of Defense or
the U.S. Government.

Open access Research data supporting this paper can be
obtained from http://dx.doi.org/10.17863/CAM.794.
This includes all the sample traces used to test and eval-
uate the performance of Axe, and a snapshot of the Axe
source code taken in July 2016. However, the latest version
of the Axe source code should always be obtained from
https://github.com/CTSRD-CHERI/axe.

REFERENCES

[1] S. Adve and K. Gharachorloo. Shared Memory Consistency Models: A
Tutorial, Computer Journal, volume 29, number 12, pp. 66–76, 1996.

[2] C. Manovit. Testing memory consistency of shared-memory multipro-
cessors, PhD thesis, Stanford University, 2006.

[3] S. Hangal, D. Vahia, C. Manovit, and JY. J. Lu, TSOtool: A Program
for Verifying Memory Systems Using the Memory Consistency Model,
in ISCA 2004, pp. 114.

[4] C. Manovit and S. Hangal, Efficient algorithms for verifying memory
consistency, in SPAA 2005, pp. 245–252.

[5] C. Manovit and S. Hangal, Completely verifying memory consistency
of test program executions, in HPCA 2006, pp. 166–175.

[6] Homepage of TSOTool, a program for verifying memory systems us-
ing the memory consistency model, http://xenon.stanford.edu/∼hangal/
tsotool.html.

[7] P. B. Gibbons and E. Korach. On testing cache-coherent shared mem-
ories, in SPAA 1994, pp. 177-188.

[8] A. Roy, S. Zeisset, C. J. Fleckenstein, J. C. Huang, Fast and Generalized
Polynomial Time Memory Consistency Verification, CAV 2006, pp. 503.

[9] K. Asanovic et al., The Rocket Chip Generator, Technical Report
UCB/EECS-2016-17, University of California, Berkeley, 2016.

[10] L. Lamport. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs, IEEE Transactions on Computers,
volume 28, number 9, pp. 690–691, 1979.

[11] D. L. Weaver and T. Germond. The SPARC Architecture Manual Version
9, 2003.

[12] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Under-
standing POWER Multiprocessors, PLDI 2011, pp. 175–186.

[13] Homepage of PPCMEM/ARMMEM, a tool for exploring the POWER
and ARM memory models, https://www.cl.cam.ac.uk/∼pes20/ppcmem/.

[14] M. Naylor, S. Moore, and A Mujumdar, Axe Manual Version 1.4, https:
//github.com/CTSRD-CHERI/axe.

[15] Homepage of the BERI processor (Bluespec Enhanced RISC Instruc-
tions), http://bericpu.org.

[16] J. Bachrach et al. Chisel: Constructing Hardware in a Scala Embedded
Language, DAC 2012, pp. 1216–1225.

[17] S. Sarkar, P. Sewell, F.Z. Nardelli, S. Owens, T. Ridge, T. Braibant,
M.O. Myreen, and J. Alglave, The Semantics of x86-CC Multiprocessor
Machine Code, in POPL 2009, pp. 379–391.

[18] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell, Litmus: Running Tests
Against Hardware, in TACAS 2011, pp. 41–44.

[19] M. Naylor and S. W. Moore, A Generic Synthesisable Test Bench, in
MEMOCODE 2015, pp. 128–137.

[20] G. L. Peterson, Myths About the Mutual Exclusion Problem, Information
Processing Letters, vol. 12, no. 3, pp. 115-116, 1981.

[21] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, The RISC-V
Instruction Set Manual, Volume I: User-Level ISA, Version 2.0, EECS
Department, University of California, Berkeley, May 2014.

[22] W. M. Collier. Reasoning about parallel architectures. Prentice-Hall,
Inc., 1992.

[23] C. Manovit, S. Hangal, H. Chafi, A. McDonald, and C. Kozyrakis, K.
Olukotun, Testing Implementations of Transactional Memory, in PACT
2006, pp. 134–143.

[24] J. Alglave, L. Maranget, and M. Tautschnig, Herding Cats: Modelling,
Simulation, Testing, and Data Mining for Weak Memory, in ACM
TOPLAS, volume 36, number 2, 2014.

140

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Hybrid Partial Order Reduction with
Under-Approximate Dynamic Points-To and

Determinacy Information
Pavel Parı́zek

Charles University, Faculty of Mathematics and Physics

Abstract—Verification techniques for concurrent systems are
often based on systematic state space traversal. An important
piece of such techniques is partial order reduction (POR). Many
algorithms of POR have been already developed, each having
specific advantages and drawbacks. For example, fully dynamic
POR is very precise but it has to check every pair of visible
actions to detect all interferences. Approaches involving static
analysis can exploit knowledge about future behavior of program
threads, but they have limited precision.

We present a new hybrid POR algorithm that builds upon (i)
dynamic POR and (ii) hybrid field access analysis that combines
static analysis with data taken on-the-fly from dynamic program
states. The key feature of our algorithm is usage of under-
approximate dynamic points-to and determinacy information,
which is gradually refined during a run of the state space
traversal procedure. Knowledge of dynamic points-to sets for
local variables improves precision of the field access analysis.
Our experimental results show that the proposed hybrid POR
achieves better performance than existing techniques on selected
benchmarks, and it enables fast detection of concurrency errors.

I. INTRODUCTION

Software systems that involve multiple threads are now
ubiquitous, but also prone to errors such as data races.
Therefore, efficient methods for automated verification of
such systems are important. Verification algorithms based on
systematic state space traversal are particularly suited for this
purpose, but they do not scale well because of the huge number
of possible thread interleavings exhibited by any non-trivial
system. An important piece of such algorithms is partial order
reduction (POR), which identifies the subset of possible thread
interleavings that must be explored to cover all observable
behaviors of a given system, and in this way improves the
performance and scalability of verification. The goal of POR
is: (1) to ensure that, for each set of thread interleavings that
differ only in the order of independent actions, at least one
interleaving from the set is explored, and (2) to minimize
the number of thread interleavings from each set that are
explored — that means exactly one thread interleaving in the
optimal case. To achieve this goal, POR techniques create non-
deterministic thread scheduling choices only at visible actions
that represent possible interference between threads.

We distinguish between visible actions, which read or
modify the global state reachable by multiple threads, and
thread-local actions. Visible actions are, for example, accesses
to fields of heap objects and thread synchronization oper-

ations. Only a subset of visible actions is responsible for
the actual communication between threads — we call such
actions interfering. All other actions are independent. The state
space traveral procedure with POR has to explore all possible
interleavings of interfering actions. The main challenge is to
identify the interfering actions as precisely as possible.

A prominent example of a POR technique is the dynamic
approach by Flanagan and Godefroid [5]. Their algorithm
explores individual execution traces (interleavings) one by one
using dynamic analysis, and for each trace determines the set
of heap objects and fields that were truly accessed by multiple
threads. An advantage of dynamic POR is that it recognizes
each dynamic heap object, and thus identifies shared memory
locations precisely. New thread choices are created retroac-
tively only at accesses to shared locations, and every added
choice yields traces that must be explored eventually. On the
other hand, a limitation of this approach to dynamic POR is
that it has to (i) explore each trace until the end state, (ii)
keep track of all accesses to object fields that occurred on the
trace, and (iii) check every pair of visible actions to detect
all interferences (i.e., to compute the independence relation).
This can negatively impact performance especially in the case
of programs with large state spaces and long execution traces.

Another viable approach to POR is to use a hybrid analysis
of field accesses [12] [13], which consists of two phases —
static and dynamic. Static analysis computes only partial data
for each program point (i.e., a source code location). Full
results are generated and applied on-the-fly during the state
space traversal based on the knowledge of dynamic program
states. This approach determines an over-approximate set of
interfering actions, and it is directly compatible with state
matching. On the other hand, it has limited precision because
it uses a static pointer analysis that cannot distinguish among
dynamic heap objects allocated at the same code location.

We present a new hybrid POR algorithm that builds upon
dynamic POR [5] and the hybrid field access analysis [12],
combining their advantages and addressing their limitations.
The main idea behind the proposed algorithm is the usage
of under-approximate dynamic points-to and determinacy in-
formation for local variables, which is iteratively refined. We
use the definition of determinacy by Schaefer et al. [14],
which intuitively says that a given variable is determinate at a
particular code location if it always has the same value every
time program execution reaches the location. An informal

141

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

overview of the hybrid POR algorithm follows.
The state space traversal procedure augmented with our

hybrid POR works in a similar way to dynamic POR. It starts
by exploring an arbitrary execution trace, and on-the-fly inserts
new thread choices at field accesses that occur on the trace and
are deemed to be interfering. Two accesses to the same field
f are interfering if (i) they are performed by different threads,
(ii) they may target the same dynamic heap object, and (iii) at
least one of them is a write. Like in the dynamic POR, every
new choice corresponds to additional thread interleavings that
must be explored eventually. Another important feature of the
proposed algorithm is compatibility with state matching, which
is needed to support cyclic state spaces.

Hybrid POR recognizes interfering field accesses based on
(i) the results of the hybrid field access analysis and (ii) the
dynamic points-to and determinacy information. Execution
traces are processed by dynamic analysis that tracks field
accesses on heap objects. When processing a field access, our
hybrid POR algorithm performs the following three steps:

1) It retrieves the dynamic concrete value of the local
variable through which the field access was performed,
and updates the points-to and determinacy information to
reflect the concrete value (i.e., a dynamic heap object).

2) Then it queries the hybrid field access analysis and the
dynamic points-to information to find whether there may
be a future access to the same field on the same dynamic
heap object — in that case, the current field access is
marked as interfering with the future one and a new
thread choice is created.

3) Finally, for every previous field access on the current
trace, our algorithm checks whether the previous access
may be interfering with the current field access according
to the updated points-to and determinacy information —
additional thread choices may be created in this way.

We illustrate the main steps of hybrid POR using the
program in Figure 1. It involves two threads that perform field
accesses on shared objects. Let us assume that the execution
trace read o.f ; write p.g ; read q.h ; write o.f is explored first.
Hybrid POR detects interference between the read access to
o.f in thread T1 and the subsequent write in T2 just before
execution of the write, when the dynamic value of the variable
o is added to its points-to set and previous field accesses on
the trace are inspected. A new thread choice is added at the
read access in T1. The second explored trace is read q.h ;
write o.f ; read o.f ; write p.g. In this case, the interference is
discovered already before the write to o.f, which precedes all
other accesses to o.f on this trace, because the points-to sets
of all variables are already non-empty and thus the hybrid
analysis can identify the future interfering read access.

The key feature of our algorithm is that the initial under-
approximation of points-to and determinacy information is
very coarse — every variable of a reference type is assumed to
be determinate and to have an empty points-to set. However,
as more and more execution traces are explored during the
state space traversal, the under-approximation is gradually
refined to cover the possible behavior of a program under

read o.f ; read q.h ;
write p.g write o.f

T1 T2

Fig. 1. Example program

different schedules. The dynamically computed points-to set
and determinacy status for each reference variable enables the
hybrid field access analysis to provide precise information
about the future behavior of each thread, and that in turn
enables the hybrid POR to detect real interference between
field accesses in different threads very precisely.

A run of the state space traversal procedure terminates when
there are no unexplored thread choices and interleavings left.
Then, iterative refinement of the points-to and determinacy
information must have reached a fixed point, and results
of the hybrid analysis together with the dynamic points-to
information soundly over-approximate the set of field accesses
that may occur during the program execution under any thread
schedule. State space traversal with hybrid POR then covers
all interleavings of interfering actions. However, in general,
termination of the procedure is not guaranteed.

In addition to the limitations of existing approaches men-
tioned above, our rationale behind the hybrid POR algo-
rithm is based on partially-automated inspection of benchmark
programs (Section IV), where we analyzed the determinacy
status of variables through which field accesses are performed.
We discovered that, for many of the programs, there is a
quite high number (over 50%) of cases where such variables
are determinate at code locations that correspond to field
accesses. Our goal was to exploit this observation to optimize
verification of multithreaded programs, and also to enable
faster detection of real errors. Results of our experiments show
that usage of precise dynamic points-to sets and determinacy
information (1) eliminates many redundant thread choices and
(2) improves performance especially for large programs.

The rest of the paper is organized as follows. We provide
background definitions and an overview of the hybrid field
access analysis in Section II. Then, in Section III, we formally
define the hybrid POR algorithm and prove its soundness.
Section IV contains results of experiments with our implemen-
tation and their discussion. We compare the proposed approach
with related work in Section V, and then we conclude.

II. BACKGROUND

Program and state space. A program P consists of threads
t1, . . . , tn from the set T , where each thread executes actions
from the set A. Each action a ∈ A corresponds to a program
statement. Each state of the program is a snapshot of all
variables, heap objects, and threads at some point during its
execution. An atomic transition tr between two states is a
pair tr = (t, [a0, . . . , an]) of a thread t ∈ T and a sequence
of actions executed by t. The first action a0 in the sequence
is interfering and others must be independent. There can be
just one interfering action in any transition because a new
thread choice is created when the action to be executed next
is interfering. We assume that states are explicitly saved only

142

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

at transition boundaries, and therefore each visible state s
is associated with a choice ch over all threads runnable in
s. An execution trace e is a sequence (ti0 , a0), . . . , (tin , an)
of thread-action pairs. Each trace represents one thread in-
terleaving. Such definition of execution traces allows us to
identify, for each field access action a, the specific thread that
executed the action a — this information is needed to detect
interference. We also assume that the only source of non-
determinism in the program state space are thread scheduling
choices at interfering actions. Input data must be specified
explicitly in the source code.
Determinacy. In this paper, we extend the definition of deter-
minacy from [14], which applies only to sequential programs,
towards multiple threads. A variable v is determinate at a
program point p in the context of thread t, if v always has
the same value every time (1) execution reaches the point p
and (2) the thread t is active. Only the values assigned to v
in the scope of thread t are considered when the determinacy
status of v with respect to p and t has to be updated.
Hybrid field access analysis. The hybrid analysis of field ac-
cesses was introduced by Parı́zek and Lhoták [12]. It combines
static analysis with information taken on-the-fly from dynamic
program states. For each dynamic state s reached during the
traversal, and for each thread t in s, it computes an over-
approximation of the set of object fields possibly accessed by
t in the future on any execution path starting in s. Results of
the hybrid analysis are computed in two phases.

The first phase involves static analysis, which is run before
the state space traversal and computes only partial results. We
use a backward flow-sensitive and context-insensitive inter-
procedural data-flow analysis. For each point p in the code of
thread t, it provides information that cover the future behavior
of t only between the point p and return from the method
containing p (including nested method calls transitively).

The second phase is performed on-the-fly during the state
space traversal. Full results of the hybrid analysis are generated
on-demand, every time POR has to decide whether the current
field access is interfering with some other action. It is done
based on the knowledge of the dynamic call stack of each
thread. Let s be the current dynamic state just before execution
of a field access. The dynamic call stack of a thread t specifies
a sequence p0, p1, . . . , pn of program points, where p = p0
is the current program counter of thread t (in the top stack
frame), and pi, i > 0 is the point from which execution of t
would continue after return from the method associated with
the previous stack frame. When the hybrid analysis is queried
about the current point p of thread t in state s, it takes data
computed by the static analysis for each point pi, i = 0, . . . , n
on the dynamic call stack of t and merges all the data to get
the complete result for p in the context of the state s. The
result covers the future behavior of t after the point p, and
also the behavior of all child threads of t started after p.

A consequence of the usage of dynamic call stack is that
results of the whole hybrid analysis are fully context-sensitive
and therefore very precise. On the other hand, the results are
always valid only for the current dynamic state.

1 init : visited = ∅ ; pointsto = ∅ ; determinacy = ∅
2 exploreState (s0, ch0, [],∅)
3

4 procedure exploreState (s, ch, accs, hbo)
5 if s ∈ visited return
6 visited = visited ∪ s
7 for t ∈ getRunnableThreads (ch) do
8 (s′, accs ′, hbo′) = executeTransition (s, t, accs, hbo)
9 ch′ = createThreadChoice (s′)

10 exploreState (s′, ch′, accs ′, hbo′)
11 end for
12

13 procedure executeTransition (s, tc, accs, hbo)
14 ac = getNextAction (tc) // must be interfering
15 while ac 6= null do // not at the end of thread
16 s = executeAction (s, ac, tc)
17 if isErrorState (s) terminate
18 if isFieldAccess (ac) then
19 (vc, oc, fc, pc) = getFieldAccessInfo (ac, s)
20 accs = accs ⊕ (ac, tc)
21 extendDynPointstoSet (vc, oc, tc)
22 inspectPreviousAccesses (s, ac, tc, accs, hbo)
23 end if
24 hbo = updateHappensBeforeOrder (hbo, ac)
25 ac = getNextAction (tc)
26 if isInterferingAction (ac, tc, s) break
27 end while
28 return (s, accs, hbo)
29

30 procedure isInterferingAction (ac, tc, s)
31 if isFieldAccess (ac) then
32 for t ∈ getOtherThreads (s, tc) do
33 if existsFutureInterferingAccess (ac, tc, t, s) then
34 return true
35 // other kinds of actions
36 return false // default

Fig. 2. Algorithm for state space traversal with hybrid POR

III. HYBRID POR ALGORITHM

Figure 2 shows the core of the algorithm for state space
traversal combined with hybrid POR. Procedures that detect
interfering field accesses are defined in Figure 3. We present
a recursive definition of the algorithm because it allows us to
explain the key aspects of hybrid POR in a simple and clear
way — especially in comparison with an iterative encoding of
the algorithm that is more efficient (and therefore used by our
implementation) but also more intricate.
Core of the algorithm. The top-level procedure exploreState
drives the state space traversal and performs state matching.
When this recursive procedure is called for a state s that has
not been already visited during the traversal, it retrieves all
threads enabled in the choice ch associated with s (line 7) and
explores the next transition for each of the threads. Traversal
terminates immediately when it reaches an error state.

Three global data structures are used by the algorithm
— the set of visited states, the relation pointsto that cap-
tures dynamic points-to sets for variables, and the relation
determinacy that maintains the determinacy status of every
variable. Information stored in these data structures is pre-
served across all execution traces. Reading and updating of
the relations pointsto and determinacy are implemented by

143

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

37 procedure existsFutureInterferingAccess (ac, tc, t, s)
38 (vc, oc, fc, pc) = getFieldAccessInfo (ac, s)
39 for at ∈ getFutureFieldAccesses (t, s) do
40 if ¬(isInterferingAccess (ac, at) ∧ tc 6= t) continue
41 (vt, ft, pt) = getFieldAccessInfo (at)
42 if isDeterminate (vt, pt, t) then
43 ot = getSingleDynPointstoValue (vt, pt, t)
44 if oc = ot return true
45 else if // indeterminate variable
46 if oc ∈ getDynPointstoSet (vt, pt, t) return true
47 end if
48 end for
49 return false
50

51 procedure inspectPreviousAccesses (s, ac, tc, accs, hbo)
52 (vc, oc, fc, pc) = getFieldAccessInfo (ac, s)
53 for (at, t) ∈ accs do // previous accesses
54 if ¬(isInterferingAccess (ac, at) ∧ tc 6= t) continue
55 (vt, ft, pt) = getFieldAccessInfo (at)
56 ptt = getDynPointstoSet (vt, pt, t)
57 if oc ∈ ptt ∧ ¬isOrderedStrictly (hbo, at, ac) then
58 markInterferingAction (at)
59 end for

Fig. 3. Procedures that recognize interfering field accesses

auxiliary procedures isDeterminate, extendDynPointstoSet,
getDynPointstoSet, and getSingleDynPointstoValue. Both
points-to and determinacy information are always specific to a
tuple (v, p, t) of a variable v, a program point p, and a thread
t. It means that, like in the case of determinacy, the dynamic
points-to set for a variable v is defined only in the context of
a specific program point p and thread t.

In addition, our algorithm uses the data structures named
accs and hbo, which hold information specific to the currently
processed dynamic execution trace. The list accs contains all
the field access actions that were performed on the current
trace before the current state, and hbo captures the happens-
before ordering relation between actions. Both data structures
are needed for precise identification of pairs of interfering field
accesses, as we explain below in more detail.

The symbol tc in Figures 2 and 3 represents the currently
active thread. Symbols having the subscript c, such as ac and
fc, refer to information associated with the current thread tc
or with the current field access action. Analogously, symbols
having the subscript t refer to information associated with
some other thread that is represented by the symbol t.

A run of the algorithm starts with empty determinacy and
points-to relations (line 1) in order to satisfy the initial assump-
tion that (i) every variable is determinate and (ii) all possibly
concurrent accesses to the same field are performed through
variables that have disjoint points-to sets. This initial coarse
under-approximation is refined during the state space traversal,
and at every moment it reflects all the actions and traces
that were explored so far. The hybrid field access analysis
depends on the points-to and determinacy information. Both
the precision of the analysis and its coverage of possible future
behavior of program threads are improved during the run of the
algorithm based on the gradually refined under-approximation.

For each executed field access action ac, the algorithm
performs the following four steps (at lines 19-22):

1) Calls the auxiliary procedure getFieldAccessInfo to re-
trieve information about the field access: the variable vc
through which the access is performed, a dynamic heap
object oc to which vc points in the current dynamic state
s, the field name fc, and a program point pc.

2) Updates the list accs of field accesses that were already
performed on the current execution trace.

3) Adds the heap object oc into the points-to set of the
variable vc, and updates the determinacy information for
vc based on the size of its points-to set. The variable vc
remains determinate only if the size is 0 or 1.

4) Inspects all the previous field accesses on the current trace
in order to detect additional pairs of interfering actions.
We provide more details about this step later.

We use two variants of the function getFieldAccessInfo. The
dynamic heap object is returned as an element of the tuple only
by the variant that takes the current state s as an argument.

The happens-before ordering relation is updated for each
executed action (line 24). It has to reflect also synchronization
actions that may block or release some thread.

A transition ends when the next action ac to be executed
in thread tc is interfering with some other action, because
then a new thread choice has to be created. The main part
of the corresponding logic is implemented by the procedure
isInterferingAction. For every thread other than the current
one (tc), it calls another procedure that looks for interfering
future field accesses (line 33). If the action ac is a field access,
and some thread t may in the future access the same field of
the same dynamic heap object, then ac is interfering. Similar
checks have to be done for all kinds of actions.
Detection of interfering field accesses. The procedure
existsFutureInterferingAccess queries the hybrid field access
analysis for the current program point in thread t (line 42),
and inspects the results to find whether some of the possible
future accesses by thread t may be interfering with the current
field access action ac. For each interfering future access, the
algorithm queries the points-to set and determinacy status of
the respective variable vt at the point pt in thread t. It has to
decide whether one of the following two conditions holds.
(A) The variable vt is determinate, and its points-to set has

a single element ot that is equal to the target object oc
of the currently processed field access ac.

(B) The variable vt is not determinate, which means it may
point to different objects at distinct execution traces, and
some element of the points-to set of vt is equal to oc.

If one of the conditions is true then the current field access
action ac in the active thread tc may really interfere with the
future action at on some thread interleaving. Note also that
the condition A does not hold for all determinate variables,
because the points-to set of some variable can be empty as a
consequence of the initial under-approximation.

After each update of the dynamic points-to sets (line 21),
where the target object oc of the current access ac is the

144

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

newly added element, it is necessary to check all the previous
field accesses on the current trace and compare them with ac,
because some new pairs of interfering actions may be discov-
ered. This is done in the procedure inspectPreviousAccesses,
using an approach very similar to the original dynamic POR
algorithm [5] (which is based on vector clocks). For each
possibly intefering previous access at on the current trace,
the procedure retrieves the dynamic points-to set ptt for the
respective variable vt and checks presence of oc in the set. If
oc is in ptt and there is not a strict happens-before ordering
between the field accesses in question, then the action at has
to be marked as interfering with ac. The corresponding thread
choice will be added later during the state space traversal.

Our hybrid POR algorithm uses the happens-before ordering
relation in the same way (and for the same purpose) as the
original approach to dynamic POR [5]. That is, to avoid iden-
tifying some pairs of field accesses spuriously as interfering,
when only a single interleaving of the actions is possible due
to thread synchronization. A pair (ai, aj) of interfering field
accesses, where i < j, meaning that ai precedes aj on the
current trace, is strictly ordered according to the happens-
before relation if the following two conditions hold:

1) There is an action ak, i < k < j, that is in the happens-
before relation with ai or with some action following ai.

2) Both actions ak and aj are executed by the same thread
that is different from the thread executing ai.

If both conditions hold, then ai must happen strictly before
aj with respect to the ordering relation for the current trace.
A thread choice at ai can be soundly avoided because actions
ai and aj cannot be interleaved the other way in this context.

The main benefit of the dynamic points-to and determinacy
information is that hybrid POR can detect interference between
field accesses very precisely with respect to (i) possible future
behavior of program threads and (ii) previous accesses on the
current trace. Usage of the under-approximate dynamic points-
to sets enables the hybrid field access analysis to provide much
more precise results than with a static pointer analysis.

A. Soundness and Termination

Theorem 1. The proposed algorithm for state space traversal
with hybrid POR terminates either (A) when it reaches an
error state or (B) when all possible distinct interleavings of
interfering actions in concurrent threads have been explored.

Proof. The first condition (A) is trivally satisfied by the call
of the procedure isErrorState at line 17 in Figure 2, so we
focus on the second condition (B) in our proof. We need
to consider only distinct interleavings of interfering actions,
because execution traces that differ only in the order of
independent actions yield equivalent observable behavior. To
satisfy the condition B, our algorithm has to (1) identify all
pairs of interfering field accesses, (2) add a new thread choice
to every interfering action, and (3) explore all thread choices
in the state space. We show in the next few paragraphs that all
three tasks are performed in a sound manner by the algorithm.

For each field access ac, all interfering actions are detected
by combination of the hybrid analysis with the inspection of
previous accesses. The hybrid analysis alone may fail to detect
some future accesses interfering with ac because of the under-
approximate points-to sets. Let at be such a future access.
Interference between ac and at will be detected when at is
executed, because the target dynamic object of at becomes
known at that moment and ac will then represent a previous
access with respect to at. A complete dynamic information
about every previous action on the current trace is available.

Regarding thread choices at interfering actions, we distin-
guish two cases. If the algorithm determines that the current
field access action ac in the active thread tc is interfering with
some possible future accesses, then a new choice is created
at the current action (line 9 in the procedure exploreState)
and its exploration starts immediately. The process is more
complicated when some previous field access at on the current
trace is newly identified as interfering with ac. A correspond-
ing thread choice will be created and explored later just when
the state space traversal procedure backtracks over the action
at. We omitted the respective statements — for adding new
choices retroactively to previous accesses on the current trace
— from the pseudo-code in Figure 2, because this aspect of
hybrid POR cannot be encoded in the recursive definition of
the algorithm in a simple way.

It follows from the discussion above that a new choice
is created at a field access action a iff there is some other
access interfering with a. For each pair (ai, aj) of interfer-
ing accesses, existence of the choice guarantees that both
interleavings of ai and aj will be explored eventually. The
state space traversal procedure explores all transitions enabled
at each choice ch, and therefore backtracks from a state s
associated with ch only when the whole state space fragment
with s as the root has been processed. Consequently, no thread
interleaving will be omitted during the traversal.

IV. EVALUATION

We implemented our hybrid POR algorithm in Java Path-
finder (JPF) [21], which is a framework for verification and
analysis of Java programs. JPF is responsible for traversal of
the program state space and for execution of Java bytecode
instructions. In order to support decisions about thread choices,
we created a non-standard interpreter of bytecode instructions
for accesses to object fields. Our interpreter queries results
of the hybrid field access analysis and the data structures
maintained by the algorithm. We used the WALA library [23]
for static analysis and JPF API to retrieve information from the
dynamic program states. One custom listener for JPF collects
the dynamic points-to sets, and another listener computes the
happens-before ordering relation.

The complete source code of our implementation, together
with benchmark programs and scripts needed to run all exper-
iments, is available at http://d3s.mff.cuni.cz/projects/formal
methods/jpf-static/fmcad16.html.

The goal of our experimental evaluation was to compare the
performance and scalability of hybrid POR against selected

145

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

other approaches to POR. For each approach, we wanted to
find how much time it takes to explore the whole state space of
individual benchmarks, and how fast it can detect concurrency
errors. We consider POR based on heap reachability [4] and
the original dynamic POR [5], both combined with stateful
traversal of the program state space. While POR based on heap
reachability is supported by JPF for a long time, we created our
own implementation of dynamic POR. Note that combination
of the original dynamic POR with stateful search addresses
the first limitation mentioned in Section I, i.e. the need to
explore each trace until the end state — details are provided
in Section V. We used this variant of dynamic POR in our
experiments in order to perform a fair comparison, because
other approaches involve state matching too. Moreover, the
original dynamic POR [5] (that performs a stateless search)
would not scale at all to most of our larger benchmarks, as
we found at the initial stage of this research project.
Benchmarks. We performed experiments on 16 multithreaded
Java programs, mostly from widely known benchmark suites
(Java Grande [19], CTC [18], Inspect [16], and pjbench [22]).
Other programs, such as jPapaBench [20] and Simple JBB,
were used in our previous work and recent experimental
studies. The smallest benchmark in our set is Prod-Cons with
130 lines of source code and 2 threads, while the most complex
one is jPapaBench with 4500 lines of code and 7 threads.
Experiments. We evaluated four configurations of POR in our
experiments: (1) POR based on heap reachability, (2) POR
based on heap reachability together with hybrid analysis of
field accesses, (3) dynamic POR with state matching, and (4)
hybrid POR. In tables with results, we use a short name ”Heap
Reach” for the first configuration in the list and a short name
”HR + fields” for the second configuration (which corresponds
to the technique proposed by Parı́zek and Lhoták in [12]).

For every experiment, we report (1) the number of thread
choices created by JPF during the state space traversal, which
we use to assess precision of POR techniques, and (2) the
total running time of JPF (with static analysis), which indicates
performance and scalability of the techniques.

Table I shows results for the first set of experiments, where
we configured JPF to explore the whole state space of each
benchmark, i.e. we disabled the check for error states. We used
the time limit of 12 hours and memory limit of 20 GB.

Error detection performance of the POR techniques is
reported in Table II. For the purpose of these experiments,
we selected only those benchmarks from our set that already
contained some concurrency errors (e.g., race conditions). We
used the time limit of 1 hour only in this case.
Discussion. In the case of complete traversal of a program
state space (Table I), the results are mixed. Hybrid POR
achieves better precision and performance than other ap-
proaches for 5 benchmarks out of 15 — Cache4j, Alarm
Clock, RAX Extended, Rep Workers, and TSP. The biggest
improvement was achieved for Cache4j, where hybrid POR
is faster than the second-best configuration ”HR + fields” by
the factor of 3.1. Dynamic POR achieves better precision and
performance than other techniques for 2 benchmarks, Simple

JBB and Linked List. For three benchmarks — CoCoME,
Crypt, and SOR — hybrid POR and dynamic POR have the
same precision, but dynamic POR yields better performance.

Results are not clearly in favor of one technique in the case
of remaining five benchmarks. Hybrid POR is more precise
than ”HR + fields” for CRE Demo and Daisy, but it has the
same or worse performance. Dynamic POR achieves the best
precision for CRE Demo and Elevator, but it is slower than
hybrid POR in both cases. On the other hand, hybrid POR
is the most precise technique for Prod-Cons, while dynamic
POR is the fastest. The results for Elevator also highlight the
limitations of dynamic POR that we discussed in Section I —
it creates less thread choices than hybrid POR, but it is slower
by the factor of 2.2.

All the POR techniques failed on jPapaBench because of:
(1) a high number of field accesses at execution traces, (2)
the length of transitions (JPF must interpret all instructions),
and (3) the size of program states which must be processed by
the state matching procedure. Over 1.5 million thread choices
were created in the state space of jPapaBench until the timeout.
In addition, dynamic POR run out of the time limit also for
Daisy, Cache4j, and Rep Workers. The memory limit was
sufficiently large for all our experiments. However, especially
in the case of Daisy and jPapaBench, memory consumption
was quite high and therefore a large part of the running time
of JPF was spent by garbage collection.

When considering the search for errors (Table II), state
space traversal with hybrid POR is faster than competing
techniques for 4 benchmarks out of 7 — Elevator, jPapaBench,
Rep Workers, and QSort MT. The biggest improvement by the
factor of 5.7 was achieved for jPapaBench, which is the most
complex benchmark in our set. Although none of the POR
techniques can explore the whole state space of jPapaBench,
an error state was reached quite fast with hybrid POR.

Dynamic POR detects an error faster in the case of 3
benchmarks out of 7. For one of them, Alarm Clock, dynamic
POR is faster than hybrid POR but it creates more thread
choices. It failed to detect any error in jPapaBench before the
time limit. In the case of LinkedList, hybrid POR creates much
more thread choices because of the under-approximate points-
to analysis — more program states and field accesses have to
be explored before the points-to analysis is refined enough to
identify a data race. Results for other benchmarks nevertheless
show that such ”anomaly” is quite rare.

The hybrid POR algorithm has a certain overhead, when
compared to dynamic POR, because it runs the static analysis
upfront and performs numerous queries of the hybrid analysis
results on-the-fly. This overhead is clearly visible on smaller
benchmarks, such as Prod-Cons, for which hybrid POR creates
less thread choices but its total running time is higher. Just few
seconds are taken by the static analysis for each benchmark.

To summarize, we have made the following two main
observations based on our experimental results:

• There is not an obvious winner in the comparison be-
tween hybrid POR and dynamic POR, as each is better
than the other roughly for a half of the benchmarks.

146

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

TABLE I
EXPERIMENTAL RESULTS: COMPLETE STATE SPACE TRAVERSAL

Heap Reach HR + fields dynamic POR hybrid POR
benchmark choices time choices time choices time choices time

CRE Demo 30942 50 s 2476 9 s 2015 11 s 2086 9 s
CoCoME 81150 160 s 23880 59 s 72 3 s 72 5 s
Daisy 28436002 15405 s 6647236 4574 s - 6028026 7787 s
Crypt 4993 3 s 9 2 s 9 1 s 9 2 s
Elevator 10167560 7617 s 2731316 1954 s 429466 1288 s 461996 585 s
Cache4j 11716552 7336 s 8615847 5613 s - 1970110 1785 s
Simple JBB 575519 1768 s 277599 959 s 602 31 s 5648 81 s
jPapaBench - - - -
Alarm Clock 531463 432 s 141138 117 s 109018 188 s 48166 47 s
Linked List 5919 3 s 1969 5 s 283 1 s 1422 5 s
Prod-Cons 6410 4 s 2532 6 s 592 1 s 356 4 s
RAX Extended 26346 18 s 13864 13 s 11315 125 s 3519 7 s
Rep Workers 9810966 6850 s 1653037 1264 s - 739418 584 s
SOR 222129 122 s 86193 72 s 135 2 s 135 4 s
TSP 35273 591 s 9285 154 s 101 65 s 86 37 s

TABLE II
EXPERIMENTAL RESULTS: SEARCH FOR CONCURRENCY ERRORS

Heap Reach HR + fields dynamic POR Hybrid POR
benchmark choices time choices time choices time choices time

Elevator 27053 12 s 9123 7 s 119797 285 s 1156 5 s
jPapaBench 230709 147 s 48337 40 s - 262 7 s
Alarm Clock 428 1 s 161 3 s 167 1 s 65 3 s
Linked List 1341 1 s 270 3 s 80 1 s 1290 6 s
RAX Extended 1315 1 s 22 2 s 18 1 s 20 3 s
Rep Workers 6685 6 s 1522 5 s 4516 6 s 1054 4 s
QSort MT 3221 2 s 959 3 s - 274 2 s

• Hybrid POR achieves better performance than purely dy-
namic POR on benchmarks that have larger state spaces,
such as Cache4j and Daisy, and it can successfully verify
3 out of the 4 benchmarks at which dynamic POR fails.

State space traversal with hybrid POR detects errors very fast,
and it can also explore all distinct interleavings of interfering
actions in a reasonable time. By manual inspection of the
execution logs of JPF, we found that the precision achieved
by hybrid POR is largely due to the fact that our algorithm
maintains the dynamic points-to sets and determinacy informa-
tion separately for each program point and each thread. Many
redundant thread choices are avoided in this way.

Dynamic POR is less precise than hybrid POR for some
benchmarks (e.g., Alarm Clock and Prod-Cons) because it can
make a redundant thread choice at instruction i that accesses an
object o in the following situation: (1) there is an instruction j
in another thread that accesses o, (2) j was executed before i,
and (3) the object o is not reachable by multiple threads at the
time j was executed. In the case of hybrid POR, the hybrid
analysis marks the access by j as thread-local, and therefore
enables more precise handling of situations like this.

Now we discuss the performance differences between hy-
brid POR and dynamic POR in either direction. An advantage
of hybrid POR is that it needs to check much less pairs of
visible field accesses to detect the interfering ones (i.e., to
compute the full independence relation). When the hybrid
analysis is queried at a dynamic state, it efficiently identifies
all future field accesses that cannot interfere with the current

action. For those accesses, hybrid POR can safely omit checks
of interference also during the inspection of previous actions
on the current trace (line 54 in Figure 3). On the other hand,
the purely dynamic POR has to consider all the previous
accesses. The difference in the number of pairs of visible
accesses that must be checked is quite significant for programs
with large state spaces and long execution traces. It is mainly
for this reason that hybrid POR achieves better performance on
larger benchmarks. On the other hand, for some benchmarks,
performance of hybrid POR suffers (i) from imprecision of
the underlying static analysis and (ii) from the need to refine
the under-approximate information in multiple iterations.

V. RELATED WORK

Many approaches to POR have already been developed
in the context of model checking and concurrency testing.
Notable examples are the original dynamic POR [5] and
Cartesian POR [8]. Furthermore, Abdulla et al. [1] recently
proposed an optimal algorithm for dynamic POR.

The goal of all POR techniques is to limit the number of
thread choices on every execution trace. In addition, most POR
algorithms try to minimize the number of transitions to be
explored from each thread choice, using the concepts of per-
sistent sets and sleep sets [6]. Our hybrid POR minimizes just
the number of thread choices in the state space, i.e. all enabled
transitions are explored at each thread choice. Cartesian POR
is the most closely related approach in this respect.

The algorithm for dynamic POR by Flanagan and Gode-
froid [5] works only with stateless model checking. It does not

147

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

handle cyclic state spaces, and performs redundant computa-
tion when re-exploring already visited states. Other researchers
designed extensions of this algorithm to address its limitations.
Yang et al. [17] combined dynamic POR with stateful search,
and Thomson et al. [15] proposed the lazy happens-before
relation that enables dynamic POR to avoid redundant explo-
ration of some thread interleavings for programs with coarse-
grained locking. We adapted the ideas of Yang et al. [17] in
our implementation of dynamic POR in JPF. Upon reaching
an already visited state, the algorithm just has to consider field
accesses that could occur in the rest of the program execution
after the state. The necessary information about possible future
field accesses is collected at backtracking steps.

Hybrid POR is directly compatible with state matching.
Unlike the approach of Yang et al. [17], it does not have to
keep track of field accesses that may occur after the given
state. The hybrid field access analysis provides the information
about future behavior of each thread.

We are aware of several other techniques involving POR
that combine static and dynamic analysis [3] [9]. A common
pattern behind them is the computation of an approximate
dependency relation (a set of interfering actions) by static
analysis, followed by (or interleaved with) the usage of dy-
namic analysis to improve precision based on information
taken from dynamic program states and execution traces. For
example, Kusano and Wang [9] proposed a framework that
combines dynamic POR with a slicing algorithm in order
to focus the search on interfering accesses that may cause
assertion violations or deadlocks. The slicing algorithm uses
static analysis to identify data dependencies and dynamic
analysis to compute a precise aliasing information on-the-fly.

Our approach also follows the recent trend of verification
algorithms based on iteratively refined under-approximation
that captures (prefixes of) feasible execution traces of a
given program. This large group of techniques includes, for
example, context-bounded search with iterative increase of the
maximal number of preemptions [11], and lazy abstraction
with refinement based on interpolants [10]. There are even
algorithms, such as UFO [2] and SMASH [7], that combine
under-approximation with over-approximation and iteratively
refine both abstractions until an error is found or the program
is proven safe. The motivation behind such techniques is the
detection of real errors in a practical time. When there are
sufficient resources, use of the iterative refinement enables the
algorithms to gradually increase coverage of the program state
space, and to eventually explore all the execution traces.

VI. CONCLUSION

Our main contribution presented in this paper is the hybrid
POR algorithm and its usage in a state space traversal proce-
dure. Hybrid POR combines static analysis with data taken on-
the-fly from dynamic program states, with iteratively refined
under-approximate dynamic points-to and determinacy infor-
mation, and also with the happens-before ordering relation.

Results of our experiments show that, for programs with
larger state spaces, hybrid POR outperforms all the other

approaches that we considered. The ability to look ahead by
querying the hybrid field access analysis is the main reason
behind good performance of hybrid POR. On the other hand,
there is a certain overhead associated with the hybrid field
access analysis. Hybrid POR is slower than dynamic POR for
small benchmarks due to the overhead, but it still achieves
good running times.

In the future, we would like to adapt the lazy happens-
before relation [15] in order to improve the precision and
performance of hybrid POR even further. We also plan to
investigate possible incremental approaches to POR.

ACKNOWLEDGEMENTS.

This work was partially supported by the Grant Agency of
the Czech Republic project 14-11384S and Charles University
institutional funding SVV-2016-260331.

REFERENCES

[1] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas. Optimal Dynamic
Partial Order Reduction. Proceedings of POPL 2014, ACM.

[2] A. Albarghouthi, A. Gurfinkel, and M. Chechik. From Under-
Approximations to Over-Approximations and Back. Proceedings of
TACAS 2012, LNCS, vol. 7214.

[3] G. Brat and W. Visser. Combining Static Analysis and Model Checking
for Software Analysis. Proceedings of ASE 2001, IEEE.

[4] M. Dwyer, J. Hatcliff, Robby, and V. Ranganath. Exploiting Object
Escape and Locking Information in Partial-Order Reductions for Con-
current Object-Oriented Programs. Formal Methods in System Design,
25(2-3), 2004.

[5] C. Flanagan and P. Godefroid. Dynamic Partial-Order Reduction for
Model Checking Software. Proceedings of POPL 2005, ACM.

[6] P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems. LNCS, vol. 1032, 1996.

[7] P. Godefroid, A. Nori, S.K. Rajamani, and S. Tetali. Compositional
May-Must Program Analysis: Unleashing the Power of Alternation.
Proceedings of POPL 2010, ACM.

[8] G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv. Cartesian Partial-Order
Reduction. Proceedings of SPIN 2007, LNCS, vol. 4595.

[9] M. Kusano and C. Wang. Assertion Guided Abstraction: A Cooperative
Optimization for Dynamic Partial Order Reduction. Proceedings of ASE
2014, ACM.

[10] K. McMillan. Lazy Abstraction with Interpolants. Proceedings of CAV
2006, LNCS, vol. 4144.

[11] M. Musuvathi and S. Qadeer. Iterative Context Bounding for Systematic
Testing of Multithreaded Programs. Proceedings of PLDI 2007, ACM.

[12] P. Parı́zek and O. Lhoták. Identifying Future Field Accesses in Exhaus-
tive State Space Traversal. Proceedings of ASE 2011, IEEE.

[13] P. Parı́zek and O. Lhoták. Model Checking of Concurrent Programs with
Static Analysis of Field Accesses. Sci. Comput. Programm., 98, 2015.

[14] M. Schaefer, M. Sridharan, J. Dolby, and F. Tip. Dynamic Determinacy
Analysis. Proceedings of PLDI 2013, ACM.

[15] P. Thomson and A. Donaldson. The Lazy Happens-Before Relation:
Better Partial-Order Reduction for Systematic Concurrency Testing.
Proceedings of PPoPP 2015, ACM.

[16] Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A Runtime Model
Checker for Multithreaded C Programs. Technical Report UUCS-08-004,
University of Utah, 2008.

[17] Y. Yang, X. Chen, G. Gopalakrishnan, and R.M. Kirby. Efficient Stateful
Dynamic Partial Order Reduction. Proc. of SPIN 2008, LNCS, vol. 5156.

[18] Concurrency Tool Comparison repository, https://facwiki.cs.byu.edu/
vv-lab/index.php/Concurrency Tool Comparison

[19] The Java Grande Forum Benchmark Suite, https://www2.epcc.ed.ac.uk/
computing/research activities/java grande/index 1.html

[20] jPapaBench, http://d3s.mff.cuni.cz/∼malohlava/projects/jpapabench/
[21] Java Pathfinder, http://babelfish.arc.nasa.gov/trac/jpf
[22] pjbench: Parallel Java Benchmarks, https://bitbucket.org/pag-lab/pjbench
[23] WALA: T.J. Watson Libraries for Analysis, http://wala.sourceforge.net/

148

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Formal Verification of Division and Square Root
Implementations, an Oracle Report

David L. Rager, Jo Ebergen, Dmitry Nadezhin, and Austin Lee
Oracle

Email: {david.rager,jo.ebergen,dmitry.nadezhin,austin.lee}@oracle.com

Cuong Kim Chau and Ben Selfridge
The University of Texas at Austin

Email: {ckcuong,benself}@cs.utexas.edu

Abstract—Oracle has developed new implementations for in-
teger division and floating-point division and square root. Our
task was to verify the correctness of the new designs by formally
proving equivalence between the RTL for these designs and
their specifications in the SPARC ISA and in the IEEE 754
Standard on floating-point arithmetic. Performing such verifi-
cations involved many steps, which we describe in this paper.
The contributions of this paper are two-fold. First, this paper
describes Oracle’s methodology for abstracting from low-level
Verilog to a high-level algorithm using the latest open-source
tools. Second, this paper describes the use of interval arithmetic
in the error analysis of each algorithm. Our verification efforts
proved that the designs had no errors, resulted in various
improvements, and reduced the lookup tables by approximately
50% (division) and 75% (square root).

I. I NTRODUCTION

Oracle has developed new implementations for integer
division and floating-point division and square root. The
Oracle implementations are a variant of the Goldschmidt
algorithm [1], [2]. Our task was to verify the correctness of
these new implementations described in low-level Verilog by
showing bit-for-bit equivalence with the specification in the
SPARC ISA and the IEEE 754 Standard on floating-point
arithmetic. Performing such verifications involved many steps:

• Parsing and semantics– Parsing the Verilog and bring-
ing the design into the ACL2 System, a programming
language and logic capable of reasoning about the im-
plementation,

• Algorithm extraction– Abstracting low-level bit-oriented
primitives, (e.g.,nands, nors, muxes, etc.) to higher-level
data types and mathematical operations like addition and
multiplication, representing an algorithm, and finally

• Algorithm verification– Proving that the algorithms sat-
isfy the SPARC ISA and IEEE 754 specifications.

This paper describes the techniques we used for performing
each of the above steps. Figure 1 shows the three levels of
abstraction that we used in our verification steps.

For algorithm extraction, we used the primitives afforded
to us by the ACL2 software stack to abstract away the notion
of time and think about the circuit as if it were a loop-free
combinational circuit.

For verifying the algorithm, we mainly used ACL2’s proof
engine. The error analysis was the crucial part in this step –
we used interval arithmetic to describe the size of the error in
the final approximation in terms of errors introduced at each

Verilog

implementation

a [63:0]

b [63:0]

opcode [2:0]

round-mode [1:0]

result [63:0]

float-exceptions [4:0]

int-overflow

Verilog

Goldschmidt

algorithmACL2 Model

AbstractionIEEE754 / IDivACL2 Spec

Fig. 1. Abstractions Necessary to Prove IEEE754 Compliance

step in the algorithm. We were able to significantly reduce the
lookup table sizes using this approach.

II. RELATED WORK

In 1998 at AMD, Russinoff was the first to prove that
a Goldschmidt implementation of floating-point division and
square root satisfies the IEEE 754 Standard using ACL2 [3].
Our work differs from the AMD effort in two ways. First,
Russinoff started from a high-level program translated to a
circuit implementation, somewhat similar to our algorithm
description, instead of the Verilog. Second, our error analysis
uses interval arithmetic and is more general, since the same
techniques can be applied to many other implementations.

O’Leary et al. were one of the first to verify a com-
plete floating-point unit down to the gate-level using in-
house tools [4], a formidable effort. Our effort is similar in
goal, but we verify very different division and square-root
implementations and use the latest open-source tools.

Centaur developed many of the tools we use, and they have
successfully applied them to verify large adder units [5]. We
extended Centaur’s work by applying their tools to deeper
pipelines [6].

III. T OOL CHOICE

We had the following tool requirements for our work.
First, we wanted to make as few assumptions as reasonably
possible, and we wanted what we did to be mechanically
checked. Thus, our first requirement was that the chosen tool
needed to be able to parse and reason directly about the
Verilog – not just an abstraction of the Verilog that we created
and maintained by hand. Second, we required an analytical
framework capable of soundly converting logical primitives

149

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

~= == ==

(1) GL (BDDs + SAT)

==

Fig. 2. Techniques for Circuit Abstraction in ACL2

like nands andnors into higher-level mathematical concepts
like M -bit multiplication. Third, the analytical framework
needed to be able to formally express the IEEE 754 Standard.
Finally, the analytical framework needed to be able to reason
about and prove that our implementation of the Goldschmidt
algorithm, consisting of operations likeM -bit multiplication,
indeed satisfies the formalized IEEE 754 Standard.

For our verification effort, we chose the ACL2 programming
language, theorem prover, and tool suite [5], [7], because it
met each of the above criteria and because of its reputation of
scaling to industrial-strength problems.

IV. PARSING AND SEMANTICS

As mentioned above, we used the ACL2 System and Li-
braries [7] to parse the circuit and determine the circuit’s
semantics. Specifically, we used the VL Parser to parse the
Verilog, and we used Esim to determine the semantics of the
resulting parse trees. We used the Symbolic Test Vector (STV)
framework to initialize values of the circuit and provide the
timing abstractions necessary to reason about values that the
circuit receives as input and returns as output. By using such
an approach, we were able to abstract away the notion of
time and think about the circuit as if it were a loop-free
combinational circuit. This STV methodology is similar to
Symbolic Trajectory Evaluation [8], [9], in that one chooses
a time to override a set of wires’ values and examines a wire
later in the logic path for its symbolic value, expressed in
terms of those overridden inputs. Through the STV tools we
brought the Verilog design into the logic of the theorem prover
as an ACL2 expression on 4-valued Boolean operations.

V. A LGORITHM EXTRACTION

The Goldschmidt algorithm consists of a repetition of mul-
tiplications, additions, and bitwise complements. We wanted
to be able to reason in terms of these high-level primitives,
as opposed to reasoning aboutnand’s and nor’s. As such,
we proved that various compositions of low-level operations
implement these higher-level mathematical operations. We
found GL, a system for reasoning about finite ACL2 objects, to
be helpful in many of these proofs. But GL, which uses BDDs
and SAT solvers under the hood, could not automatically prove
all of the necessary abstractions. For example, GL could not
automatically prove that our composition of Booth Encoders
and CSA trees correctly implemented multiplication.

Extracting the algorithms from the Verilog involved four
types of steps, shown in Figure 2.

1) Initial Abstractions:The first step was to create abstrac-
tions for low-level Verilog components, for example a selec-
tion of Booth Encoders and CSA trees. Once we were able to
formulate an applicable specification, we were able to verify
that specification automatically with the assistance of GL and
underlying support tools like BDDs and SAT Solvers. We
emphasize that the choice of abstraction here can be crucial.
For example, a simple carry-save adder with inputsa, b, and
cin can be specified by two functionssum = f(a, b, cin) and
carry = g(a, b, cin). For our efforts it turned out to save a lot
of work and complexity to specify just the relation that must
hold betweensum andcarry: 2∗ carry+sum = a+ b+ cin.

2) Model the Interconnect:The second step was to model
the connections between the black-boxed components in the
theorem prover logic. We call these connections thelogical
interconnect. Since we created the logical interconnect by
hand, this interconnect was only hypothetically equivalent to
the Verilog interconnect. We proved the equivalence between
the two interconnects in Step 4. Figure 2 shows the process
of creating the logical interconnect by hand in Transition (2).

3) Specify the Larger Component:The third step involved
using ACL2’s proof engine to show that the logical connec-
tions of the intermediate abstractions indeed resulted in a
higher-level specification. Industrial circuits tend to have many
optimizations and are shared among many implementations, so
often a simple specification likea*b is insufficient. Moreover,
as with Step 1, a well-chosen specification can reduce com-
plexity and save a lot of work. Transition (3) in Figure 2 shows
this step.

4) Verify the Interconnect:Finally, we verified that our
logical interconnect was the same as the Verilog interconnect.
Fortunately, GL is often capable of verifying that the inter-
connects match in an acceptable amount of time. The new
black-boxed specification is shown on the far right of Figure 2.

It is worth noting that we only performed Step 1 when lifting
the gates into low-level abstractions. Steps 2-4 were repeated
many times, as the black box that one obtains at the end of
Step 4 can serve as an input to Step 2 for a higher level of
abstraction. This process of repeated abstraction allowed us to
go from the low-level gate implementations to a presentation
of the algorithm in terms of* , +, bitwise-complements, and
other operations performed onM -bit operands.

150

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

VI. A LGORITHM VERIFICATION

Another big task was to show that the algorithms met the
IEEE 754 Standard and the SPARC ISA specification. For
these proofs, we applied some novel techniques to perform
the error analysis, the most critical part of the proof. In
this section, we explain the basic properties of our IEEE
754 specification and our error analysis. We only discuss
the error analysis for floating-point division. Square root and
integer division have a similar approach. Among the many
other omitted proof obligations are proving that the rounding,
exponents, and exceptions were implemented correctly. The
complete verification effort did not find any errors and led to
several simplifications in the algorithm and implementation.

A. An IEEE 754 Specification

In order to prove compliance with the IEEE 754 Standard
we needed to formalize the IEEE 754 Standard in ACL2. Our
formalization is written in ACL2 and

• specifies floating-point addition, multiplication, division,
square root, and the fused multiply-add operations,

• includes denormals, all special values (+/-0, +/-∞,
NaNs), and all exception flags,

• includes four rounding modes: round-to-nearest-even,
round-to-positive(or negative)-infinity, and round-to-zero,

• works for any positive number of exponent bits and any
positive number of trailing significand bits, and

• builds upon prior work, such as Russinoff’s RTL Li-
brary [10] and Centaur’s Bitops Library [7].

We validated our ACL2 specification against millions of test
vectors, consisting of both directed and “random” test vectors.

Our ACL2 formalization begins by converting each floating-
point number, except infinities and NaNs, to a rational number.
We then perform the math operation exactly using rational
numbers, and finally we convert the rational result back to the
proper precision using the specified rounding mode.

For most operations this ACL2 formalization was not a
problem, since most floating-point operations begin and end
with rationals. The result of a square root, however, can be
irrational, and ACL2 can only reason directly about rationals.
To accommodate this limitation, we defined the square root
as the limit of a sequence of rational numbers, where we stop
this sequence when rounding the exact square root yields the
same result as rounding the last number from the sequence.

B. The Goldschmidt Algorithm

The basic idea behind the Goldschmidt algorithm is as
follows. To computeA/B, the algorithm calculates a series
of factorsT andri, for i ≥ 0, such thatB ∗T ∗ r0 ∗ r1 ∗ r2 ∗ ...
converges to 1. ThenA ∗ T ∗ r0 ∗ r1 ∗ r2 ∗ ... converges to the
quotientA/B, because

A

B
=

A ∗ T ∗ r0 ∗ r1 ∗ r2 ∗ ..

B ∗ T ∗ r0 ∗ r1 ∗ r2 ∗ ..
→

A ∗ T ∗ r0 ∗ r1 ∗ r2 ∗ ..

1

We assume thatA, B ∈ [1, 2). The first factorT comes from
a table lookup and is an initial estimate of the reciprocal
1/B. All entries from the lookup table are in interval[0.5, 1].

The other factorsri are also easily computed by means of a
two’s complement of the denominatordi. Table I shows the
basic Goldschmidt algorithm for division with loop invariant
ni/di = A/B. The complete Goldschmidt algorithm continues

TABLE I
GOLDSCHMIDT ALGORITHM FOR DIVISION

T = table lookup(B);
d0 = B ∗ T ;
n0 = A ∗ T ;
r0 = 2 − d0;
for (int i = 0; i < MAX ; i++) {

di+1 = di ∗ ri;
ni+1 = ni ∗ ri;
ri+1 = 2 − di+1;

}
return nMAX ;

after the final multiplication by adding a constant tonMAX

and truncating the result to the proper precision yielding the
preliminary quotient plus guard bit, sayq. Then the exact
remainderA − q ∗ B is calculated, and the guard bit, sign of
the remainder, and sign of the result determine how to round
q. If the result,nMAX , is close enough to the exact quotient,
then rounding produces the correct result. In this paper we
focus on estimating the error innMAX . The calculation of the
sign of the remainder and rounding is standard.

C. Error Analysis

We express the error in the final result of the Goldschmidt
algorithm as a function of the error in the lookup table and
other errors introduced in the implementation. First we express
the error introduced by just the lookup table. Let the lookup
valueT be an approximation for1/B, whereT = 1/B−u/B.
The valueu/B is the absolute error in1/B, andu can be seen
as the relative error. The relative erroru ranges over a small
interval around 0, depending on the entry keys and entry values
of the lookup table.

Table II gives a sequence of statements from the Gold-
schmidt algorithm but now in terms ofu, the relative error
in the table lookup. Using the infinite Taylor series for

TABLE II
SYMBOLIC EXPRESSIONS FORdi, ni, ri , i ≥ 0

statement exact symbolic expression
d0 = B ∗ T = 1 − u
n0 = A ∗ T = A ∗ T
r0 = 2 − d0 = 1 + u

d1 = d0 ∗ r0 = 1 − u2

n1 = n0 ∗ r0 = A ∗ T ∗ (1 + u)
r1 = 2 − d1 = 1 + u2

n2 = n1 ∗ r1 = A ∗ T ∗ (1 + u + u2 + u3)
.. ..

A/B = A ∗ T/(1 − u), we can write the errorn2 − A/B
for |u| < 1 as

n2 − A/B = A ∗ T ∗ (−u4 − u5 − ...)

If, for a given ǫ, the lookup table is chosen such that
u ∈ [−ǫ, +ǫ], then the error(n2 − A/B) is in the interval
[−2ǫ

m

(1−|ǫ|) ,
+2ǫ

m

(1−|ǫ|)] with m = 4, where we usedA ∗ T < 2 for

151

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

any choice ofT . Because the value ofm doubles with each
iteration of the algorithm, the value ofni converges rapidly
to the quotientA/B.

D. Error Analysis and Finite Hardware Precision

The Goldschmidt algorithm introduces two more errors,
besides the erroru. First, each multiplication result, except
the last, is truncated from2M bits to M bits. Thus, each
multiplication introduces an error ofei ∈ [0, 2−M), where the
errorei can be different in each truncationi. For example,d0,
the result of a multiplication and a truncation, can be expressed
as d0 = 1 − u + ed0. Second, to implement the statement
2 − di, instead of using the two’s complement, we take the
simpler one’s complement. This simplification introduces a
fixed error of eps = 2(1−M). Thus r0 can be expressed as
r0 = 1 + u − ed0 − eps.

Following these changes we can express the final approxi-
mation as a polynomial in variablesu, A, T, edi, eni, eps for
i ≥ 0. This polynomial can be long, but it can be constructed
mechanically. Similarly, we can express the error in the final
approximation as a polynomial in the same variables where
we bound the infinite sum as before. Because each of these
variables ranges over a small interval, we can bound the error
with known methods from interval arithmetic [11].

The symbolic expressions for the error in the final approxi-
mation and the use of interval arithmetic allowed us to reduce
the sizes of the lookup tables. The lookup table for division
was reduced by approximately 50%, and the lookup table for
square root was reduced by approximately 75%.

To perform and mechanically verify the error analysis, we
needed various tools. We first needed a tool to generate the
multivariate polynomials for each operation. We also needed
a tool to verify the interval arithmetic when given multivariate
polynomials and intervals for each of the variables. We first
experimented with these tools in Java, where we found the
proper entries in the lookup table. We then implemented these
tools in an ACL2 library so that we could not only compute
the polynomials but also verify our error analysis.

VII. B USINESSDECISIONS

As a product group we were constrained to a timeline and
had to make many assumptions. One decision concerned the
initialization of the unit. As is common in industry, Oracle
performs a power-on and reset process that sets all registers
to zero or one as appropriate. We instead initialized the circuit
by flushing the pipeline of the floating-point unit. The primary
benefit of this approach is that our simulation is more easily
maintained, but a secondary benefit is that our proofs are not
relying upon a correct power-on and reset sequence.

We also made a decision to focus on proving the correctness
of exactly one floating-point or integer division operation
that immediately follows a flush. Verifying the control logic
would have significantly increased our work. As such, we
rely upon our traditional concrete simulation team to generate
enough directed test vectors to demonstrate the correctness of
much of the unit’s control logic. This allowed us to focus on

the data-path, traditionally the riskiest part of floating point
operations [12], and meet the desired schedule.

A schedule-critical decision was to perform the algorithm
extraction and algorithm verification concurrently. By first
specifying the algorithm, we could perform these tasks in-
dependently, resolving any discrepancies in the original and
final drafts of the algorithm at the end of both processes. This
decision approximately halved our total verification time.

VIII. R ESULTS AND CONCLUSION

We have proved, under some assumptions, that the Verilog
matches bit for bit with our extracted algorithms. We have
also proved that the extracted algorithms satisfy the IEEE
specifications for floating-point division and square root and
the specifications for integer division. Thus, transitively, we
know that the Verilog implements these specifications.

Another benefit of our work was the discovery of several
optimizations, which were all implemented and proven correct.
Our thorough error analysis led to an optimization in the
lookup tables for division and square root, yielding a reduction
of approximately 75% and 50% in the two lookup tables,
respectively. Other optimizations led to simplifications in the
hardware and in the proof.

ACKNOWLEDGMENTS

We thank Jeff Brooks, Greg Grohoski, Warren Hunt, Matt
Kaufmann, Govind Murugan, Chris Olson, and Greg A. Smith
for their technical help and support.

REFERENCES

[1] S. Oberman and M. Flynn, “Division algorithms and implementations,”
Computers, IEEE Transactions on, vol. 46, no. 8, pp. 833–854, Aug
1997.

[2] S. Oberman, “Floating point division and square root algorithms and
implementation in the AMD-K7TM microprocessor,” inComputer
Arithmetic, 1999. Proceedings. 14th IEEE Symposium on, 1999, pp.
106–115.

[3] D. Russinoff, “A mechanically checked proof of IEEE compliance of
the floating-point multiplication, division, and square root algorithms of
the AMD-K7TM processor,”London Mathematics Society Journal of
Computation and Mathematics, no. 1, pp. 148–200, 1998.

[4] J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger, “Formally verifying
IEEE compliance of floating-point hardware,”Intel Technology Journal,
vol. 3, no. 1, pp. 1–14, 1999.

[5] A. Slobodova, J. Davis, S. Swords, and W. A. Hunt, “A flexible
formal verification framework for industrial scale validation,” inFormal
Methods and Models for Codesign (MEMOCODE), 2011 9th IEEE/ACM
International Conference on, July 2011, pp. 89–97.

[6] J. Davis and S. Swords, private communication, 05 2016.
[7] “ACL2 System and Books.” [Online]. Available: https://github.com/

acl2/acl2
[8] C.-J. H. Seger and R. E. Bryant, “Formal verification by symbolic

evaluation of partially-ordered trajectories,”Form. Methods Syst.
Des., vol. 6, no. 2, pp. 147–189, Mar. 1995. [Online]. Available:
http://dx.doi.org/10.1007/BF01383966

[9] V. M. A. KiranKumar, A. Gupta, and R. Ghughal, “Symbolic trajectory
evaluation: The primary validation vehicle for next generation Intel
processor graphics fpu,” inFormal Methods in Computer-Aided Design
(FMCAD), 2012, Oct 2012, pp. 149–156.

[10] D. Russinoff, “A formal theory of RTL and computer arithmetic.”
[Online]. Available: http://www.russinoff.com/libman/

[11] M. J. C. Ramon E. Moore, R. Baker Kearfott,Introduction to Interval
Analysis. SIAM Press, 2009.

[12] T. R. Nicely, “Original pentium fdiv flaw e-mail.” [Online]. Available:
http://www.trnicely.net/pentbug/bugmail1.html

152

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Integrating Proxy Theories and Numeric Model
Lifting for Floating-Point Arithmetic

Jaideep Ramachandran∗, Thomas Wahl
Northeastern University

Abstract—Precise reasoning for floating-point arithmetic (FPA)
is as critical for accurate software analysis as it is hard to achieve.
Several recent approaches reduce solving an FPA formula f to
reasoning over a related but easier-to-solve proxy theory. The
rationale is that a satisfying proxy assignment may directly
correspond to a model for f . But what if it doesn’t? Prior work
deals with this case somewhat crudely, or discards the proxy
assignment altogether. In this paper we present an FPA decision
framework, parameterized by the choice of proxy theory T , that
attempts to lift an encountered T model to a numerically close
FPA model. Other than assuming some “proximity” of T to FPA,
our lifting procedure is T -agnostic; it is in fact designed to work
independently of how the proxy assignment was obtained. Should
the lifting fail, our procedure gradually reduces the gap between
the FPA and the proxy interpretations of f . We have instantiated
the framework using real arithmetic and reduced-precision FPA
as proxy theories, and demonstrate that we can, in many cases,
decide f more efficiently than earlier work.

I. INTRODUCTION

Floating point arithmetic, the real-arithmetic (RA) approx-
imation used on most general-purpose computers today, con-
tinues to surprise programmers. While computer scientists
and mathematicians are aware of the loss of precision such
approximation necessarily incurs, many are oblivious to the
consequences this can have in programs beyond small inaccu-
racies in final results. To debug numeric programs effectively
before the software is deployed, counterexample-producing
analysis tools sensitive to FPA semantics are vital.

The last 5–10 years have seen increased efforts in building
floating-point decision procedures. The first such were based
on bit-precise encodings: floating-point expressions are en-
coded as propositional [5], [1] or bitvector logic [6] formulas
that formalize the prescription of the IEEE 754 floating-point
standard [10]. These approaches, while successful, tend to
suffer from the size of the encoding that “bit-blasting” entails.
Moreover, such very low-level encodings lose the intended
numeric proximity of FPA to the real numbers and thus
obscure even the simplest identities like a+ b = b+ a.

The other, and more recent, approach to encoding floating-
point formulas is to exploit said numeric proximity. The IEEE
standard stipulates that a floating-point computation “shall be
performed as if it first produced an intermediate result correct
to infinite precision . . . , and then rounded that intermediate
result . . . to the destination’s format” [10]. Experience has
shown that encoding rounding precisely as a mathematical
(floating point-free) operation is feasible but expensive [11].

∗Email: jaideep@ccs.neu.edu. Supported by NSF grant CCF-1218075.

An alternative philosophy is to ignore the rounding altogether,
solve the formula interpreted over the proxy theory of real
arithmetic using off-the-shelf RA solvers, and check any
obtained models for satisfaction of the formula under FPA
semantics. This idea has been used successfully to detect
floating-point exceptions in C programs [2].

In line with recent work on floating-point model construc-
tion [12], we present in this paper a method that extends the
paradigm of reasoning about FPA via some proxy theory T to
a (complete, in principle) decision method. Our method begins
by abstracting the given floating-point formula f into the proxy
theory T to obtain a formula fT of the same propositional
structure but with T constraints that are assumed to be easier to
decide. It then tries to find a T -model σT of fT . If successful,
we cast σT to a “nearby” FPA assignment σ (how exactly this
is done depends on T). We now determine whether σ |= f
according to FPA semantics; if yes, a model for f has been
found. If σ 6|= f , previous methods disagree widely on how to
proceed. In [2], where T = RA, this case is treated as a failure.
In [12], where T is reduced-precision FPA, the authors attempt
to reconstruct full-precision FPA models simply by initializing
the unused bit positions with zeros.

In this paper we propose a numeric model lifting procedure
that exerts much more fine-grained control over how a poten-
tial model for f is obtained. We aim to find this model in
the close vicinity of (the non-satisfying) σ. To this end, our
procedure heuristically determines a subset O of f ’s variables
such that modifying the assignment to these variables slightly
has a chance to make σ satisfying. We now partially instantiate
f , namely by the assignment σ restricted to the variables
outside of O, to obtain a formula f ′. This reduces the original
decision problem for f to a decision problem for f ′ over only
|O| variables.

Our method now goes a significant step further: instead of
solving f ′ from scratch, we use a strategy reminiscent of lazy
SMT solving: assignment σT , satisfying the T abstraction fT
of f , gives rise to a Boolean model for the propositional
skeleton of fT . Since fT is designed to have the same
propositional structure as f (and hence as f ′), we can reuse
this skeleton assignment, and simply solve a conjunction ∆
of FPA constraints: for each constraint in f ′, we require its
truth value to be the same as that σT has assigned to the
corresponding T constraint in fT .

We summarize the point of constructing ∆. First, if ∆ is
satisfiable, via some assignment ε, then so is f ; a satisfying
assignment is given by updating σ’s assignment to O-variables
using ε. Second, ∆ is a conjunction of FPA constraints (no

153

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

propositional structure), and contains only |O| variables. In
our experiments, we found that choosing a single variable in
O often suffices. In that case we have reduced f drastically, to
a univariate conjunction of constraints. This reduced problem
can now be given to an FPA solver such as MATHSAT [6],
with largely increased prospects for a speedy decision.

If the lifting step does not succeed, or fT is unsatisfiable
to begin with, our procedure refines fT , in a manner that
depends on the choice of T . The step-wise refinement of-
ten turns unsatisfiable abstractions fT into satisfiable ones.
A classical example are formulas debunking “false identities”,
like (x + y) + z > x + (y + z), which is unsatisfiable
in RA, but becomes satisfiable after a one-step refinement;
Sect. II illustrates this in detail. If, for each intermediate
abstraction fT , a T model cannot be found or the subsequent
lifting fails, the iterative process eventually refines fT to f ; the
search for models in the proxy theory was in vain. In the spirit
of [12], our method is intended for fast model construction.

We have experimented with two proxy theories in this paper:
real arithmetic and reduced-precision floating-point (Sect. V).
Both are often easier to solve than FPA [2], [12].

We finally note that special floating-point values like in-
finities and NaNs will occur in the assignment σT only if
the proxy theory T is “aware” of such values (e.g. RA is
not). Since the model lifting process presented in this paper is
designed to be T -agnostic, we mostly avoid discussing special
values. Our implementation currently enforces their absence
in σT for proxy theories that have them. Incorporating special
values fully into our framework is left for future work.

II. A MOTIVATING EXAMPLE

Our approach deals with floating-point formulas of propo-
sitional structure in a way that is reminiscent of lazy SMT
solving; we present the details of this in Sect. IV. In the present
section we focus on the theory-specific (numeric) aspects.
Consider therefore the atomic floating-point formula

f :: (a1 � a2) � a3 > a1 � (a2 � a3) , (1)

where � denotes floating-point addition. To keep the presen-
tation succinct in this section, we assume single-precision and
round-to-negative as rounding mode.1 We will demonstrate
how our proposed framework processes this formula using real
arithmetic as proxy theory (T = RA).

Motivated by the success of earlier work in finding floating-
point models by searching in the reals instead [2], we ex-
press this formula in the logic of real arithmetic to obtain
fT :: (a1 + a2) + a3 > a1 + (a2 + a3), and give it to an SMT
solver. The solver responds that fT is unsatisfiable.

With the determination to construct a model in mind,
our technique mistrusts the UNSAT result and proceeds by
increasing the precision of the abstraction. Fortunately, we can
perform this refinement in a lazy manner, by interpreting parts
of f in floating-point, others in real arithmetic. Suppose we
decide that the top-level + of the right-hand side expression

1Using the more common mode round-to-nearest-even (RNE), the example
works as well but requires more refinement steps. Our experiments use RNE.

in fT is to be interpreted in (refined to) FPA. This turns fT
into the formula

f ′T :: (a1 + a2) + a3 > a1�(a2 + a3) . (2)

The domain of all variables remains the real numbers. This is a
formula in Mixed Real-FPA (MRFPA); details of its semantics
are given in Sect. V.

Why is this refinement useful? The answer is that chances
of finding a model for f by examining f ′T are higher than
doing so by examining fT , since the semantics of MRFPA
will ensure that the � in f ′T implements floating-point addition
(although its operands are reals; details in Sect. V). In addition,
the cost of examining f ′T is only moderately higher than that of
examining fT , and hopefully lower than that for f . To analyze
f ′T we need solver support for MRFPA, which is given by (an
extension of) the tool REALIZER [11, details in Sect. V].

Giving f ′T to the extension of REALIZER, we obtain—for
the first time—a satisfying assignment σT , namely

σT :: a1 = a2 ≈ 1.1755 · 10−38 , a3 ≈ 1.9722 · 10−31 .

The left hand side term of f ′T evaluates slightly larger than the
right hand side. We now project these real numbers to single-
precision floating-point, which is done simply by rounding. We
then apply the resulting assignment, call it σ, to the floating-
point formula f . Unfortunately, σ does not satisfy f : the left-
hand and right-hand side sums turn out to be the same.

Instead of immediately refining f ′T further, our method does
not give up the hope that a model for f can be found in
a neighborhood of σ. We therefore now try to “nudge” this
assignment so that it satisfies f . The plan is simple: we pick
one of the ai variables to modify—say our choice is a3—while
leaving all others constant. We then build a new, univariate
formula ∆ as follows:

∆ :: (a1 � a2) � a3 > a1 � (a2 � a3) ,

where, for i = 1, 2, ai := σ(ai). By design of our method,
if ∆ is satisfiable, say via ε, then so is f , and we obtain
a satisfying assignment for f from σ by changing the value
assigned to a3 using ε. The key is that ∆ is simpler than f :
it contains only one free variable (a3). We have reduced the
original floating-point decision problem to a much simpler one
such that any model for the simpler problem gives rise to a
satisfying assignment for f .

Finishing up our example: applying the solver MATHSAT [6]
to ∆ we learn that increasing a3 by 1.1755 · 10−38 leads to a
satisfying assignment for f : the left sum is now larger.

Recent work uses reduced-precision FPA as proxy the-
ory [12] and attempts to “patch” a proxy assignment (like σT)
to a satisfying floating-point one using syntactic means: by
padding the lower-precision bitvector assignment with 0s or 1s.
This initially fails and requires more refinement iterations,
ultimately entailing higher cost, as our experiments will show.
In contrast, our method takes the numeric circumstances into
account, as reflected in formula ∆. As a result, a satisfying
assignment for ∆ guarantees the existence of a model for f .

154

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

III. DECIDING FPA USING A PROXY THEORY
AND MODEL LIFTING

We describe in this section our procedure for deciding
a floating-point formula f ; see Fig. 1. In addition to f ,
the (implicit) input to the procedure includes floating-point
specifics like the format parameters for range and precision,
as well as settings like the rounding mode, which we assume
to apply across the entire formula. If f is determined to be
satisfiable, the algorithm returns a satisfying assignment σ.

fT := f mapped to T

∃σT . σT |=T fT ?

σ := toFloat(σT)

fT := Refine(fT)

σ |= f?

σ := Lift(σ, σT , fT)

success

f

yes

no

σ yes

no

σ

failure

success

failure

UNSAT

Fig. 1: Deciding FPA formula f via proxy theory T

The procedure begins by mapping f to a formula over
the proxy theory T ; we can view the resulting fT as an
abstraction of f . (In general, though, it is neither an over- nor
an underapproximation of f ; this happens to be immaterial for
our procedure.) How this map is defined is clearly T -specific.
However, we require that it maintains the propositional struc-
ture (skeleton) of f and applies only to its (atomic) theory
constraints. For example, in the case of reduced-precision FPA
as the proxy theory, the mapping simply changes the floating-
point format parameters that come with f . In the case T = RA
(real arithmetic), the mapping causes all arithmetic function
symbols and constants to be interpreted over the reals. We
give more details on these specific proxy theories in Sect. V.

Given formula fT in theory T , the procedure now repeatedly
tries to find a model for fT and to “lift” that to a model for f . If
no model for fT can be found, or the lifting fails, it refines fT
so as to narrow the semantic gap to the input formula f . This
is reflected in Fig. 1 as follows. The procedure first performs
the satisfiability check ∃σT . σT |=T fT (where |=T is the
satisfaction relation in T). If the check fails, fT is refined;
more on that below. If a satisfying assignment σT is found,
we call a procedure toFloat that casts the T -assignment σT

to a “nearby” floating-point assignment σ. This step is T -
dependent and may for instance involve rounding (when T is
“more precise” than standard FPA) or fresh bit initialization
(when T is “less precise” than standard FPA).

We now ask whether σ is indeed a satisfying floating-point
assignment for f . This amounts to plugging in the values
given by σ, and evaluating the grounded formula f . Unless
the satisfiability of f depends on floating-point peculiarities
such as the lack of associativity (example in Sect. II), the
query σ |= f may well succeed (|= is the satisfaction relation
in FPA); this was observed in [2] for a large fraction of
their (floating-point exception) benchmarks. In that case the
procedure terminates, returning σ.

A negative result to the query σ |= f is interpreted by the
procedure to mean that the floating-point solution to f that
we are suspecting in the vicinity of σT cannot be obtained
simply by rounding or syntactic initialization. We therefore
launch a more aggressive subroutine Lift that tries to modify
the values assigned by σ to certain variables of f to force σ
to be satisfying. This routine is described in Sect. IV. Note
that, while toFloat casts a T -assignment to floating point, Lift
maps one floating-point assignment to another.

The Lift procedure is designed such that, if there exists a
satisfying floating-point assignment in the vicinity of σ, Lift
will eventually find it, given enough time. In this case, Lift in
Fig. 1 returns the new σ; the procedure terminates. Lifting can
fail because f is unsatisfiable, or because the lifting timed out.
The latter indicates that assignment σ is not a good starting
point for finding a model for f . We increase the precision of
the abstraction, by refining fT .

The Refine step fails when, upon invocation, fT is “equiva-
lent” to f in a sense that depends on the abstraction map. For
the case of reduced-precision FPA as proxy theory, this simply
means the floating-point format of fT equals that of f . In that
case, the satisfiability check ∃σT . σT |=T fT in the previous
iteration was actually a satisfiability check for f . Since that
did not succeed, f is unsatisfiable.

Correctness. Termination of the framework can be enforced
with some “cooperation” from T : we assume T to be chosen
such that mapping f to T , and the calls toFloat(σT) and
Refine(fT) are straightforward and “fast”. The test σ |= f?
is trivial. The decision problem ∃σT . σT |=T fT ? may
not terminate, e.g. due to undecidability of T . We solve
this problem by enforcing a timeout for this step. The call
Lift(σ, σT , fT) is discussed in detail in Sect. IV. As we shall
see, it introduces no potential for nontermination.

Finally, the framework itself (Fig. 1) contains a loop. We
require of the proxy theory that it permits gradual refinement
of T formulas to floating-point formulas. How this is done
exactly depends on T and is discussed, for two instances, in
Sect. V. With these provisions, instances of the framework in
Fig. 1 are terminating. The framework is also easily seen to
be sound for SAT and UNSAT outcomes; we omit the details.

155

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

IV. MODEL REFINEMENT:
FROM PROXY MODELS TO FPA MODELS

We revisit Fig. 1. Suppose formula fT (the current ab-
straction of floating-point formula f) is satisfiable and gives
rise to a model σT . Suppose further that the cast operation
toFloat(σT) yields a non-satisfying assignment σ for f . This
means that σ assigns to at least one FPA constraint in f a
different Boolean value than σT does to the corresponding
T theory constraint in fT . The goal of the model refinement
procedure Lift is to reconcile this difference, thereby lifting
assignment σ to a proper model for f .

The basic idea is as follows. Given that σT |=T fT , there
exists an assignment to the variables in the Boolean skeleton of
fT that makes this propositional skeleton formula true. Since,
by construction, f and fT have the same Boolean skeleton
(this is required of the abstraction; see Sect. III), the goal is to
modify the assignment to the floating-point variables in f such
that the corresponding Boolean skeleton assignment coincides
with that induced by σT . If we succeed, f is satisfied. This
turns the original FPA formula f into a structurally simple
conjunction of FPA theory constraints, since the “target”
Boolean value for these constraints is determined via σT .

We point out parallels of this reduction of formula structure
to lazy SMT solving: there, a formula f over a background
theory T is solved by first applying a T -oblivious proposi-
tional SAT solver to f ’s Boolean skeleton. A solution gives
rise to a conjunction of T constraints a model for which is
a model for f . In our work we do not use a SAT solver —
it is too weak for our purposes: we seek a (proxy) theory
assignment that makes the skeleton true and gives hope that
a satisfying FPA assignment can be found nearby.

Notation. Let V be the set of arithmetic variables in f , and let
P be the set of propositional variables in the Boolean skeleton
of f . We can think of variables p ∈ P as pointers to the
FPA theory constraints of f . Recall that the abstractions fT
produced during the main procedure in Fig. 1 all maintain the
skeleton of f . Hence, there exists a function γ that takes p ∈ P
and f or fT as input and returns the theory constraint of f
or fT pointed to by p. Consider this example for T = RA:

f = x� y > 10 ∨ x� y < 7

fT = x+ y > 10 ∨ x− y < 7 .

Choosing p1 ∨ p2 as the skeleton, we then have V = {x, y},
P = {p1, p2}, and

γ(p1, f) = (x� y > 10), γ(p2, f) = (x� y < 7)
γ(p1, fT) = (x+ y > 10), γ(p2, fT) = (x− y < 7) .

We finally use Eval to denote a function that takes a formula
ϕ and an assignment A to all variables in ϕ and returns the
Boolean value of ϕ under A, respecting the semantics of ϕ.

Our lifting procedure is shown in Alg. 1. The algorithm
scheme receives the FPA assignment σ that fails to satisfy f ,
the T assignment σT that does satisfy fT , and formula fT .
(The algorithm also has access to the [unchanged] formula f .)
We begin by selecting all invertible constraints Inv in f (via

pointers p): those for which assignments σT and σ disagree
in the Boolean value assigned in fT and f , resp.

In Line 2 we select a set O of offset variables: floating-
point variables whose assignment we plan to modify to make
σ satisfying. An upper bound on O is that each v ∈ O must be
contained in at least one invertible constraint. More details on
the selection are given in Implementation below. In Line 3
we build the set PO of (pointers to) constraints that contain
at least one O-variable: these are the constraints whose truth
value may be affected when assignments to O-variables are
modified.

Line 4 modifies f to f ′ by instantiating every non-offset
variable v ∈ V \O by its literal floating-point assignment σ(v).
Finally, in Line 5 we construct a constraint ∆ that realizes the
above basic idea: for each theory constraint γ(p, f ′) in f ′ with
at least one O-variable, enumerated via pointers p ∈ PO, we
require that it be assigned the truth value Eval(γ(p, fT), σT)
(a constant) given by σT to the corresponding theory constraint
γ(p, fT) in fT . The right conjunct of formula ∆ restricts the
assignment to O-variables v to some interval around σ(v);
terms v.l and v.r are floating-point literals (see Interval
constraints below).

Intuitively, constraint ∆ is satisfiable whenever there is a
satisfying assignment to f in some small neighborhood of
σ = toFloat(σT). We are hopeful this is the case, since σT
satisfies fT . Hence, if there exists a satisfying assignment ε
to ∆, we modify σ by updating, using ε, the values assigned
to O-variables. If ε does not exist, the lifting fails.

Implementation. Our lifting procedure has reduced the
floating-point decision problem for f to that for ∆. Is the
reduced problem simple enough that we can solve it using
an off-the-shelf FPA decision procedure? Formula ∆ is a
conjunction of constraints — no propositional reasoning is
required to decide it. The free variables in ∆ are precisely the
offset variables. The choice of set O thus critically influences
the variable complexity of ∆; we use heuristics to keep it
small. If v occurs in expensive constraints in f , such as
in high-degree polynomials or other non-linear terms, the
variable ranks low in our selection heuristics. For example,
if f contains the quadratic form x�x � x� y, our heuristic
chooses O = {y} ; Line 4 in Alg. 1 turns the entire term into
the univariate, linear floating-point term

σ(x) � σ(x) � σ(x) � y .

Interval constraints. Gradient analysis of f in a neighborhood
of assignment σ may reveal that a variable v needs to be
increased, say. In this case, we use a lower bound v.l = σ(v)
in the range constraint v.l ≤ v ≤ v.r in Line 5. For example,
for f = x�y > 4.0∧x�y < 2.0 with σ = {x = 3.0, y = 1.0},
gradient analysis reveals that y needs to be increased; we set
y.l = 1.0. In the absence of such information, we choose
interval [v.l, v.r] to be symmetric around σ(v), of a width
that is a small fraction of |σ(v)|.

156

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Algorithm 1 (Scheme) Lifting σ to FPA model

Input: σ: FPA assignment (falsifying f), σT : T assignment (satisfying fT), fT : abstract formula
1: Inv := {p ∈ P |Eval(γ(p, fT), σT) 6= Eval(γ(p, f), σ)} . invertible constraints
2: select subset O of

⋃
i∈Inv Vars(γ(i, f)) . offset variables

3: PO := {p ∈ P |Vars(γ(p, f)) ∩O 6= ∅} . O-affected constraints
4: f ′ := f

∣∣
v→σ(v) | v∈V \O . partially instantiated formula

5: ∆ :=
∧
p∈PO

γ(p, f ′) = Eval(γ(p, fT), σT) ∧
∧
v∈O v.l ≤ v ≤ v.r

6: if ∃ε. ε |= ∆ then
7: for each v ∈ O
8: σ(v) := ε(v)
9: return σ

10: else
11: return failure

V. PROXY THEORIES FOR FLOATING-POINT ARITHMETIC

We have instantiated our framework with two proxy theories
at opposite ends of the precision spectrum: reduced-precision
FPA and real arithmetic (which can, somewhat awkwardly,
be viewed as an infinite-precision “approximation” of FPA).
The former is a fairly obvious candidate: an FPA formula
is abstracted by interpreting it over a floating-point format
with smaller precision and/or range. Reduced-precision FPA
is almost invariably easier to solve. Models can be cast to
original-precision FPA by initializing the fresh bits to 0. Step-
wise refinement consists of gradually increasing the precision
(in our work: across the entire formula; more sophisticated
schemes are possible). T is therefore actually the family of
FPA theories parameterized by precision/range. Such proxy
theories have been used before [12, without numeric lifting].
We discuss instead a less obvious choice for T in this section.

Real Arithmetic as Proxy Theory

As suggested in Sect. II and reported earlier [2], real
arithmetic (RA) is suitable for an approximate interpretation
of a floating-point formula f : many formulas are easier to
decide over the reals, since the complexity of rounding is
avoided. A satisfying real assignment can easily be cast to
a floating-point assignment via rounding. To enable step-wise
refinement of the RA-interpretation of f back to FPA, however,
we need a proxy theory that can express combinations of real
and floating-point terms, such as a1 � (a2 + a3) (Sect. II).

Our proxy theory therefore is actually not real arithmetic,
but an extension that we call Mixed Real-Floating-Point Arith-
metic (MRFPA) and define as follows. Let R be the set of real
numbers, and F be the numbers in R representable in floating-
point over some fixed precision and range (these parameters
are constant in this section). Let rd : R → F be the function
that implements the given rounding mode, and let VarR and
VarF be a set of real and floating-point variables, resp.

The syntax of MRFPA formulas f is as follows.

f :: tR θR tR | tF θF tF | ¬f | f ∨ f
θR :: < |=
θF :: <F |=F

αR :: + | × | /
αF :: � | � | �
αM :: +M | ×M | /M
tR :: c ∈ R | v ∈ VarR | (tR αR tR) | tF
tF :: c ∈ F | v ∈ VarF | (tF αF tF) | (tR αM tR)

(3)

Intuitively, MRFPA formulas are built over F terms tF, which
evaluate to elements of F, and R terms tR, which more
generally evaluate to elements of the superset R. R terms
are formed using real operators αR. F terms are formed using
floating-point operators αF or mixed operators αM. Operators
αM can take operands that are floating-point representable, and
those that are not. There are no mixed comparison operators
<M | =M , as they are identical to the real operators < | = .

The semantics of MRFPA formulas is defined recursively
via an overloaded evaluation function [[·]] that maps R terms
to elements of R, F terms to elements of F, and formulas to
a Boolean value, as follows. Let AR : VarR → R be an R
assignment to variables in VarR, and AF : VarF → F be an
F assignment to variables in VarF. The semantics of terms is
as follows: [[c]] = c for constants c ∈ R∪F, [[v]] = AR(v) for
v ∈ VarR and [[v]] = AF(v) for v ∈ VarF, and

[[t1R αR t2R]] = [[t1R]]αR [[t2R]]
[[t1F αF t2F]] = [[t1F]]αF [[t2F]]
[[t1R αM t2R]] = rd([[t1R]] [[αM]] [[t2R]])

where [[+M]] = � , [[×M]] = � , etc. Operators αM differ
from the corresponding real operators αR in that they round
the result. They also differ from the corresponding floating-
point operators αF: the latter take only F terms as inputs.

The semantics of an MRFPA formula f is then as follows:

[[t1R θR t2R]] = [[t1R]] θR [[t2R]] [[¬f]] = ¬[[f]]
[[t1F θF t2F]] = [[t1F]] θF [[t2F]] [[f1 ∨ f2]] = [[f1]] ∨ [[f2]]

Our definition of MRFPA ignores numeric anomalies such as
infinities and NaNs; see discussion in Sect. I.

The use of MRFPA as proxy theory requires specific
solver support, such as obtained by extending the tool RE-
ALIZER [11]. The tool translates floating-point formulas into

157

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

numerically equivalent formulas over mixed real-integer arith-
metic (RIA): it replaces x�y by rd(x+y), where rd encodes
rounding as a RIA operation involving floor and ceiling
functions. Our (straightforward) extension permits MRFPA as
input, not just floating-point formulas.

In practice, deciding real-integer arithmetic is costly and
in fact undecidable in the non-linear case. We have therefore
experimented with MRFPA as proxy theory only for linear
formulas; the prospects for extending this to richer classes are
discussed in Sect. VIII.

VI. EXPERIMENTAL EVALUATION

The techniques described in this paper have been imple-
mented in our tool MOLLY (roughly, “Model Lifter”), both
with reduced-precision FPA as proxy theory (called “RPFPA”
in the sequel), and with real arithmetic as proxy.

Tool set-up. For our RPFPA experiments, we used MATHSAT
[6, v5.3.8] to obtain proxy models and also to solve the
constraint during the lifting of proxy models to FPA models.
For lifting, MOLLY picks one variable at a time; currently in
an arbitrary way. The formula refinement process increases the
number of bits in the exponent by 1, and in the mantissa by 3.

We compare against MATHSAT and against the technique
presented in [12, called “Approx” there and in Table I]. We
used MATHSAT with the options input=smt2 , -model ,
-theory.eq_propagation=false and -theory.fp
.bit_blast_mode=1 both when used inside our tool
and also when used stand-alone for the comparison. For
comparison with “Approx”, we used our own tool MOLLY
but with model lifting turned off : our routine toFloat then
exactly implements the “padding” used in [12]. Not using their
implementation allows us to exactly assess the contribution of
the lifting.

All evaluations were performed on a machine with Intel(R)
Core (TM) i7-4770 3.40GHz CPU, having 8 GB RAM and
running x86 64 Ubuntu 14.04 LTS. An overall timeout (TO)
of 20 min was used for each benchmark for every tool.

Benchmarks. We evaluated our technique primarily on two
benchmark sets. The first benchmark set, named “I. Non-
linear benchmarks from [4]” in Table I, contains a mix of 213
formulas from prior published work [4]. Since we currently
do not support casts, we ignored them and interpreted all
operations as being for the same (single) precision. We also
disallowed special floating-point values in the solution by
adding the SMT-LIB assertion fp.isNormal for every variable.

The second set of benchmarks, named “II. False Identity
benchmarks” in Table I, were created by us and are available
for download here. These are formulas of the form E− Ê > ε
along with range constraints on the input variables; the expres-
sion Ê is obtained from E using a real-arithmetic rewrite rule,
i.e. Ê is mathematically equivalent to E. Some of the simpler
polynomials, for instance, involve factors, e.g. comparing
deviation of x3−y3 from the product of its factors (x−y) and
(x2−xy+ y2), for a specific ordering of operations. We have
formulas for such comparisons for a variety of polynomials,

ranging from Horner scheme evaluations to power series
expansions for the sine function. Such decision problems are
relevant for optimizing compilers since a rewrite based on an
equivalence in real arithmetic is often unsafe in FPA. These
benchmarks are all satisfiable and values of ε were chosen
such that MATHSAT solves each of these in less than 5 min.

Results. Running MOLLY on the first set of non-linear bench-
marks confirmed the results reported in [12]: solving a simpler
reduced precision approximation, often with the initial reduced
precision of 3 bits for each of mantissa and exponent, suffices
to solve a significant number of the satisfiable constraints.
There were only some opportunities for numeric model lifting;
the results on all those 22 benchmarks are reported in the
set “I. Non-linear benchmarks from [4]” in Table I (1–22).
A majority of these benchmarks turned out to be satisfiable
and for the rest the satsifiability status is still unknown. To
evaluate effectiveness of model lifting, a liberal timeout of 12
min was set for the numeric model lifting step. From Table II,
MATHSAT solves one benchmark more than MOLLY, which in
turn solves one more than “Approx”. The average solving time
per solved benchmark for MOLLY (219s) is greater than that
for “Approx” (127s) but lesser than that for MATHSAT (443s).
For the set of “False Identity benchmarks” in Table I (23–
37), we used a timeout of 3 min per iteration for the reduced
precision solving and a timeout of 1 min for the model lifting
stage. MATHSAT and MOLLY solve all the 15 benchmarks,
with MOLLY taking the least average time per benchmark
(86s), closely followed by “Approx” (89s), which timed out
on two.

Real arithmetic as proxy theory
We also evaluated MOLLY on a set of constraints consisting

of linear formulas that involve checking non-associativity
of FPA operations. We assumed single-precision FPA, with
round-to-nearest-even rounding mode for FPA operations.
MOLLY uses our real arithmetic abstraction detailed in Sect. V.
For solving MRFPA formulas, we extended the tool REAL-
IZER [11], which previously accepted pure FPA formulas as
input, to also accept MRFPA formulas that are generated in
the first formula refinement. In this case, the refinement step
marks real arithmetic operators in some parts of the formula
as FPA operators.

In Table III, #Vars indicates the size of the formula, e.g. for
#Vars=5, the decision problem is

(((a1+a2)+(a3+a4))+a5) > ((((a1+a2)+a3)+a4)+a5).

MOLLY outperforms MATHSAT and is also seen to scale well.
In each case, after a few iterations, our model lifting technique
succeeded in transforming a real arithmetic assignment into a
satisfying floating-point assignment. Based on a simple analy-
sis of the behavior of the expressions constituting the formula
in the neighborhood of the approximate assignment, a single
variable was chosen to invert the result of the comparison. As
before, we used our tool with model lifting disabled to mimic
the tool “Approx” from [12]. Here we also ran the actual tool
from [12]: it performed many more iterations and eventually
timed out on each instance.

158

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

http://www.ccs.neu.edu/home/jaideep/benchmarks16.tar.gz

MOLLY APPROX [12] MATHSAT

Problem It Lifted? Time (s) It Time (s) Time (s)
I. Non-linear benchmarks from [4]

1 1 X 7.8 2 5.0 344.0
2 1 X 15.8 2 12.3 986.5
3 2 × 60.1 2 45.6 995.9
4 - - TO - TO 977.6
5 - - TO - TO 983.6
6 - - TO - TO 977.1
7 - - TO - TO 983.5
8 - - TO - TO TO
9 8 × 337.1 8 330.8 TO
10 - - TO - TO TO
11 1 X 3.2 2 0.3 61.8
12 × 680.5 2 0.3 TO
13 7 X 863.3 - TO TO
14 - - TO - TO TO
15 - - TO - TO TO
16 8 × 484.7 8 116.6 46.7
17 8 × 350.3 8 322.2 47.0
18 2 X 4.9 6 29.4 46.8
19 2 X 22.1 3 32.5 47.2
20 1 X 3.3 2 6.3 46.5
21 2 X 263.4 3 599.9 46.8
22 3 X 39.1 4 118.8 65.7

II. False Identity benchmarks
23 3 X 148.6 8 163.7 60.5
24 2 X 64.6 8 137.9 108.4
25 8 × 162.7 8 137.2 108.4
26 1 X 0.9 8 137.2 108.2
27 8 × 278.2 8 162.8 47.7
28 1 X 12.4 8 123.1 51.8
29 4 × 70.2 4 9.8 112.4
30 2 X 62.6 8 108.5 108.7
31 3 X 144.5 8 172.4 122.5
32 3 X 157.2 - TO 133.6
33 1 X 1.1 4 0.6 133.6
34 4 X 181.4 - TO 605.4
35 1 X 2.1 8 7.7 596.5
36 1 × 0.1 1 0.1 0.3
37 3 × 0.5 3 0.5 0.3

TABLE I: Numeric model lifting on non-linear problems.
“It.” = # of iterations; Lifted? = X if final satisfying assignment obtained via model lifting, otherwise (via toFloat) = ×

Table I, Table II and Table III indicate MOLLY is efficient on
benchmarks that require staying close to the original precision
to find satisfying assignments. Numeric model lifting then
closes the gap between the abstract but imprecise (with respect
to FPA) solutions and genuine floating-point arithmetic.

VII. RELATED WORK

The idea of using real arithmetic to solve floating-point
constraints approximately has been implemented before [2].
The earlier approach uses this real arithmetic approximation
only once for a formula and is hence incomplete, for instance,
a formula that is unsatisfiable in the reals but satisfiable in
floating-point can not be handled. In contrast, as shown in
Sect. VI, we can handle such an input formula by refining the
formula iteratively when the answer obtained in an iteration
is not a correct answer to the original formula.

The above mentioned earlier work aims to detect exceptions
in floating-point programs, by encoding, in real arithmetic,
path conditions of programs as well as exceptional conditions
like underflow, overflow, division by zero and certain in-
valid operations involving NaN. This approximation, ignoring

rounding entirely, was sufficient to detect several exceptions,
primarily of the underflow and overflow types, in a publicly
available library. However, we eventually encode rounding for
every operation as per the IEEE 754 standard, as we intend
our procedure to be used to uncover bugs due to rounding,
for instance, in floating-point comparisons in control flow
conditions.

A framework for using abstractions that are neither under
approximations nor over approximations of the original for-
mulas was proposed recently [12]. These approximations are
refined iteratively as necessary. The authors instantiated this
framework for floating-point arithmetic using lower precision
floating-point numbers. We extend this idea using numeric
model lifting techniques.

In the above work, the authors mention very simple heuris-
tics, like padding the solutions with 0s, for lifting a satisfying
assignment from a lower (s, e) to one for the actual problem,
but these are unlikely to succeed for many cases, especially
in the context of detecting anomalies due to floating-point
peculiarities or when the approximate assignment contains

159

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

MOLLY “APPROX” [12] MATHSAT

I

Solved 14 13 15
Total Time(s) 3067 1650 6656
Avg. Time(s) 219 127 443

TO 8 9 7

II

Solved 15 13 15
Total Time(s) 1287 1161 2237
Avg. Time(s) 86 89 149

TO 0 2 0

TABLE II: Statistics for data from Table I. Total Time
is the sum of solving times for the solved instances

MOLLY APPROX [12] MATHSAT

#Vars It Lifted? Time (s) It Time (s) Time (s)
35 6 X 30.5 15 153 81.6
40 3 X 11.9 7 34 278.2
45 8 X 448.6 33 TO 457.1
50 5 X 25.1 20 344 164.5
55 5 X 28.3 16 210 754.8
60 3 X 17.2 34 TO TO
65 7 X 42.0 11 88 TO

TABLE III: Demonstrating numeric model lifting with
Real arithmetic proxy theory on FPA-specific problems

non-integral values.
In the decision procedure world, the tools Z3 and MATHSAT

have support for floating-point arithmetic, primarily based on
bit vector reasoning and bit-blasting. With increasing size
and complexity of FPA constraints, the resulting propositional
encoding becomes very large, which is problematic especially
if the input formula itself is large, or when the formula has
non-linear arithmetic operations. An attempt was made to
alleviate this problem by applying a combination of under-
and over-approximations to the same formula [5].

Goubault and Putot [8] present abstract domains and meth-
ods to bound the difference between floating-point and real-
arithmetic interpretations of the program, and these have been
incorporated into FLUCTUAT [7], and can be used for test-
case generation. Abstract interpretation and interval arithmetic
techniques provide clear efficiency benefits over model explo-
ration approaches such as ours, and feature a high level of
automation. They have been successfully applied in industrial
contexts. On the other hand, they are approximate and may not
suffice when accurate analysis is paramount. This is reflected
especially in the potential for spurious assignments.

Various formalizations and libraries for FPA have been de-
veloped in the domain of theorem proving [9]. More recently,
these provers have been used to certify programs [3]. The
use of such tools requires expert skills to provide hints to
steer the theorem prover towards the goal. In contrast, model
exploration approaches such as ours aim at principally push-
button techniques.

VIII. CONCLUSIONS

We have presented a framework for building solvers for
floating-point decision problems, by reducing them to deci-
sions in some proxy theory T . The assumptions are that (i)
T models are often close to FPA models, and (ii) T formulas
are on average easier to decide than FPA formulas. Examples
of suitable proxy theories include reduced-precision FPA and
real arithmetic. Previous work embeds such reductions into a
CEGAR loop [12]. Our framework extends it by a numeric
model refinement procedure, which tries to lift T models to
FPA models. The procedure determines, using a floating-point
solver, how much certain variables need to be adjusted away
from the T model, to compensate for the difference between
T and FPA. We derive a new formula with a simpler structure
and fewer free variables, and whose satisfiability immediately
gives rise to an FPA model. Experimental results indicate our
technique can find satisfying assignments efficiently.

Future work. We plan to extend our work in two main
directions. One is the use of approximate numeric techniques,
rather than (exact) decision procedures, to solve formulas
in the proxy theory T : thanks to model lifting, a precise
solution in T is not required for the first green box in Fig. 1.
This relaxation opens up a host of other and potentially
very scalable techniques especially for complex non-linear
input constraints, including for the case of real arithmetic as
proxy theory, for which we currently have limited support for
non-linear formulas. The other direction is to improve our
strategy for dealing with unsatisfiable formulas, rather than
just “waiting” for the refinement to revert fT back to f ; the
latter causes all model finding efforts to be wasted.

REFERENCES

[1] CBMC. http://www.cprover.org/cbmc/, accessed: 2015-03-23
[2] Barr, E.T., Vo, T., Le, V., Su, Z.: Automatic detection of floating-

point exceptions. In: Proceedings of the 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. pp.
549–560. POPL ’13, ACM, New York, NY, USA (2013)

[3] Boldo, S., Melquiond, G.: Flocq: A unified library for proving floating-
point algorithms in coq. In: 20th IEEE Symposium on Computer
Arithmetic, ARITH 2011, Tübingen, Germany, 25-27 July 2011. pp.
243–252 (2011)

[4] Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding
floating-point logic with abstract conflict driven clause learning. Formal
Methods in System Design 45(2), 213–245 (2014)

[5] Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-
point arithmetic. In: FMCAD. pp. 69–76 (2009)

[6] Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5
SMT Solver. In: Piterman, N., Smolka, S. (eds.) Proceedings of TACAS.
LNCS, vol. 7795. Springer (2013)

[7] Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine,
F.: Towards an industrial use of FLUCTUAT on safety-critical avionics
software. In: Formal Methods for Industrial Critical Systems, 14th
International Workshop, FMICS 2009, Eindhoven, The Netherlands,
November 2-3, 2009. Proceedings. pp. 53–69 (2009)

[8] Goubault, E., Putot, S.: Static analysis of finite precision computations.
In: Verification, Model Checking, and Abstract Interpretation - 12th
International Conference, VMCAI 2011, Austin, TX, USA, January 23-
25, 2011. Proceedings. pp. 232–247 (2011)

[9] Harrison, J.: A machine-checked theory of floating point arithmetic. In:
Theorem Proving in Higher Order Logics, 12th International Conference,
TPHOLs’99, Nice, France, September, 1999, Proceedings. pp. 113–130
(1999)

[10] Institute of Electrical and Electronics Engineers (IEEE): 754-2008 —
IEEE standard for floating-point arithmetic. IEEE pp. 1–58 (2008)

[11] Leeser, M., Mukherjee, S., Ramachandran, J., Wahl, T.: Make it real:
Effective floating-point reasoning via exact arithmetic. In: DATE. pp.
1–4 (2014)

[12] Zeljic, A., Wintersteiger, C.M., Rümmer, P.: Approximations for model
construction. In: IJCAR. pp. 344–359 (2014)

160

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

http://www.cprover.org/cbmc/

Trustworthy Specifications of ARM R© v8-A and
v8-M System Level Architecture

Alastair Reid
Research, ARM Ltd.
first.last@arm.com

Abstract—Processor specifications are of critical importance
for verifying programs, compilers, operating systems/hypervisors,
and, of course, for verifying microprocessors themselves. But to
be useful, the scope of these specifications must be sufficient for
the task, the specification must be applicable to processors of
interest and the specification must be trustworthy.

This paper describes a 5 year project to change ARM’s exist-
ing architecture specification process so that machine-readable,
executable specifications can be automatically generated from the
same materials used to generate ARM’s conventional architecture
documentation. We have developed executable specifications of
both ARM’s A-class and M-class processor architectures that
are complete enough and trustworthy enough that we have
used them to formally verify ARM processors using bounded
model checking. In particular, our specifications include the
semantics of the most security sensitive parts of the processor: the
memory and register protection mechanisms and the exception
mechanisms that trigger transitions between different modes.
Most importantly, we have applied a diverse set of methods
including ARM’s internal processor test suites to improve our
trust in the specification using many other expressions of the
architectural specification such as ARM’s simulators, testsuites
and processors to defend against common-mode failure. In the
process, we have also found bugs in all those artifacts: testing
specifications is very much a two-way street.

While there have been previous specifications of ARM pro-
cessors, their scope has excluded the system architecture, their
applicability has excluded newer processors and M-class, and
their trustworthiness has not been established as thoroughly.

Our focus has been on enabling the formal verification of
ARM processors but, recognising the value of this specification
for verifying software, we are currently preparing a public release
of the machine-readable specification.

I. INTRODUCTION

Recent years have seen an increasing focus on verification of
machine-code programs [1], compilers [2], operating system
kernels [3], hypervisors [4] and processors [5]. These activ-
ities rely on having correct specifications of the meaning of
machine-code and one of the first steps in such verification
efforts is creating a specification of the computer architecture
of interest.

Three key properties of a processor specification are its
scope, its applicability and its trustworthiness.

The scope of a specification is the set of features that
one can reason about. For example, a certified compiler
such as CompCert [2] only requires a specification of those
instructions that the compiler could generate. But in order to
reason about arbitrary user-mode binaries, one would need
a specification of the entire instruction set. And to reason

about Operating System code, the scope of the specification
is dramatically increased and includes a specification of in-
structions for changing execution mode (e.g., entering/leaving
supervisor mode), interrupt handling mechanisms, page faults,
mechanisms for changing memory protection, etc. To date,
all formal specifications of the ARM architecture have been
targetted at reasoning about user-mode programs and have not
included a specification of these system-level features.

The applicability of a processor specification is whether the
specification applies to the target processor. Most changes to
architecture specifications are backward compatible extensions
and so most proofs about code for one architecture version are
valid when executing that code on a processor implementing
a later architecture version. But architecture revisions also
remove instructions, add restrictions or change functionality
so proofs based on the ARMv6 specification (1996) or the
ARMv7-A specification (2007) are not necessarily sound
for ARMv8-A (2013). This is especially true for ARM’s
Microcontroller architecture which has a completely different
exception model from ARM’s mainstream architecture.

The trustworthiness of a processor specification is whether
the specification can be trusted to reflect the behaviour of all
processors implementing the specification. The ARMv7 HOL
specification of Fox and Myreen [1] is noteworthy for the de-
gree of testing performed: systematically testing all user-mode,
integer instructions against three actual processors. This is a
critical step and must be repeated against as many expressions
of the architecture as possible (processors, implementations,
testsuites, etc.) and must be used to test the full scope of the
specification.

The effort required to create a specification increases with
the desired scope, applicability and trustworthiness of the
specification. Worse, since ARM regularly releases extensions
and corrections to the architecture, the challenge of retaining
applicability to current processors is more of a continuous pro-
cess rather than a one-off sprint. Our solution to this problem
has been to change ARM’s existing architecture specification
process so that machine-readable, executable specifications
can be automatically generated from the same materials used
to generate conventional documentation.

This paper describes our work over the last 5 years on trans-
forming the ARM processor specifications from documents
intended for human consumption into trustworthy machine-
readable specifications.

Creating this specification required understanding and cod-

161

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

ifying the precise meaning of various notations used in the
documentation; inferring the lexical, syntax, type rules and
semantics from examples in the documentation; making the
specification conform to these rules; filling gaps in the original
specification; and creating a frontend and several backends to
allow the specification to be executed.

Using ARM’s specifications directly addresses the issues
of scope and applicability but the resulting formal part of
the specification is just one part of the whole specification
and, like any large specification, may contain bugs wrt the
informal parts of the specification or with the architects’
informal intent. To address the issue of trust, we have used
a diverse set of testing methodologies to compare against
as many different expressions of the specification as possi-
ble: testsuites, simulators and processors. We have simulated
billions of instructions and used bounded model checking
to compare the RTL of five ARM processors currently in
development against the specification [6]. Bugs found in the
process have been fixed in the master copy of the specification
from which ARM’s architecture specification documents are
generated. This process has the effect of distilling more of
the architectural intent into the formal part of ARM’s official
specification.

The structure of this paper is summarized in Figure 1 which
gives an overview of the specifications, tools, verification IP,
and testing we created or used in the process of this project.
Section II gives a brief overview of the structure and content
of the different ARM Architectures. Sections III and IV
describe the steps we took to convert ARM’s existing informal
documentation into machine-readable, executable, trustworthy
specifications of the ARM-v8A and ARM-v8-M architectures;
Section V discusses related work; and Section VI concludes.

This paper deals with the Instruction Set Architecture (ISA),
Exceptions, Memory Protection/Translation and Security. It
does not deal with multiprocessor features and, in particular,
the Memory Ordering Model [3], [7], [8]. And it does not deal
with debug or performance monitoring features.

II. ARM SPECIFICATIONS

ARM Architecture specifications have two main sections: Ap-
plication Level Architecture and System Level Architecture.

The Application Level Architecture (aka the Instruction
Set Architecture or ISA) consists of all instructions and all
user-mode registers (the integer and floating point register
files, condition flags, stack pointer and program counter). ISA
specifications consist of instruction encodings, matching rules
to match encodings to opcodes and the semantics of instruction
execution.

The System Level Architecture defines Memory Translation
and Protection, Synchronous Exceptions (e.g., page faults
and system traps), Asynchronous Exceptions (e.g., interrupts),
Security (e.g., register banking and access protection of reg-
isters), and System Registers and System Operations (which
are used to control and read the status of all the system-
level features), In other words, the facilities needed to support
Operating Systems, Hypervisors and Secure Monitors.

The ARM architecture comprises three main processor
classes: “A-class” processors support Applications (character-
ized by having an operating system that uses address transla-
tion to provide virtual memory); “R-class” processors support
Real-Time systems that cannot handle the timing variability
associated with virtual memory and use memory protection
instead; and “M-class” microcontrollers are optimized for
programming interrupt-driven systems in the C language. The
A-class specification consists of two parts: AArch32 supports
32-bit programs and is generally backward compatible with
ARM’s traditional architecture; and AArch64 which supports
64-bit programs.

The A- and R-class architecture [9] share the same ISA and
exception model but have different memory protection/trans-
lation models. The M-class architecture [10] has a subset of
the A-class ISA but has significant differences from A-class
at both the Application Level and System Level.

A. ISA Differences between A/R- and M-class

The M-class architecture only supports the Thumb R© (aka
“T32”) variable-length instruction encodings whereas the A/R-
class architecture also supports the A32 and A64 encodings.

Much more significantly though, the specifications identify
certain instruction encodings as UNPREDICTABLE for which
a processor is free to do anything that can be achieved at the
current or a lower level of privilege using instructions that
are not UNPREDICTABLE and that does not halt or hang the
processor or parts of the system.

In the M-class architecture, many of the instruction encod-
ings which access the stack pointer (R13) or the program
counter (R15) are UNPREDICTABLE but the same encodings
are well defined in the A/R-class architecture. This is a
significant difference — it would be unsound to use the
A-class specification to reason about Thumb machine code
intended for an M-class processor.

More broadly, when performing formal verification, it is
essential to ensure that the specification version being used
matches the architecture version supported on the target pro-
cessor because later specifications are almost but not entirely
backward compatible. This is obvious but easily overlooked.

B. System Differences between A-, R- and M-class

The R/M-class architectures support memory protection based
on setting attributes and protection for a small number of
contiguous memory regions whereas the A-class architecture
supports both address translation and memory protection for
a large number of memory pages.

M-class processors automatically save the callee-save reg-
isters on the stack on taking an exception whereas A/R pro-
cessors require registers to be saved in software. This allows
M-class processors to respond more quickly to interrupts and
also allows exception handlers to be written in plain C with
no assembly language or special calling conventions. This
has a large impact on the architecture specification since it
introduces many corner cases associated with the effect of
triggering memory faults while saving or restoring registers.

162

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Architecture
Explorer
§III-B

Instruction Encodings §II

Instruction ASL §II

System ASL §II

ASL

Test Monitor ASL §IV-A1

System
Registers §III-D

Abstract Syntax Tree §III-G

IP-XACT §III-G

Verilog codegen

Callgraph §III-G

Interpreter

C++ codegen §IV-A2Directed Tests §IV-A

Random Tests §IV-B

Information Flow Analysis §IV-C

Test Coverage §IV-A4

Formal Spec §III-G

Trace Comparision §IV-B

Bounded Model Checker §IV-D

ARM CPU RTL

Fig. 1: Overview of specifications, tools, verification IP and testing. This flow was applied separately to the v8-A specification
and to the v8-M specification. Section numbers indicate which section primarily discusses each aspect.

M-class processors have an orthogonal set of 8 execu-
tion states composed of combinations of three properties:
privileged/unprivileged, secure/non-secure and handler/thread.
A/R-class processors have a more traditional set of nested
execution states EL0, EL1 (supervisor), EL2 (virtualization)
and EL3 (secure monitor) with increasing levels of privilege
at each level.

A consequence of these differences is that the M-class
system specification is completely different from the A/R-class
system specification.

III. EXECUTABLE SPECIFICATIONS

We faced five major challenges in turning ARM’s
documentation-based specification into an executable
specification: (1) Scale: ARM specifications are very
large; (2) Informality: ARM specifications are written in
“pseudocode”; (3) Gaps: key parts of the specification only
existed in natural language specification; (4) System Register
Specifications; and (5) Implementation Defined Behaviour.

A. ARM Specifications Are Large

One of the main challenges in creating machine-readable
specifications of the ARM Architecture is the scale of the
problem. The A and M-class architectures together consist
of over 6,000 pages of documentation, 1,570 instruction en-
codings, over 50,000 lines of pseudocode, over 4,500 system
register fields grouped into 772 system register, and 112
system operations. To this specification that ARM publishes,
we added an additional 8,190 lines of support pseudocode
which were required to make the execution executable. (A
more detailed breakdown of the size of the specification is
given in table 2a and table 2b.)

B. Pseudocode

A secondary challenge in creating a machine readable spec-
ification was that the bulk of the specification is written in
what the ARM documentation refers to as “pseudocode”.
For example, the T32 CMP instruction is specified with the

following encoding diagram and pseudocode in the v8-A
architecture. (The same instruction is UNPREDICTABLE in
v8-M if “m == 13”.)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 1 1 1 0 1 1 Rn (0) imm3 1 1 1 1 imm2 type Rm

CONDITIONAL
n = UInt(Rn); m = UInt(Rm);
(shift t, shift n) = DecodeImmShift(type, imm3:imm2);
if n == 15 || m == 15 then UNPREDICTABLE;
shifted = Shift(R[m], shift t, shift n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], NOT(shifted), ’1’);
PSTATE.<N,Z,C,V> = nzcv;

Fortunately for us, this “pseudocode” was fairly complete
and it appeared possible to implement a conventional parser,
typechecker and interpreter for pseudocode (a tool we call “Ar-
chitecture Explorer”). Through a process of experimentation,
discussion and negotiation with the architecture designers, we
were able to infer consistent indentation rules, precedence
rules, a type-system and semantics and to clean up the specifi-
cations to use the resulting simpler, more consistent language
that is now internally referred to as ARM Specification Lan-
guage (ASL).

At a high level, ASL is an indentation-sensitive, imperative,
strongly typed, first-order language with dependent types (to
reason about length of bit vectors), type inference, exceptions,
enumerations, arrays, records, no pointers. Unusually for an
otherwise simple language, ASL allows overloading of array
syntax for function calls: the use of “R[m]” and “R[n]”
on lines 4 and 5 of the example above are both function
calls. This syntactic sugar provides an initial impression that
registers (and memory) are simple arrays, while allowing one
to dig deeper and understand register banking, virtual memory,
etc. We refer readers to Fox and Myreen [1] or to ARM’s
specification [9, Appendix G] for a more detailed description
of ASL.

The initial cleanup of syntax and type errors resulted in
changes to approximately 12% of the lines of code but,

163

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

ARMv8-A ARMv8-M
AArch32 AArch64 Shared Support Spec Support

Instrs. 18318 5757 4998
Integer 23 352 246
Float Point 1179 953 76
Exceptions 1474 1611 235 781
Registers 310 446 398 2011 461
Memory 1584 1169 393 369 481
Debug 675 537 1103
Instr. Fetch 199 367 128
Test Monitor - - - 1323 - 1893
Misc. 1647 1137 2984 1678 415 1434

Total 24315 10657 5489 3200 9898 4990

(a) Size of ASL specification (lines of code)

v8-A v8-M

Registers 586 186
Fields 3951 622

Constant 985 177
Reserved 940 208
Impl. Defined 70 10
Passive 1888 165
Active 68 62

Operations 112 10

(b) Size of System Register specification

Fig. 2: Size of ARM Specifications

since ARM specifications are extensively reviewed before
release, these were all fairly low-grade errors: they confused
automatic tools but few were likely to confuse a human reader.
The process of cleaning up the specification also uncovered
a number of instances of “implement by comment” where
comments were used instead of pseudocode: these parts had to
be rewritten before the code could be executed. These simple
comments often turned out to be surprisingly complicated and
the process of writing code would identify corner cases or the
need to modify other parts of the specification.

C. Gaps in the specification

Some parts of the architecture were only defined in English
and the information to implement them was typically scattered
throughout the documentation. An example is the specification
of the “top-level” step of fetching an instruction, decoding
and executing it, and incrementing the program counter was
not written in ASL and the description was scattered across
the specification document. The exact specification of this
step took some time to develop as it includes details like
dealing with page faults that occur during instruction fetch, not
incrementing the PC after a branch instruction or exception,
conditional execution of instructions and its interaction with
UNDEFINED encodings, and testing for pending interrupts.

D. System Register Specification

The major negative surprise of this project was how hard it
was to specify something as apparently simple as a register.

The A-class architecture specification comprises 586 system
registers which are used to read the status of and to control
the behaviour of the processor (such as whether the MMU or
cache is turned on) and to perform operations such as flushing
the cache or invalidating the TLB. The main properties of these
registers are captured in the architecture specification by tables
specifying the opcode to access each register, its name, size
(32/64-bits) whether it is read-only and the reset value of the
register. For each register, there is a description consisting of a
register diagram which identifies the name and extent of any

used bits in the register. And each such field of contiguous
bits has a natural language specification.

The challenge in creating a machine-readable specification
for system registers is that different fields within the register
can behave in several different ways. After some experimen-
tation we settled on identifying five major types of field.
i) Constant fields have an architecture defined value and cannot
be changed.
ii) Reserved fields are not used in the current version of
the architecture but could be assigned a meaning in future
versions of the architecture. These are like constant fields but,
to maintain forward compatibility, software should not assume
that the field is constant and should avoid changing the value
of that field.
iii) Implementation Defined fields have an implementation
defined value that programs may read to determine whether
the processor has some ISA or system level feature.
iv) Passive fields behave like a global variable and simply store
the value last written to the field. The value written often
has a significant effect such as enabling address translation
but this effect is completely captured by the ASL functions
implementing the affected behaviour.
v) Active fields do not behave like a global variable: reading
the field may not see the last value written to the field; writing
to the field may be disabled by the value of some other register;
etc. These are used for everything from system timer registers
(which decrement every cycle) to allowing a hypervisor to
intercept interrupts targetted at the guest operating system.

Fields that are Constant, Reserved, Implementation Defined
or Passive are easy to describe completely and are described in
a simple table-based format but 68 of the fields of system reg-
isters are Active fields whose behaviour can only be captured
by writing ASL getter and setter functions to implement the
natural language specification. The process of implementing
registers with active fields proved to be quite error prone as
the behaviour of the fields was rather subtle.

It was also hard to find the correct design point. We chose
to identify just 5 classes of field but we could have identified
further common patterns within the Active class. For example,

164

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

there are some pairs of registers that have complementary ef-
fects such as enabling and disabling exceptions. If this pattern
is a one-off, it is probably best described as an Active register
but if the pattern occurs in several pairs of registers, then the
argument for recognizing it as a new class of field becomes
stronger. As the number of tools using the system register
specification grows, we expect that we will identify a number
of patterns that are useful to recognise explicitly because that
enables tools to make more use of the specification without
having to embed the ASL parser/interpreter.

One significant aspect of system registers not yet captured
in the executable specification is what Lustig et al. [8] call a
memory transistency model which captures places where the
specification allows reordering of writes to system registers
with respect to other instructions and requires insertion of
instruction barrier instructions (ISB) to restrict.

E. Implementation Defined Behaviour

The specification allows for some implementation defined
behaviour such as whether a particular feature is implemented
or the number of memory protection regions supported. This
behaviour is often specified by “stub functions” returning
booleans or an enumerated value and with a natural language
definition. We had to implement these stub functions before
we could execute the specification. In most cases, these feature
test functions could be implemented by testing a corresponding
implementation defined field.

F. Executable Specification

After creating all the tooling, bugfixes, etc. described above,
there were some further steps required to make the specifi-
cation executable so that it could be tested. We had to add
additional infrastructure such as generating decode trees for a
set of encodings to identify which instruction to execute; ELF
readers to load test programs into memory; a physical memory
implementation which allocates pages of memory on demand.
and breakpoint and trace facilities to use when debugging.

We also introduced a continuous integration flow where ev-
ery specification change runs regression tests. This was critical
for confining new code to the ASL subset of pseudocode.

G. Machine Readable Specifications

Our primary goal in doing the above was not to make the
specification executable but, rather, to improve its quality so
that the specification is useful to many potential users. To
support these uses, we generate a variety of machine-readable
outputs.
i) IP-XACT is a standard XML-based format for describing
registers in a chip [11]. It is used by debuggers needing to
view or change the value of a register.
ii) Callgraph summaries are convenient summaries of the
function calls and variable accesses performed by each in-
struction and function in the specification. One use of these
summaries is in generating a summary of the list of exceptions
that an instruction can raise — for inclusion in documentation.
iii) Abstract Syntax Trees are a complete dump of Architecture
Explorer’s internal representation after typechecking. We have

provided these to the University of Cambridge REMS group
who are in the process of transforming them into a form
suitable for formal verification of machine-code programs.

IV. TRUSTWORTHY SPECIFICATIONS

ARM spends considerable effort on reviewing specifications. It
also benefits from feedback from users of the specifications:
processor designers, verification engineers, implementers of
simulators, compiler writers, etc. Nevertheless, the sheer size
of the specification made it unlikely that the specifications are
bug-free. This was especially true of the relatively fresh v8-M
specification since it had not yet had the benefit of feedback
from users of the specification.

This Section describes the steps we have taken to test the v8-
A and v8-M specifications using testsuites, random instruction
sequences, information flow analysis and using bounded model
checking to compare against the Verilog implementation of
processors. One of the recurring themes of this project was
that this testing process improves the specification and our
trust in the specification — but it also improves the tools,
verification IP, etc. that is being used to test the specification
which creates a virtuous cycle of improving any other uses of
those tools and artifacts.

A. Using ARM Processor testsuites

ARM performs extensive testing of its processors and simu-
lators (it is estimated that more than 80% of the engineering
effort of designing a new processor is spent on testing the
processor). One part of this testing process is use of ARM’s
Architecture Validition Suite (AVS) which consists of pro-
grams that test the architectural conformance of individual
instructions, memory protection, exception handling and all
other aspects of the architecture. Excluding multiprocessor and
debug tests, the AArch64 AVS consists of over 11,000 test pro-
grams with a combined runtime of over 2.5 billion instructions;
the M-class AVS consists of over 3,500 test programs with a
combined runtime of over 250 million instructions. Almost all
of these tests were considered to be free of assumptions about
instruction timing or implementation defined behaviour. (ARM
has a large number of other tests which were less appropriate
to run because they are aimed at testing micro-architectural
performance optimizations in particular processors.)

Using ARM’s official Architecture Validition Suite has some
significant advantages: the suite is very thorough, checks many
corner cases, and has good control and data coverage of
the architecture; the suite is self-checking: each test prints
“PASSED” or “FAILED” when it runs; and, since the purpose
of the tests is to test processors, it was possible to compare the
behaviour against actual processors for additional confidence.
The primary disadvantage of using the AVS was that the
tests are “bare metal” tests that exercise the System Level
Architecture and require a large test harness to run.

As we started using Architecture Explorer to develop new
architecture extensions (such as the new security features of
v8-M), we encountered a chicken-and-egg problem: the AVS

165

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

is extended with new tests only once the architecture specifi-
cation is available but we were still writing the specification.
Worse, v8-M is not entirely backward compatible with the
previous architecture version so we could not even run the old
tests. This led us to use a hybrid approach: we temporarily
created a modified specification supporting the old memory
protection design so that we could use the old tests; and we
created a temporary test suite to test the new security features
of v8-M (see Section IV-C) before the official test suite was
developed. Once updated AVS tests became available, we
switched to using the official test suite.

1) Programmable Monitor and Stimulus Generator: Part
of the development of every ARM processor is creating a test
harness which allows the AVS to be run. This test harness
consists of a programmable monitor and stimulus generator
that allows programs to monitor their own behaviour at a very
low-level. The test monitor design dates back to the earliest
days of ARM and each successive architecture extension
typically adds new test features.

The monitor consists of 177 memory mapped registers of
which 45 are Active. The main features of the test monitor are
(i) Console FIFO for writing ASCII text to log file.
(ii) Memory attribute monitors which record the attributes of
memory accesses in a given range of addresses. This allows
test programs to verify that the MMU/MPU is correctly asso-
ciating attributes such as cacheability of an access with each
address. These checkers are repeated for each bus interface.
(iii) Memory abort generators to trigger a bus fault response
if the processor accesses a specified range of addresses.
(iv) Interrupt generators to test triggering, prioritization and
nesting of interrupts.
(v) Reset generators to schedule resets.

2) Optimizing the simulator: During this testing process,
we slowly built our capability from being able to execute
one instruction to being able to execute most usermode in-
structions, to being able to execute entire tests and then entire
testsuites. As we did so, we were increasingly limited by the
performance of our interpreter which initially ran at a few
hundred instructions per second. Over time, we have optimized
this in a variety of ways increasing performance to 5kHz (v8-
A) and 50kHz (v8-M). The main optimizations applied are: (i)
Memoizing a few critical functions associated with the current
configuration or execution state (this has not been yet been
applied to v8-A); (ii) Implementing a few critical arithmetic
functions as builtin primitives even if they can be defined
in ASL; (iii) Creating a C++ code generator and runtime
(including ELF reader, etc.).

3) Testing the specification: One of the issues found while
testing the specification initially manifested as a failing AVS
test. On closer inspection, we found a mismatch between
the English text and the pseudocode and that the test had
originally followed the pseudocode and ARM’s reference
simulator followed the English text. This mismatch had been
“fixed” by changing the test to match the simulator. Consulting
the architects, we learned that the pseudocode was correct and

the English text was wrong and so the English text, the test
and the simulator were fixed to match the architects’ intent.

The pass rate of our specifications on the AVS is summa-
rized in Table I. We have achieved a 100% pass rate for the
v8-A and v8-M ISA tests and for the v8-M System tests. For
the v8-A System tests, there remain some failing tests in areas
related to interprocessing (switching between 32-bit and 64-
bit modes) and prioritization of multiple exceptions within the
same instruction. These results omit debug and multiprocessor
tests which are just under 50% of the total number of tests.

ARMv8-A ARMv8-M

ISA
Integer 100% 100%
Floating Point 100% 100%
SIMD 100% 100%

System
Exceptions 100% 100%
Memory 99% 100%
Interprocessing 98% -

TABLE I: Pass rate for AVS testsuite

4) Testing the testsuite: Testing the specification with a
testsuite has the side-effect of testing the testsuite. We found
two classes of problems in the process of diagnosing test
failures. The first is that a test may depend on some property
not guaranteed by the architecture but which had been true in
every tested processor. For example, a test might check that a
reserved field of a register is always zero and will then fail on
later versions of the architecture. Secondly, many of the M-
class AVS tests depended on UNPREDICTABLE behaviour
but this had not been observed before because, in practice,
UNPREDICTABLE behaviour can depend on the particular
pipeline state when an instruction runs.

To improve testing of the AVS, we extended the interpreter
to collect line coverage information as it executes. A rare
example of a coverage hole we found was in a floating point
test which tested with inputs that produced the result +0.0 but
did not test with inputs that produced the result −0.0 — with
the result that one of the branches associated with rounding
was not being exercised. The AVS development team now
routinely measure the architectural coverage of testsuites.

B. Random Instruction Sequence Testing

Random Instruction Sequence (RIS) testing is a complemen-
tary technique to the directed testing of using hand-written
tests based on generating random sequences of instructions.
ARM’s RIS tool [12] uses templates that specify the desired
distribution of instructions, the likelihood of reuse of a given
register, etc. Automatically generating random tests is different
from hand-writing tests because it requires an accurate simula-
tor to define the correct behaviour of a test. Also, because RIS
generates random sequences of instructions, it is necessary to
run the same test on multiple systems (processors, simulators
or the specification) and compare execution traces. So at least
two models are needed to develop RIS tests.

166

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

We were able to use the executable specification as part
of the process for testing new RIS tests by extending the
simulator to generate a trace and extending the existing trace
comparision script to accept those traces. This process was
especially useful for the v8-M specification because the v8-M
support in ARM’s reference simulator was new and had not
been fully debugged. Using RIS to test the simulator against
the executable specification was an effective way of testing
the RIS tests, the simulator and the specification.

This process was able to uncover subtle errors in the
specification. For example, v8-M’s new security features splits
some of the system registers into two banked registers –a
non-secure register and a secure register– and the appropriate
register is automatically accessed depending on the current
security mode. But instructions that switch between secure
and non-secure registers start in one mode and end in a
different mode and the normally convenient automatic banking
mechanism obscures exactly which of the two registers is
being accessed. RIS testing found an error in the specification
of the Test Target (TT) instruction which queries the security
state and access permissions of a memory location.

C. Information Flow Analysis for v8-M

The most significant new feature of the v8-M microcontroller
specification is a set of security extensions to enable secure
Internet of Things applications.

To improve confidence in both the extensions and in the way
they were expressed in the ASL specification, we modified the
interpreter to generate dynamic dataflow graphs on which we
could perform information flow analyses. Most of the analyses
performed can be characterized as a non-interference property:
ensuring that non-secure modes cannot see secure data and that
non-secure data can only influence secure code in safe ways.

An example scenario tested in this process involved in-
formation leaks via interrupts. Interrupts automatically save
integer registers on the stack of the interrupted code and zero
the integer registers but, in order to keep interrupt latency
low, floating point registers are lazily saved on the stack only
when/if the interrupt handler uses a floating point instruction.
We wanted to ensure that lazy FP state preservation did not
introduce security holes. We wrote tests that iterated over all
combinations of initial mode, final mode, whether FP registers
had been modified and scanned the dynamic dataflow graph
for information leaks.

This form of testing caught two classes of bugs. First, it
caught bugs in how the architecture specification implemented
the architectural intent — resulting in fixes to how the speci-
fication was written. Second, and more importantly, it caught
bugs in the architectural intent by identifying potential security
attacks that had not been considered before.

D. Bounded Model Checking of Processors

We have been using both the v8-A and the v8-M architecture
specifications to perform bounded model checking of pipelines
for processors currently under development at ARM [6]. This
has primarily focused on verifying the ISA-implementation

parts of the processor, not the memory system, security
mechanisms or exception support. This process has been very
effective at detecting bugs in various stages of processor
development. But, besides verifying processors, it has another
important side-effect of performing a very thorough check
that the architecture specification and our tooling agrees with
how the processor implementors interpret the specification.
We found no errors in the published part of the specification
in this process but we did find a rather subtle bug in our
understanding of conditional UNDEFINED encodings and
UNPREDICTABLE encodings.

The M-class specification requires that conditional execu-
tion of an UNDEFINED instruction behaves as a no-op if the
condition does not hold and we had assumed that the same was
true for UNPREDICTABLE instructions. During verification
of a processor, the model checker detected an apparent bug
that involved a conditional UNPREDICTABLE encoding but,
through discussion between the processor designers and the
architects, we learned that there had been a recent clarifi-
cation of the architecture which said that conditional UN-
PREDICTABLE encodings are UNPREDICTABLE even if the
condition does not hold.

This error in our interpretation of the specification had
not been detected by testing because it is very, very hard to
construct useful tests of the UNPREDICTABLE instructions
because they are almost entirely unconstrained and can branch,
change registers, trigger exceptions, etc.

E. Summary

Large specifications are as likely to contain errors as large
programs so we have used many different approaches to test
the specifications. In the process, we realized that although
ARM publishes an official specification, the full requirements
are really distributed around many different places in the
company: the AVS suite, the reference simulator ARM uses
for processor verification, and the processor implementations.
The act of testing all these different instantiations of the
specification against each other has the effect of centralizing
this specification in a single location.

V. RELATED WORK

The most closely related work is that of Goel et al. [13]
who have created an executable specification of many key
parts of the x86-64 ISA and system architecture including
paging, segmentation and both user/supervisor levels. Their
model has been verified against real processors using the Pin
binary instrumentation tool and they have added a syscall
emulation layer to let them run real programs including
(amusingly) a SAT solver. This is a monumental piece of
work that sets the standard against which other architecture
specifications should be judged. Despite the similarities, our
different project priorities have led to many differences: (1)
They have a specification of user and supervisor levels, we
also have a specification of hypervisor and secure monitor
levels. (2) They have used their specification to formally
verify software using theorem proving, we have used our

167

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

specification to formally verify hardware using bounded model
checking. (3) They have implemented syscall emulation to let
them use user-level programs as tests, we have implemented a
test monitor and debugged the EL2/EL3 levels to allow us to
run ARM’s Architecture Conformance Suite which explores
the dark corners of the architecture by running bare-metal
programs. (4) They have focussed on modelling the x86-64
64-bit ISA, we have modelled the A64, A32 and T32 ISAs.
(5) They have consulted processor designers to understand
Intel’s architecture specification document, we have had all
our bugfixes and clarifications reviewed by ARM’s architects
and incorporated into ARM’s official architecture specification
document.

The most closely related ARM specifications are the
Fox/Myreen ARM v7-A ISA specification in HOL [1] and
Flur et al.’s ISA and concurrency specification in Sail [3] both
of which were tested against actual processors using random
and directed tests (8400 tests in Flur et al., 281,307 tests in
Fox/Myreen). In addition to user-mode instructions, our speci-
fication covers both the ARMv8-M architecture and the larger
ARMv8-A architecture, includes floating point, Advanced-
SIMD and the System Level Architecture. We have tested the
entire specification in multiple ways and with a larger range
of values and simulated more than 2.5 billion instructions in
the process. And we have used a model checker to compare
the ISA specification against actual implementations for all
instructions, all execution modes, all integer inputs and a
subset of floating point inputs [6].

Shi [14] extracted the ISA pseudocode from ARM’s v6
Architecture Reference Manual, automatically translated the
code to Coq and used that to verify that the ARM model in
the SimSoC simulator written in C faithfully implemented the
Coq specification. This is an impressive piece of work, and it
would be interesting to repeat their work using our new, more
trustworthy specification or to extend their proof to cover the
system level architecture.

The other major ARM ISA specification that we are aware
of is embedded in the CompCert compiler and is used in
the proof that the compiler faithfully translates the input C
program to ARM assembly code. This specification is limited
to a subset of the user-mode ARMv6 specification and there
is no published statement of how it was validated.

Hunt created a specification of the FM8501 processor [5]
and used it to formally verify the processor. The process of
formal verification greatly increases the trust we can place
in the corresponding parts of the specification because it
ensures that all the corner cases in both the processor and
the specification have been explored.

More broadly, anyone wrestling with a large specification is
obligated to find ways to verify that the formal specification
captures the (informal) requirements.

VI. CONCLUSIONS

Historically, ARM’s specification efforts have focused on a
single set of products: the ARM Architecture Reference Man-
uals [9], [10]. However, there are many more potential uses of

the specification if the specification is delivered in a flexible,
machine-readable format – for example, formal verification
of hardware and software, tools that manipulate instruction
encodings, debug tools, creating hardware verification tests.
Traditionally, all these other users manually transcribe parts of
the specification into some other notation: HOL, C, Verilog,
spreadsheets, etc. This process is laborious and error-prone
but, worse, it is fragmented: bugfixes or clarification found by
one group are not necessarily propagated to other groups or
to the master specification. Our primary goal in this project
was to enable formal verification of ARM processors against
the specification. But, by supporting as many of these uses
as possible, we created a virtuous cycle where bugfixes or
improvements were incorporated into the central specification
so that all users benefit from bugfixes as well as to amortize
the development effort across many uses.

This paper describes the steps required to create trustworthy
specifications of the full v8-M and v8-A architectures includ-
ing the instruction set architecture, memory protection and
translation, exceptions and system registers. While checking
that a formal specification captures the architects’ informal
intent is an unending process, we believe that our specification
is the most trustworthy and complete system specification of
any mainstream processor architecture.

We are currently working with Cambridge University on
a public release of our specification suited to verification of
machine code programs.

REFERENCES

[1] A. C. J. Fox and M. O. Myreen, “A trustworthy monadic formalization
of the ARMv7 instruction set architecture,” in Proc. Interactive Theorem
Proving ITP 2010, ser. LNCS, vol. 6172. Springer, 2010, pp. 243–258.

[2] X. Leroy, “Formal verification of a realistic compiler,” Commun. ACM,
vol. 52, no. 7, pp. 107–115, 2009.

[3] S. Flur et al., “Modelling the ARMv8 architecture, operationally:
concurrency and ISA,” in Proc. Principles of Programming Languages,
POPL 2016, 2016, pp. 608–621.

[4] M. Dam, R. Guanciale, and H. Nemati, “Machine code verification of
a tiny ARM hypervisor,” in Proc. Workshop on Trustworthy Embedded
Devices, ser. TrustED ’13. ACM, 2013, pp. 3–12.

[5] W. A. Hunt, “FM8501: A verified microprocessor,” ser. LNCS, vol. 795.
Springer, 1994.

[6] A. Reid et al., “End-to-end verification of ARM R© processors with ISA-
Formal,” in Proc. Computer Aided Verification (CAV), ser. LNCS, vol.
9780. Springer-Verlag, 2016, pp. 42–58.

[7] J. Alglave, L. Maranget, and M. Tautschnig, “Herding cats: Modelling,
simulation, testing, and data mining for weak memory,” ACM Trans.
Program. Lang. Syst., vol. 36, no. 2, pp. 7:1–7:74, 2014.

[8] D. Lustig et al., “Coatcheck: Verifying memory ordering at the
hardware-OS interface,” in Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS. ACM, 2016, pp. 233–247.

[9] ARM Ltd, ARM Architecture Reference Manual (ARMv8, for ARMv8-A
architecture profile). ARM Ltd, 2013.

[10] ——, ARM v7-M Architecture Reference Manual. ARM Ltd, 2006.
[11] IEEE, “IP-XACT, standard structure for packaging, integrating, and

reusing IP within tool flows,” IEEE Standard 1685-2014, 2014.
[12] B. Greene and M. McDaniel, The Cortex-A15 Verification

Story. http://www.testandverification.com/downloads/DVClub-
Jan-2012/Cortex-A15-Verification-Story-DVclub-final.pdf, 2011.

[13] S. Goel et al., “Simulation and formal verification of x86 machine-code
programs that make system calls,” in Formal Methods in Computer-
Aided Design, FMCAD, 2014, pp. 91–98.

[14] X. Shi, “Certification of an instruction set simulator,” Ph.D. dissertation,
University of Grenoble, July 2013.

168

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Equivalence Checking using Gröbner Bases
Amr Sayed-Ahmed1 Daniel Große1,2 Mathias Soeken3 Rolf Drechsler1,2

1Faculty of Mathematics and Computer Science, University of Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, Bremen, Germany 3Integrated Systems Laboratory (LSI), EPFL, Switzerland

{asahmed,grosse,drechsle}@informatik.uni-bremen.de mathias.soeken@epfl.ch

Abstract—Motivated by the recent success of the algebraic
computation technique in formal verification of large and op-
timized gate-level multipliers, this paper proposes algebraic
equivalence checking for handling circuits that contain both
complex arithmetic components as well as control logic. These
circuits pose major challenges for existing proof techniques. The
basic idea of Algebraic Combinational Equivalence Checking
(ACEC) is to model the two compared circuits in form of
Gröbner bases and combine them into a single algebraic model.
It generates bit and word relationship candidates between the
internal variables of the two circuits and tests their membership
in the combined model. Since the membership testing does not
scale for the described setting, we propose reverse engineering to
extract arithmetic components and to abstract them to canonical
representations. Further we propose arithmetic sweeping which
utilizes the abstracted components to find and prove internal
equivalences between both circuits.

We demonstrate the applicability of ACEC for checking the
equivalence of a floating point multiplier (including full IEEE-
754 rounding scheme) against several optimized and diversified
implementations.

Index Terms—Formal Verification, Equivalence Checking,
Gröbner Bases, Reverse Engineering, Floating-Point Multiplier.

I. INTRODUCTION

Arithmetic circuits are typically difficult instances for clas-
sical Boolean reasoning approaches that are based on, e.g.,
Binary Decision Diagrams (BDDs) or Boolean Satisfiability
(SAT), as they suffer from exponential worst-case complexity.
Boolean reasoning based on Gröbner bases (available with
algebraic computation packages) offers a robust mechanism
that verifies arithmetic circuits at gate-level (see, e.g., [1],
[2]) and their power has recently been demonstrated in
formally verifying large and optimized gate-level multipliers [3].
However, circuits that also contain control logic pose a major
difficulty for algebraic computation based reasoning techniques
and no satisfactory solution has yet been presented. In this
paper, we show techniques that allow to reason over circuits
which combine data-path and control logic using symbolic
computation reasoning. To the best of our knowledge, this is
the first full automated technique that formally verifies binary
floating-point circuits without any kind of case splitting or
other manual effort.

So far, verification using algebraic computation models the
circuit under verification as polynomials G = {g1, . . . , gk}
and tests the membership of the specification polynomial pspec
in G. The polynomials in G contain internal variables for all
gates in the circuit, whereas pspec is expressed only in terms
of the primary inputs and primary outputs (n input bits and

This work was supported in part by the German Research Foundation (DFG)
within the Reinhart Koselleck project DR 287/23-1, by the University of
Bremen’s graduate school SyDe, funded by the German Excellence Initiative,
by H2020-ERC-2014-ADG 669354 CyberCare, and by the German Academic
Exchange Service (DAAD). Also, we thank OneSpin Solutions for making
their EC tool available to us.

m output bits in total). pspec can be viewed as a map over
the finite integer space, i.e., pspec : Z2n → Z2m . Membership
testing is performed by reducing (dividing) pspec wrt. G. If
this reduction completes with no remainder, the circuit fulfills
the specification. During the reduction, it is possible that the
intermediate polynomials blow up which can be eluded by
applying intermediate rewriting strategies (see, e.g., [3]).

Motivated by the fundamental problem that not every circuit
specification pspec can be represented in a canonical and
abstract form over Z2n , we are interested in equivalence
checking, i.e., we want to prove the functional equivalence of
two circuits in the absence of a specification. This can be done
as follows: Assume the two circuits checked for equivalence
represent the functions f1(x1, . . . , xn) = (y1, . . . , ym) and
f2(x1, . . . , xn) = (z1, . . . , zm) and are given as two sets of
polynomials G1 and G2. Then we divide each polynomial
zj − yj for 1 ≤ j ≤ m—which formulates the equivalence of
each output bit—by polynomials from the combined model
G = G1 ∪G2. This naı̈ve method does not scale since during
the reduction the internal variables in the polynomials in G
cause for a tremendous overhead which can only be resolved
when the primary input variables xi appear in the polynomials.

This problem can be circumvented if one knows internal
equivalences in the two circuits which allows to put internal
variables into relation. Conceptually, this is similar to SAT
sweeping and as a consequence G is simplified. This ultimately
avoids a blow-up of the polynomials during reduction. The
difficulty is finding internal equivalences. To solve this problem
we propose reverse engineering techniques: First, expected arith-
metic word-level components such as multipliers and adders
are detected in the circuit using structural signatures. Then,
the proposed arithmetic sweeping uses the I/O boundaries of
detected word-level components to prove internal equivalences
and to prevent division blow-ups.

To further reduce verification runtime during the divisions
we propose decomposition and a general reduction rule that
allow more compact representations and semi-canonical repre-
sentations for different implementations of the same function.

The result is a new Algebraic Combinational Equivalence
Checking (ACEC) technique which is based on Gröbner bases.
In contrast to classical combinational equivalence checking [4],
[5], it can check the equivalence of two circuits which contain
different architectures of arithmetic units, e.g multipliers and
adders, as well as control logic parts. Our experimental
evaluation demonstrates the applicability of our algebraic
equivalence checking approach on several optimized floating-
point multipliers which cannot be verified by other proof
techniques.

II. PRELIMINARIES

Using concepts from algebraic geometry and symbolic
computation, we model the given combinational circuits with

169

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

a set of multivariate polynomials based on Gröbner bases and
we formulate the equivalence checking problem as testing the
membership of some relationships between these circuits using
the ideal membership concept. In the following, we define
common notations of these algebraic concepts based on [6].
Then, we present the Gröbner bases modeling and the ideal
membership testing algorithm.

A. Notation and Definitions

The ring of integers modulo 2 (Z2) is called a Boolean
ring. As is shown in [7], [8], theory of Gröbner bases can be
applied on Boolean rings, it is referred as a Boolean Gröbner
bases. For a Boolean polynomial ring Z2(x1, . . . , xn) =
Z2[x1, . . . , xn]/〈−x21 + x1, · · · ,−x2n + xn〉 of n Boolean
variables, the polynomials 〈−x2i + xi〉 are added to the
polynomial ring Z2[x1, . . . , xn] to keep the variables xi in the
Boolean domain. A monomial M = xα1

1 · · ·xαn
n is the power

product over the variables x1, . . . , xn. As for Boolean variables
x2i = xi, the powers αi are always equal to one. A polynomial
p = c1M1 + · · ·+ ctMt is a finite sum of terms, where each
term is the product of an coefficient ci and a monomial Mi.
The monomials of a polynomial are ordered according to a
monomial ordering ‘>’, such that M1 > · · · > Mt, the leading
term of the polynomial is lt(p) = c1M1, the leading monomial
is lm(p) = M1, and the leading coefficient is lc(p) = c1. We
denote tail(p) = p− lt(p) = c2M2 + · · ·+ ctMt.

In this work, the monomial order follows the reverse
topological order of the variables of the modeled circuit and the
coefficient ci ∈ Z for all i 6= 1, where the leading coefficient
lc(p) = c1 ∈ {−1, 1}. The coefficients ci are not limited to
{0, 1} as in Galios Field GF2, they could be arbitrary as shown
in [7] or integers as in this work.

For a set of polynomials P = {p1, . . . , ps} ∈
Z2(x1, . . . , xn), an affine variety V (p1, . . . , ps) is the set of all
solutions of the polynomial equations p1(x1, . . . , xn) = · · · =
ps(x1, . . . , xn) = 0. The affine variety depends not just on the
given set of polynomials, but rather on the ideal generated by
the polynomials. An ideal I = 〈P 〉 = {

∑s
i=1 hi · pi : hi ∈

Z2[x1, . . . , xn]} is generated by this set of polynomials P , and
we call P the bases (generators) of the ideal I . The ideal I may
have many other bases. The bases are different representations
of the set of polynomials P . One of these bases is called
Gröbner bases G = {g1, . . . , gŝ}, for which V (G) = V (I).
Gröbner bases reveal the properties of the ideal that allow to
solve the ideal membership testing problem in an algorithmic
fashion.

Definition 1: A polynomial division of two polynomials p
and g denoted as p

g−−−→+ r is performed as r = p− cM
lt(g)g.

If a non-zero term cM of p is divisible by the leading term of
g, then p reduces to r modulo g. Similarly, p can be reduced
(divided) wrt. a set of polynomials P to obtain a remainder
r, denoted p P−−−→+ r, such that no term in r is divisible by
the leading term of any polynomial in P .

Definition 2: A polynomial reduction method named
S-polynomial of polynomials p and g in a polynomial set P ,
is the combination Spoly(p, g) = L

lt(p)p−
L

lt(g)g, where L is
the least common multiple LCM(lm(p), lm(g)).

To compute the Gröbner bases G = {g1, ..., gŝ} for an ideal
I〈p1, . . . , ps〉, Buchberger’s algorithm constructs G in a finite

the number of steps by applying Spoly(p, g)
G−−−→+ r in every

step. Gröbner bases are computed if all Spoly(p, g)
G−−−→+ 0.

Lemma 1: Given a finite set G ∈ Z2(x1, . . . , xn), suppose
that we have p, g ∈ G such that LCM(lm(p), lm(g)) = lm(p) ·
lm(g). In other words, the leading monomials of p and g are
relatively prime. Then Spoly(p, g)

G−−−→+ 0 [6].
According to Lemma 1, a given polynomial set is a Gröbner

basis, if the leading monomials of all polynomials in the set
are relatively prime. By combining this lemma with the affine
variety concept of an ideal, we define the Gröbner bases of an
ideal as follows:

Definition 3: A finite subset G = {g1, . . . , gŝ} wrt. a
monomial order of an ideal I is said to be a Gröbner basis
of I if V (G) = V (I) and all leading monomials in G are
relatively prime.

A given ideal may have different Gröbner bases, where one
basis can be reduced to other bases by eliminating (substituting)
some of ideal variables based on the Elimination Theorem [6],
in the following, this process is named model rewriting. These
bases can be reduced again to a canonical representation of
the ideal that is called reduced Gröbner basis.

Definition 4: A reduced Gröbner basis for a polynomial
ideal I is a Gröbner basis G for I , such that for all gi ∈ G, no
term in gi is divisible by the leading term lt(gj) for all i 6= j.

Lemma 2: Let I 6= 0 be a polynomial ideal. Then, for a
given monomial ordering >, I has a unique reduced Gröbner
basis [6].

We utilize the uniqueness property of the reduced Gröbner
basis for canonical polynomial abstraction in Section IV.

The Ideal Membership Testing (IMT) decides whether a given
polynomial p lies in the Gröbner basis ideal G = {g1, . . . , gŝ}.
It applies a division algorithm to check that the remainder r
on dividing p by G is equal to zero. The division is denoted
p

G−−−→+ r.

B. Modeling a Circuit as Gröbner Basis
Logic gates are modeled by polynomials and signals as

Boolean variables. The polynomials of basic Boolean gates
are

z = ¬a =⇒ g := −z + 1− a

z = a ∧ b =⇒ g := −z + ab

z = a ∨ b =⇒ g := −z + a + b− ab

z = a⊕ b =⇒ g := −z + a + b− 2ab.

Each logic gate is modeled in a way that the gate output
variable z is described in terms of the gate input variables a, b.
The polynomial x2−x is added to the model for each variable to
enforce the Boolean domain. In practice, the ideal polynomials
〈−x2 + x〉 are replaced by reducing xk to x every time its
degree becomes greater than one during any computational
step. For example, the monomial x21x

3
2x3 is equal to x1x2x3

in the Boolean domain.
By ordering each variable of the model according to its re-

verse topological level in the circuit, the generated polynomials
satisfy Definition 3 by construction. Every polynomial is of the
form pi := xi+ tail(pi), where xi is the gate’s output variable
and tail(pi) are terms consisting of the gate’s input variables,
describing the function implemented by the gate. According
to this polynomial form, all leading monomials of the model
are relatively prime.

170

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

ai g6 g2

bi g5 si

ci−1 g3

g4 g1 ci

x1

x4x3

x2

Fig. 1. A simple full adder.

Example 1: Consider the full adder circuit implementing
the function si + 2ci = ai + bi + ci−1 shown in Fig. 1. Its
algebraic model is
g1 := −ci − x4x3 + x4 + x3 g2 := −si − 2x1ci−1 + x1 + ci−1

g3 := −x4 + x2ci−1 g4 := −x3 + aibi
g5 := −x2 − aibi + ai + bi g6 := −x1 − 2aibi + ai + bi

The specification polynomial1 is pr := −2ci−si+ci−1+bi+ai.
Ordering the polynomial variables in the reverse topological
order of the circuit yields ci > si > x4 > x3 > x2 > x1 >
ci−1 > bi > ai. Following this order, the leading monomials
of all polynomials will be relatively prime. E.g., the leading
monomial of g1 is ci, and it is relative prime to all other leading
monomials. According to Definition 3, the extracted algebraic
model is therefore a Gröbner basis.

Modeling the circuit directly as Gröbner basis polynomials
avoids Buchberger’s algorithm and makes it computationally
feasible to apply the membership testing.

C. Ideal Membership Testing
Given a specification (or relationship) polynomial pr and a

circuit model in form of a Gröbner basis G, pr is divided in ev-
ery iteration by some polynomial g ∈ G (see Definition 1). The
polynomial division can be seen as substituting the variables in
pr with the corresponding tail terms of the respective polynomi-
als in G. For example, given pr := x4x3+x1 and a polynomial
g := −x4 + x2x1, then r = pr − x4x3

−x4
g = x3x2x1 + x1,

where the polynomial division substitutes x4 in pr with x2x1.
The division (substitution) iterations are executed according
to a certain order, the substitution order. As in [1], [9], the
substitution ordering follows the reverse topological order of
the circuit variables.

Following Example 1, the extracted algebraic model is a
Gröbner basis, therefore the ideal membership testing of pr
can be applied. The substitution order will follow the reverse
topological order of the circuit:
pr

g1−−−−→ −si + 2x4x3 − 2x4 − 2x3 + ci−1 + bi + ai
g2−−−−→ 2x4x3 − 2x4 − 2x3 + 2x1ci−1 − x1 + bi + ai
g3−−−−→ 2x3x2ci−1 − 2x3 − 2x2ci−1 + 2x1ci−1 − x1 + bi + ai
g4−−−−→ 2x2ci−1biai − 2x2ci−1 + 2x1ci−1 − x1 − 2biai + bi + ai
g5−−−−→ 2x1ci−1 − x1 + 4ci−1biai − 2ci−1ai − 2ci−1bi − 2aibi +

bi +ai
g6−−−−→ 0 Since the final division result is 0, pr has been

proven.

III. ALGEBRAIC COMBINATIONAL EQUIVALENCE
CHECKING

This section introduces the proposed algebraic combinational
equivalence checking approach. Given two circuits C1 and C2

that represent the functions f1(x1, . . . , xn) = (y1, . . . , ym)
and f2(x1, . . . , xn) = (z1, . . . , zm), respectively, our aim is

1Please note that later in the paper we use polynomials which relate different
bit or word variables, so we call them relationship polynomials.

to show the equivalence of C1 and C2, i.e., (y1, . . . , ym) =
(z1, . . . , zm) for all x1, . . . , xn. We propose to solve this
problem using symbolic computation. Since the specification of
C1 and C2 may be unknown or since it may not be expressible
in a canonical and an abstract form over Z2n , we cannot use
previous work [1]–[3] that performs ideal membership testing
with respect to a given specification.

Instead we propose to represent C1 and C2 as polynomial
sets G1 and G2 and combine them into a single model
G = G1 ∪G2. We then formulate the problem as testing the
membership of relations between variables in C1 and C2 wrt.
G. An obvious choice for such a relation is the equivalence of
output signals yi = zi which can be expressed in a polynomial
as yi − zi = 0. However, reducing such a polynomial wrt. G
causes a tremendous overhead since the substitution of all the
internal variables in G1 and G2 will blow up the sizes of the
polynomials in G.

To overcome this problem we suggest to find internal
equivalences, i.e., polynomials that express equivalence of two
internal signals in G1 and G2. Reducing these polynomials wrt.
G causes a smaller overhead and simplifies G. This technique
is similar to SAT sweeping in combinational equivalence
checking [4] and we call it arithmetic sweeping in the following.
Arithmetic sweeping works as follows: for each internal
variable v1 in G1 we search for an equivalent variable v2
in G2, i.e., v1 and v2 represent the same function wrt. to the
primary inputs. We call such a pair (v1, v2) bit equivalence and
are able to substitute v2 by v1 in all polynomials. For some
internal variables we will not be able to prove equivalence to
another variable. These variables are eliminated by substitution
with proved bit equivalent variables of their transitive fan-in.

However, performing arithmetic sweeping on the overall
combined model G is not scalable. First, the number of
candidates for bit equivalences is too large, and second,
checking a pair of variables for equivalence that have a
large transitive fan-in may be too difficult. To circumvent
this problem, we first apply reverse engineering for two
main goals i) extracting and abstracting arithmetic word-level
components to canonical polynomials; ii) partitioning the
circuits G1 and G2 into smaller parts. The algorithm works
as follows: First, we try to find an instance of an arithmetic
word-level component both in G1 and G2 and abstract them to
canonical polynomials. If this is successful, we obtain an input
boundary and an output boundary for the component in G1 and
G2. The pairs of input boundaries and output boundaries are
candidates for word equivalences. Having them, we perform
arithmetic sweeping only in the transitive fan-in of the input
boundaries. If this ultimately proves that the input boundaries
are equivalent and we have proven that abstracted polynomials
of the two arithmetic components found by reverse engineering
are equivalent, we can merge the transitive fan-in of the output
boundaries from G, making the model significantly smaller.

Details on the algorithms of our ACEC are explained in
the remaining sections. In Section IV we show how to find
arithmetic word-level components using reverse engineering.
This also partitions the circuits into smaller parts based on
the word-level components and the respective transitive fan-in
of it. Both results are the input for the arithmetic sweeping.
Section V explains arithmetic sweeping to find (and prove)
internal equivalences in the transitive fan-ins of the detected

171

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

components’ input boundaries. Finally in Section VI, we
offer efficient polynomial representation based on functional
decomposition and a new general reduction rule to speed up
the different division steps.

IV. REVERSE ENGINEERING OF DATA-PATH UNITS

Key in ACEC is to find arithmetic components using reverse
engineering in order to reduce the model size in which
arithmetic sweeping is performed. Reverse engineering needs
to find equivalent components and abstract them to canonical
polynomials over integer field. The propagation of carry bits
between internal nets of data-path units is one of the main
properties that helps to locate such units. In the proposed
reverse engineering algorithm we exploit this property to extract
data-path units from the combined model G. According to our
observation, these carry bits are modeled as shared monomials
between polynomials of G. Continuing with Example 1,
the simple full adder can be modeled by two polynomials
g1 : −si+4ci−1biai−2ci−1bi−2ci−1ai−2biai+ci−1+bi+ai
and g2 : −ci − 2ci−1biai + ci−1bi + ci−1ai + biai. The
shared monomials ci−1biai, ci−1bi, ci−1ai, and biai model the
internal carry propagations of the full adder. The terms of these
shared monomials have another property. Their coefficients
have different signs, and they are multiples of each other. We
call terms with these properties carry terms.

To reveal carry terms, a rewriting scheme based on the
rewriting principles of [3] is proposed in Section IV-A. Note
that in the full adder example, carry terms are not visible in
the original model of the full adder. They can be only revealed
when the model is rewritten to two polynomials.

After rewriting the model, the reverse engineering algorithm
builds an adder network for every group of polynomials that
share carry terms. For each adder network which models a data-
path unit one canonical polynomial using Gaussian elimination
algorithm is derived, see Section IV-B.

A. Model Rewriting
The model rewriting schemes of [3] have shown an ability to

reveal vanishing monomials (monomials that always evaluate to
zero) as well as common monomials between the polynomials
model of a multiplier circuit. This revealing ability empowers
our reverse engineering algorithm to build adder networks for
different architectures of large scale multipliers and adders.
The proposed rewriting schemes combine the knowledge of the
circuit gates with the algebraic model. The first scheme XOR
rewriting rewrites the model using the S-polynomial method
such that the model depends only on inputs and output variables
of XOR gates whereas all other variables are substituted. The
second common rewriting scheme rewrites the model obtained
from XOR rewriting such that the model depends only on
variables that are used in more than one polynomial.

Applying these schemes on a control logic circuitry causes
a blow-up in the number of model terms since control
logic usually does not contain XOR gates which yields to
substitutions for large the number of the control logic variables.
To take advantage of these schemes for circuits which contain
data-path and control logic, we distinguish the control logic
part of a circuit by its multiplexers (MUXes) and disallow XOR
rewriting and common rewriting from substituting input and
output variables of MUXes. This guarantees that both schemes
will be applied only on the data-path logic. The polynomials

of the rewritten model describe functions of XORs, MUXes,
and the cone of gates which are bounded by inputs and outputs
of XORs and MUXes.

B. Abstracting Data-path Units to Canonical Polynomial
After rewriting G the algorithm builds different adder

networks from polynomials that share carry terms. It then
groups polynomials of G. A new polynomial joins a group, if
it shares a carry term with other polynomials in the group. For
example, the polynomials g0 and g1 are in the same group, if
one of them has the term −x0x1 and the second has the term
2x0x1. Groups of each extracted adder network are handled as
independent algebraic ideal. It is abstracted to one canonical
polynomial using Gaussian elimination.

Example 2: To illustrate the proposed approach, consider the
model of a 3-bit ripple carry adder implementing the function∑2
i=0 2isi =

∑2
i=0 2i(ai + bi).

s3 = c2 =⇒ g1 := −s3 + c2
c2 = (a2 ∧ b2) ∨ (a2 ∧ c1) ∨ (b2 ∧ c1) =⇒
g2 := −c2 −2c1b2a2 + c1b2 + c1a2 + b2a2

s2 = a2 ⊕ b2 ⊕ c1 =⇒
g3 := −s2 +4c1b2a2 − 2c1b2 − 2c1a2 − 2b2a2 + c1 + b2 + a2

c1 = (a1 ∧ b1) ∨ (a1 ∧ c0) ∨ (b1 ∧ c0) =⇒
g4 := −c1 −2c0b1a1 + c0b1 + c0a1 + b1a1

s1 = a1 ⊕ b1 ⊕ c0 =⇒
g5 := −s1 +4c0b1a1 − 2c0b1 − 2c0a1 − 2b1a1 + c0 + b1 + a1

c0 = a0 ∧ b0 =⇒ g6 := −c0 +b0a0

s0 = a0 ⊕ b0 =⇒ g7 := −s0 −2b0a0 + b0 + a0

Rewriting the model yields that polynomials g2, g3 have
common non-linear monomials (colored green/dashed box in
the example). The similar structural property can be seen
for equally colored terms of the polynomials g4, g5 and
polynomials g6, g7, respectively. To cancel the carry terms
between g3 and g2, Gaussian elimination is applied. It multiples
g2 by 2 and adds it to g3. The result is the polynomial
h1 := −2c2− s2 + c1 + b2 + a2 which represents a full adder
function. Applying the same step on other related polynomials
yields another two full adders h2 := −2c1− s1 + c0 + b1 +a1
and h3 := −2c0−s0 +b0+a0. Applying Gaussian elimination
again on the three full adder polynomials to cancel shared terms
and achieve a reduced Gröbner basis, will multiply h1 by 2 and
adds to h2. The result will be h4 := −4c2 − 2s2 − s1 + 2b2 +
2a2+c0+b1+a1. Finally, the reduced Gröbner basis polynomial
h5 := −8c2−4s2−2s1−s0 +4b1 +4a1 +2b1 +2a1 +b0 +a0
is derived by multiplying h4 by 2 and adding it to h3 for
canceling the shared monomial c0.

Lemma 3: Let Gr = g1, · · · , gt denote the generated Gröbner
basis by Gaussian elimination wrt. a unique monomial order >.
As Gr contains the one and only polynomial g1, then g1 is the
unique canonical representation of the function f implemented
by the adder network ideal.
Proof: Based on Lemma 2, for every ideal there is a unique
reduced Gröbner basis. Since the adder network ideal Gr,
which has been generated by Gaussian elimination, has only
one polynomial g1, no term in g1 is divisible by the leading
term of any other polynomial in Gr. Therefore Definition 4
of reduced Gröbner basis holds for Gr and g1 is a canonical
abstracted representation of the function f implemented by the
adder network ideal.

Please also note that to avoid the blow-up in the number of
terms during Gaussian elimination of large scale multipliers,

172

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

as illustrated in [1], [9], the elimination order must follow the
reverse topological order of the circuit variables.

In addition to abstracting data-path units, the reverse
engineering algorithm determines their inputs and outputs
boundaries. This works as follows: The algorithm extracts
this information from the original polynomials (ideal) of the
adder network. It uses a property of a Gröbner bases model
that a variable of a leading monomial of a polynomial is the
output variable of this polynomial. Based on this property, for
the ideal of an adder network, output variables of polynomials
that are not used as inputs for other polynomials in the ideal
are identified as the output variables of this adder network.
Finally, an output word for each abstracted polynomial can be
derived.

V. ARITHMETIC SWEEPING

Arithmetic sweeping aims to find internal equivalences which
avoids prohibitive run time during the polynomial division.
Of course when having identified candidates for internal
equivalence, it is still necessary to prove their equivalence
(which is also done using the same division algorithm for the
relationship polynomials of the candidates). Hence, to gain
an overall benefit we need i) promising candidates and ii)
moderate runtimes for the equivalence proofs. Our proposed
arithmetic sweeping reaches both goals as follows.

For i), the reverse engineering step provides arithmetic
components. From this we generate promising candidates based
on the I/O boundaries of these components. The algorithm
uses the I/O boundaries to partition the variables of the
combined model G into groups. Simulation deduces word
equivalence (wE; for details see below) candidates between
outputs of the arithmetic components. For every nominated wE
the partitioning of model variables is performed by classifying
two groups of variables. One for the transitive fan-ins variables
of the input boundaries of wE and the other are internal
variables of the two related arithmetic components. Deducing
only internal bit equivalences (bE; see below) between variables
in the same group increases the potential of equivalence.

For ii), the equivalence proofs become feasible for several rea-
sons. Arithmetic sweeping generates two types of relationships
which are bit equivalence (bE) pair and word equivalence (wR)
pair. bE describes the equivalence of a pair of variables (vi,vj)
and is formulated by the polynomial g := −vi + vj . The word
equivalence (wE) polynomial is formulated as g := B − B̂ for
the word pair candidate (B,B̂), where B = 2n−1bn−1+· · ·+b0
and B̂ = 2n−1b̂n−1 + · · ·+ b̂0. For each arithmetic component
we have determined an abstract canonical polynomial in
the reverse engineering step. The major advantage over SAT
sweeping is that the proof for the internal equivalences is
performed by dividing wE polynomials wrt. the abstracted
polynomials. For doing this, a new word model GW is created
and the abstracted polynomials are added to it as follows: For
every abstracted polynomial, an integer word variable B is
created and a polynomial −B+f(a1, · · · , am) is added to the
word model. The polynomial −B + 2n−1bn−1 + · · · + b0 is
used to interpret the equivalence between two output words B
and B̂, as shown in Lemma 4 of Section V-B. To summarize,
dividing wE wrt. abstracted polynomials has a major influence
on the performance of the technique—it avoids the exhaustive
cost of searching for equivalences between internal variables

of the data-path units which usually have a large the number
of non-equivalent variables in their transitive fan-ins.

A. Generating Relationship Polynomials

The choice of relationship candidates is always the main
problem of different equivalence checking techniques. ACEC
draws on the simulation approach of [10] and the extracted
data-path polynomials to deduce bit and word relationships.
Four steps are performed to generate relationship polynomials i)
nominating wE polynomials, ii) classifying the model variables
to groups, iii) generating bE polynomials, and finally iv) sorting
wE and bE polynomials in a relationship list.

Based on a fixed size of global simulation over the primary
inputs of G, word relationships between the output words of
the data-path polynomials are deduced. Two words build a wE
polynomial, if their integer values are equal under all simulated
assignments.

The approach classifies the variables of G to groups
according to wE polynomials. One wE polynomial categorizes
two groups, the first consists of all transitive fan-in variables
of the polynomial; and the second contains internal variables
which are bounded by outputs and inputs variables of wE.

Example 3: To illustrate this idea, consider a model which
has four extracted data-path units (DPU1, DPU2, DPU3, and
DPU4), as shown in Fig. 2. The simulation nominates two wEs,
one relates the output word of DPU1 and DPU2, the other
one is between DPU3 and DPU4. The approach classifies the
model variables into 5 groups i) a group for transitive fan-in
variables of DPU1 and DPU2, ii) a group which contains
internal variables of DPU1 and DPU2, iii) transitive fan-in
variables of the wE between DPU3 and DPU4, iv) their internal
variables, and v) the remaining variables of C1 and C2 which
are not classified in groups.

Classified groups of G and global simulation are used to
determine for every model variable vi a set of variables φi. We
have vj ∈ φi, if Boolean values of vi and vj are the same under
each of input assignments; and therefore vi and vj belong to
the same classified group. Finally, bE polynomials between
vi and other variables of φi are generated. We call them bE
polynomials of the variable vi.

After classifying model variables and generating wE and
bE relationships, these nominated relationships are sorted
topologically wrt. the circuit and their leading variables. The
sorting procedure aims to test a wE polynomial after testing
all bE polynomials of variables in its transitive fan-in group.
First, the wE polynomials are sorted topologically. Next, the
procedure iterates over the wE polynomials for inserting in the
list for every wE i) bE polynomials of variables in the transitive
fan-in group of this wE, ii) the wE polynomial itself, then iii)
bE polynomials of variables in its internal group. Finally, the
bE polynomials of remaining variables that are not included
in groups that are related to wEs, are inserted in the end of
the list.

B. Testing Membership of Internal Relations

During the testing of internal relationships, the approach
calls the IMT algorithm to divide every polynomial pr from
the relationship list wrt. G or GW , if pr is a bE polynomial,
the division is done wrt. G, otherwise is performed wrt. GW .
Based on the remainder result of dividing pr, the approach

173

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

DPU2DPU1

DPU3 DPU4

C1 Netlist C2 Netlist

Transitive Fan-in Transitive Fan-in

Fig. 2. Schematic of a combined model including word relationships

eliminates or merges variables of pr from the models G and
GW .

The merging decision is taken, in the case that the remainder
result of dividing pr is equal to zero. The approach merges
every two variables of pr which are derived to be functionally
equivalent to one variable. In case that pr is a wE polynomial,
equivalence is derived based on the following lemma.

Lemma 4: Given the equivalent of two integer words A =
2n−1an−1 + · · ·+ a0 and B = 2n−1bn−1 + · · ·+ b0. If A and
B have the same number system and the number system is not
redundant, then the bit variables ai and bi which have same
weights (coefficients) are equivalent.

Merging results are reducing the number of polynomials
in G, these merged variables are considered new primary
inputs, therefore polynomials of their transitive fan-in variables
are removed from G. Continuing with the previous model
example, after deriving the equivalences between corresponding
output variables of DPU1 and DPU2, merging equivalent
variables will produce a compact version of G. Polynomials
that model DPU1 and DPU2 are removed, in addition to
those which model their transitive fan-in variables. In order
to avoid redundant divisions, the remaining bE polynomials
which test the already merged variables will be removed from
the relationship list.

A variable of the model that has no functional equivalences
is eliminated by substituting it with the leading terms of
its polynomials which are functions in proved bit equivalent
variables. The elimination decision will be taken for variables
vi of pr. If the remainder of dividing pr is not equal to zero,
and there are no more untested bE or wE polynomials in
the list which are related to vi. These eliminations facilitate
the division process of next relationships. It increases the
number of shared input variables of polynomials of G which
simplifies the division process of pr wrt. G. For example,
dividing pr : −vi + vj wrt. a model that has polynomials
g1 : −vi + x1x2 + x3 and g2 : −vj + x1x2 + x3 will be
simplified to a subtraction operation. The remainder of the
division will be x1x2 + x3 − x1x2 − x3 = 0.

VI. EFFICIENT POLYNOMIAL REPRESENTATION

The polynomial is the heart of the algebraic computation
technique. An efficient representation of a polynomial has a
major impact on the performance of any algebraic algorithm.
To circumvent a blow-up in the number of polynomial terms
for representing different Boolean functions, we propose i) a
decomposition method which reduces the number of terms
in polynomials significantly for some Boolean functions, and

ii) a general reduction rule to cancel redundant terms of the
polynomial. The decomposition method and the reduction rule
offer semi-canonical representations which simplify the division
of the IMT algorithm.

A. Different Decompositions
Inspired by decomposition types of decision diagrams [11],

we enhance representations of polynomials by considering two
decomposition types which are:

f = f|x=0 + x(f|x=1 − f|x=0) positive Davio (pD)
f = f|x=1 + (1− x)(f|x=0 − f|x=1) negative Davio (nD),

where x denotes a Boolean variable, the functions are combined
with addition, subtraction, and multiplication operations.

Our observation is that polynomials have been typically
represented by pD decomposition. This obstructs a compact rep-
resentation for some Boolean functions like a chain of OR gates.
For example, consider a 4-input OR function f(x0, x1, x2, x3),
its polynomial representation that follows only pD will be
f = x0 +x1 +x2 +x3−x0x1−x0x2−x0x3−x1x2−x1x3−
x2x3 + x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3 − x0x1x2x3.
By decomposing f using nD for all of its variables, it will
be f = 1− x̄0x̄1x̄2x̄3, where x̄i = 1− xi. For the n-bit OR
function, a polynomial which follows pD consists of 2n − 1
terms, while nD polynomial has only two terms. Representing
a Boolean function with less the number of terms has a major
influence on reducing the number of addition, subtraction, and
multiplication operations, therefore it enhances significantly
the performance of any symbolic computation algorithm. For
applying these decompositions, we add to the model negation
version v̄i for every variable vi in the model, in addition to
the polynomials g := −v̄i − vi + 1.

As known from the field of decision diagrams, the choice
of the type of the decomposition and the order of the variables
plays a key role for the size of the diagram. In this work, we
fix the order of the variables to the reverse topological order
and we propose an approach to determine the Decomposition
Type (DT) of each variable. As the main goal of applying
different decompositions is reducing the number of polynomials
terms, the decision of DT is taken based on this factor and the
structure of the circuit.

For this purpose, we modify the modeling way of the circuit
that is explained in Section II-B as follows:

z = ¬a =⇒ g := −z + ā

z = a ∧ b =⇒ g := −z + ab

z = a ∨ b =⇒ g := −z + 1− āb̄

z = a⊕ b =⇒ g := −z + a + b− 2ab,

such that the DT of input variables of inverters and OR gates
is nD, for AND and XOR gates, it is pD. As shown in
this modeling, one variable may have more than one DT in
the model. During model rewriting, see Subsection IV-A, a
polynomial g is rewritten by substituting one of its variables
vi, as result of this step, another variable vj in g may have
different decomposition types – the variable vj and its negation
v̄j are within the same polynomial g. In this case, we unify the
DT of vj based on the one which achieves the higher reduction
on number of terms in g. In case of n variables with different
DTs within same polynomial, the possible combinations of DTs
for these variables are 2n. For example, consider a polynomial
with two variables v1 and v2, the possible decomposition

174

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

combinations will be (v1, v2), (v1, v̄2), (v̄1, v2), or (v̄1, v̄2).
Trying all combinations to find the best representation leads
to a prohibitive run time because of calling the decomposition
algorithm 2n times. To bypass this problem, our approach takes
the decomposition decision of every variable independently
from others. This restriction on choosing DTs accelerates
significantly the run time of the proposed approach to find
compact representations for polynomials. In this work, we have
used an implemented decomposition algorithm which designed
for decision diagrams [12]. For this, we have implemented a
two directions parser. It parses a function from a polynomial
to a K*BMD and vice versa.

B. General Reduction Rule

A key observation in [3] is the significance of applying
a logic reduction rule to cancel redundant terms and avoid
blow-up of these terms during the division algorithm. The
rule exploits that (a ⊕ b) · (a ∧ b) = 0 for all a and b and
therefore can be used to remove terms from polynomials. If,
e.g, f = a⊕ b and h = a∧ b, any term containing both f and
h can be removed. We propose to generalize this rule.

Let X be a set of variables and let f and h be two Boolean
functions over the variables X1 ⊆ X and X2 ⊆ X , respectively,
with X1 ∩X2 6= ∅. If there exists exactly one assignment to h
such that it evaluates to true, it may be possible that g simplifies
to a constant value when assigning the common variables
according to that assignment. To illustrate the concept consider
a multiplexer function f(a, b, c) = ac−bc+b and h(a, b) = ab.
Clearly h = 1, only if a = b = 1, and f(1, 1, c) = 1. Therefore,
we conclude that fh = h and we can simply polynomials
accordingly. For a polynomial g := −v1v2fhv3 + v1v2hv3,
by applying this rule on the monomial v1v2fhv3, it simplifies
to v1v2hv3 and the polynomial g will be evaluated to g =
−v1v2hv3 + v1v2hv3 = 0. This reduction rule is called one
assignment rule.

An approach to apply the one assignment rule is as follows:
1) Searching for monomials in the algebraic model that

have two variables of functions f and h which shared
some of their inputs, such that the function h has one
satisfiable assignment.

2) Reducing f after assigning values to shared inputs which
evaluate h to one.

3) If f is equal to zero or one, then rewriting the monomial
by substituting f with its value.

VII. EXPERIMENTAL EVALUATION

ACEC is implemented in C++. We compared it to the
equivalence checkers of ABC [13] tool and a commercial
tool (OneSpin EC-360). The experiments were carried out on
an Intel(R) Core(TM) i5-3320M CPU (2.6 GHz, 16 GByte)
running Linux.

We applied ACEC to the problem of verifying a floating-
point (FP) multiplier. It computes the operation P = A×B for
two FP operands A = (−1)sa × 2ea × fa and B = (−1)sb ×
2eb × fb. sa denotes the sign, ea the exponent, and fa the
significand including the implicit bit of the operand A (similarly
for B and P). The operation can be defined as sp = sa ⊕ sb
and 2ep × fp = RND(2ea+eb × fa × fb). RND is the round
and normalize function according to the IEEE standard for
floating-point arithmetic (IEEE Std 754-2008).

Simple
Multiplier

Complex
Multiplier

EXP
Adder

EXP
Adder

Normalize & Round
Optimized

Normalize & Round

Left Hand Side Right Hand Side

eaeb eaebfafb fafb

fpep f̂pêp

Fig. 3. Compared FP Multiplier Circuits

We have scaled and modified the structure of the FP
multiplier unit of the open cores design module DOUBLE-
FPU [14] for building dissimilar FP instances. As shown
in Fig. 3, the compared circuits have different multiplier
architectures and their control logic units are optimized
distinctively. The multiplier units are generated using the
online tool Arithmetic Module Generator [15]. These generated
circuits2 were synthesized from Verilog to gate level netlists
using Yosys [16].

The multiplier architectures are categorized according to 1)
the type of the partial products generator, 2) the partial products
accumulator, and 3) the last stage adder. In our experiments, we
use a partial products generator, namely simple partial products
(SP). The types of partial products accumulators are array (AR),
(4,2) compressor tree (CT), and wallace tree (WT). The last
stage adder are ripple carry adder (RC), carry look-ahead
adder (CL), and brent-kung adder (BK).

In Table I, we demonstrate the runtimes of checking the
equivalences of divergent FP multipliers against the same circuit
reference. The reference consists of a simple multiplier (SP-
AR-RC) and unoptimized normalize round unit. While the
compared circuits contain complex multipliers and round units
which are optimized using the Yosys option share3. The first
column of Table I shows the type of the multiplier architecture.
The second and the third columns give the number of bits
of an FP operand of the circuit in addition to the size of its
significand and its exponent according to the IEEE standard.
The next three columns provide the runtimes. The timeout (TO
in the table) is set to 24 hours. The experimental results clearly
demonstrate the advantage of ACEC in verifying circuits that
include data-path and control logic. While other equivalence
checking tools can verify the correctness up to 16 bits, we
are able to verify the correctness of a single precision binary
floating-point multiplier (32 bit).

Table II shows some statistics about the algorithms of ACEC
for checking the equivalence of the FP multiplier instances that
contain the multiplier architecture SP-WT-CH. For the reverse
engineering algorithm, it shows the runtime of rewriting the
combined model G; the runtime of extracting and abstracting
data-path units; and the number of the extracted units. These
results show that the reverse engineering algorithm extracts

2The benchmarks, binary of our tool, and log files are available at
http://www.informatik.uni-bremen.de/agra/eng/asc.php

3It merges shareable resources into a single resource. A SAT solver is used
to determine if two resources are shareable

175

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

TABLE I
RUNTIMES FOR CHECKING FP MULTIPLIERS EQUIVALENCES

Multiplier FP operand Significand/Exponent Commercial ABC ACEC
Architecture # bits # bits (h:m:s) (h:m:s) (h:m:s)

SP-CT-BK 16 13/3 00:08:50 TO 00:01:42
SP-WT-CH 16 13/3 00:09:08 TO 00:01:44

SP-CT-BK 24 21/3 TO TO 00:17:49
SP-WT-CH 24 21/3 TO TO 00:25:58

SP-CT-BK 32 25/7 TO TO 02:24:01
SP-WT-CH 32 25/7 TO TO 03:41:43

TABLE II
STATISTICS OF ACEC FOR EQUIVALENCE CHECKING OF FP MULTIPLIERS

bits ACEC Algorithms
Reverse Engineering

Model Rewriting Extract & Abstract # Data-path
(h:m:s) (h:m:s) Units

16 00:00:46 00:00:23 21
24 00:11:56 00:10:04 23
32 00:32:50 02:10:30 23

Arithmetic Sweeping

Variables # Proved Runtime
of G Equivalences (h:m:s)

16 1888 401 00:00:27
24 4440 666 00:03:36
32 5889 854 00:58:04

Efficient Polynomial Representation

Decomposition Logic Reduction
Reduced Terms # Eff./Total Calls # Canceled Terms

16 2400 514/3477 2916
24 9732 1013/8684 17153
32 16317 1345/12477 36390

more candidates for data-path units than the expected number.
For two combined FP multipliers, six data-path units should
be extracted, two significand multipliers, two exponent adders,
and two incrementers in the rounding stages. Also, the results
show that most of the run-time of ACEC is spent in reverse
engineering (on average about 65%).

For arithmetic sweeping, Table II gives total the number of
variables of the combined model; the number of proved equiva-
lences between variables of the two compared circuits; and the
time spent by the sweeping algorithm. The results demonstrate
that variables of G which have functional similarities between
each other account for less than 45% of the total the number
of variables. Further, the table shows the number of saved
terms by the decomposition of polynomials; the number of
effective (Eff.) calls for the decomposition algorithm wrt. the
total calls for the algorithm (effective calls are those which
save terms of polynomials), and the number of canceled terms
by the reduction rule.

VIII. RELATED WORK

One noteworthy challenge is developing a fully automated
technique which proves that a floating-point design is in
consistence with the IEEE Standard for Floating-Point Arith-
metic (IEEE Std 754-2008). Theorem provers have been
applied extensively to verify the properties of floating-point
designs. Although a lot of automation has been added and
floating-point libraries have been created to avoid repetition
of proofs, theorem proving methodology still requires an
enormous amount of manual effort, expert knowledge, and high
understanding of the design [17]. The paper by Jacobi [18] is
the most automated work up to today, however, it skips the
hardest part to verify, the multiplier.

As mentioned already in the paper all the existing works
(e.g. [1]–[3], [9]) using Gröbner bases for circuit verification
only target pure arithmetic components w/o control logic.

The recently proposed reverse engineering algorithms [19],
[20] for the extraction of arithmetic word level components
from a gate-level netlists are not applicable to designs with a
non-arithmetic combinational logic attached to the output.

IX. CONCLUSION

In this paper we have presented a new algebraic equivalence
checking technique for checking the equivalence of circuits
that combine data-path and control logic. The technique
utilizes a new reverse engineering algorithm to extract and
abstract arithmetic components from the combined model of the
Gröbner bases representation of the compared circuits. Based
on input and output boundaries of the abstracted components
the proposed arithmetic sweeping deduces less and promising
candidates for bit and word equivalences between the compared
circuits. The technique circumvents the blow-up in the number
of terms of polynomials during the utilized algorithms by
offering different types of decompositions for polynomials
and using an efficient reduction rule. Experimental results
demonstrated the efficiency of our technique for the equivalence
checking of large floating-point multipliers which cannot
be verified with existing Boolean combinational equivalence
checking techniques.

For future work we want to investigate canonization for
control logic as well as managing the membership testing for
non-equivalent circuits.

REFERENCES
[1] F. Farahmandi and B. Alizadeh, “Gröbner basis based formal verification of

large arithmetic circuits using Gaussian elimination and cone-based polynomial
extraction,” MICPRO, vol. 39, no. 2, pp. 83–96, 2015.

[2] T. Pruss, P. Kalla, and F. Enescu, “Efficient symbolic computation for word-level
abstraction from combinational circuits for verification over finite fields,” TCAD,
vol. 35, no. 7, pp. 1206–1218, 2016.

[3] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler, “Formal
verification of integer multipliers by combining Gröbner basis with logic reduction,”
in DATE, 2016, pp. 1048–1053.

[4] A. Kühlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust boolean reasoning
for equivalence checking and functional property verification,” TCAD, vol. 21,
no. 12, pp. 1377–1394, 2002.

[5] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, “Improvements to combi-
national equivalence checking,” in ICCAD, 2006, pp. 836–843.

[6] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms. Springer,
1997.

[7] Y. Sato, S. Inoue, A. Suzuki, K. Nabeshima, and K. Sakai, “Boolean Gröbner
bases,” Journal of symbolic computation, vol. 46, no. 5, pp. 622–632, 2011.

[8] A. Nagai and S. Inoue, “An implementation method of boolean Gröbner bases and
comprehensive boolean Gröbner bases on general computer algebra systems,” in
International Congress on Mathematical Software, 2014, pp. 531–536.

[9] M. Ciesielski, C. Yu, D. Liu, and W. Brown, “Verification of gate-level arithmetic
circuits by function extraction,” in DAC, 2015, pp. 52:1–52:6.

[10] E. Goldberg, M. Prasad, and R. Brayton, “Using SAT for combinational equiva-
lence checking,” in DATE, 2001, pp. 114–121.

[11] R. Drechsler and D. Sieling, “Binary decision diagrams in theory and practice,”
International Journal on Software Tools for Technology Transfer, vol. 3, no. 2, pp.
112–136, 2001.

[12] R. Drechsler, M. Herbstritt, and B. Becker, “Grouping heuristics for word-level
decision diagrams,” in ISCAS, vol. 1. IEEE, 1999, pp. 411–414.

[13] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength verifica-
tion tool,” in CAV, 2010, pp. 24–40.

[14] D. Lundgren, “Double precision floating point core verilog,” available at http:
//opencores.org/project,double fpu, 2016.

[15] “Arithmetic module generator based on ACG,” available at http://www.aoki.ecei.
tohoku.ac.jp/arith/, 2016.

[16] C. Wolf, “Yosys open synthesis suite,” available at http://www.clifford.at/yosys/,
2016.

[17] A. Slobodová, Challenges for formal verification in industrial setting. Springer
Berlin Heidelberg, 2007.

[18] C. Jacobi, k. Weber, V. Paruthi, and J.Baumgartner, “Automatic formal verification
of fused-multiply-add FPUs,” in DATE, 2005, pp. 1298–1303.

[19] M. Soeken, B. Sterin, R. Drechsler, and R. Brayton, “Simulation graphs for reverse
engineering,” in FMCAD, 2015, pp. 152–159.

[20] C. Yu and M. Ciesielski, “Automatic word-level abstraction of datapath,” in ISCAS,
2016, pp. 1–6.

176

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Accurate ICP-based Floating-Point Reasoning
Karsten Scheibler∗, Felix Neubauer∗, Ahmed Mahdi†, Martin Fränzle†,

Tino Teige‡, Tom Bienmüller‡, Detlef Fehrer§, Bernd Becker∗
∗Chair of Computer Architecture, University of Freiburg, Germany

†Research Group Hybrid Systems, Carl von Ossietzky University of Oldenburg, Germany
‡BTC Embedded Systems AG, Oldenburg, Germany

§Sick AG, Waldkirch, Germany

Abstract—In scientific and technical software, floating-point arith-
metic is often used to approximate arithmetic on physical quantities
natively modeled as reals. Checking properties for such programs
(e.g. proving unreachability of code fragments) requires accurate
reasoning over floating-point arithmetic.

Currently, most of the SMT-solvers addressing this problem class
rely on bit-blasting. Recently, methods based on reasoning in interval
lattices have been lifted from the reals (where they traditionally
have been successful) to the floating-point numbers. The approach
presented in this paper follows the latter line of interval-based
reasoning, but extends it by including bitwise integer operations and
cast operations between integer and floating-point arithmetic. Such
operations have hitherto been omitted, as they tend to define sets
not concisely representable in interval lattices, and were consequently
considered the domain of bit-blasting approaches. By adding them
to interval-based reasoning, the full range of basic data types and
operations of C programs is supported. Furthermore, we propose
techniques in order to mitigate the problem of aliasing during
interval reasoning.

The experimental results confirm the efficacy of the proposed
techniques. Our approach outperforms solvers relying on bit-blasting
as well as the existing interval-based SMT-solver.

Index Terms—SMT, floating-point, dead-code detection

I. INTRODUCTION

Already with the advent of digital computing in the 1940s, the
need arose for encoding and manipulating real-valued quantities
by sufficiently densely spaced discrete approximations and their
pertinent operations. The two immediate suggestions, namely to
employ equidistant quantization and integer encodings (today
known as fixed-point representation) or alternatively to provide
wider value ranges by scaling a fixed-point mantissa with a
variable integer exponent (called floating-point representation)
have since remained the dominant technical solutions – while
any alternatives, like exact handling of fractions, stay properly
confined to niche applications only. Despite being conceived
and implemented as early as Zuse’s Z3 computer completed
in 1941, floating-point numbers are still the method of choice
for representing real-valued quantities in scientific and technical
computing.

Given that in most applications floating-point numbers are just
substitutes for the physical entities they are meant to represent
(e. g. signal values), there is a long-standing debate in the formal
verification community as to:

1) whether automatic analysis tools should either manipulate
abstract algorithms over the reals neglecting their imple-
mentation details (a stance usually taken in the hybrid
systems community), or

2) evaluate properties of the actually implemented algorithms
including the peculiarities of their machine data types (a
position frequently encountered in the program analysis
community), or

3) even combine the first with the second in a variety of forms,
e. g. in models of embedded feedback control treating

environmental entities as reals while manipulating their
computational images as floats.

From our perspective, there is no definite answer to these issues,
as the adequacy of selecting a certain variant of arithmetic
clearly depends on the context, which may cover parts of both:
the physical environment as well as the embedded program. In
our satisfiability-modulo-theory (SMT) solver iSAT3, we have
consequently embedded support for the reals and for various float
and integer formats, plus the necessary casts in between for being
able to relate them within logical expressions.

The interesting fact about such a combination bridging math-
ematical and computational arithmetic theories is that it crosses
the border between two fundamentally different implementation
paradigms in SMT solving. On the one hand, floating-point
reasoning has mostly been implemented in SMT-solvers via so-
called bit-blasting (see e. g. [1]) – reducing constraint problems
over the floats to propositional SAT and its corresponding solvers.
On the other hand, the reals are not immediately amenable to such
bit-blasting – which has led to set-based methods for handling
their models in constraint solving. Various connections between
the two worlds have been identified and exploited over the years,
like
• DPLL(T) and CDCL(T) algorithms for SMT solving [2],
• “logical arithmetic” [3] and interval constraint propaga-

tion [4] traversing interval lattices over the reals,
• the iSAT [5] and ACDCL [6] algorithms unifying CDCL-

style SAT-solving with constraint propagation in lattices.
Despite this, the basic approaches have until recently remained
dichotomous in the SMT community: set-based reasoning is for
the reals and bit-blasting for the floats. Only very recently Brain
et al. [7] have demonstrated that set-based reasoning exploiting
the lattice structure of floating-point intervals in an ACDCL
(abstract conflict-driven clause learning) scheme can efficiently
solve floating-point constraint systems. The price for avoiding
bit-blasting, however, was a confinement to “usual” arithmetic
operations, like addition, multiplication, etc. – thereby avoiding
support of bitwise operations and casts between types, which tend
to define sets not concisely representable in interval lattices. As
such operations are regularly encountered in actual programs, this
particular approach does not yet pose a threat to the predominance
of bit-blasting approaches for the analysis of floating-point con-
straints derived from program analysis.

We address that issue by providing an SMT-solver that (1)
scales well on floating-point dominated arithmetic constraint
problems, (2) supports all kinds of type casts and bitwise opera-
tions usually encountered in imperative programs, and (3) permits
to reason about machine data types as well as real numbers, as
necessary for the analysis of actual embedded control. Therefore,
this paper presents the extensions we added to iSAT3 in order to
obtain an arithmetic SMT-solver that exploits abstract, set-based

177

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

reasoning – yet reconciles it with support for the full range of
basic data types and operations of, e. g., C programs.

The experimental results obtained on various industrial bench-
marks confirm the efficacy of the proposed techniques. Especially
on unsatisfiable constraint instances (which are relevant for our
application domain of reliably detecting subtly data-dependent
unreachability of code fragments in embedded C code) our
approach consistently outperforms current solvers relying on bit-
blasting as well as the existing ACDCL-based floating-point SMT-
solver.

Structure of the paper.: After introducting the preliminaries
and iSAT3 in Section II, we describe our approach in Section III.
Experimental results are discussed in Section IV, before we
conclude the paper in Section V.

II. ISAT3
In the following we will denote Boolean variables with b,

integer-valued variables with i and real-valued variables with r.
Furthermore, literals associated to i are denoted with li (and with
lr in case of r).

A. Preliminaries
We provide a short introduction to SAT and related techniques

(for a more detailed survey refer to [8]) as it will be helpful for
understanding the basic concepts in iSAT3. Given a propositional
formula and asking the question whether there exists an assign-
ment to its variables rendering the formula true is also known as
the satisfiability problem (SAT). Programs for solving this kind
of problem are called SAT-solvers.

Most modern SAT-solvers do not operate on arbitrary Boolean
formulas – instead they require a conjunctive normal form (CNF).
The Tseitin-transformation [9] can be used to rewrite a given
Boolean formula into CNF. A CNF consists of a conjunction of
clauses with each clause being a disjunction of literals and a literal
being a Boolean variable b or its negation ¬b.

In the conflict-driven clause learning (CDCL) [10] scheme
the search process for a satisfying assignment consists of three
alternating steps: propagation of implied assignments, deciding a
variable and resolving a conflict.

Propagation: One core component of a SAT-solver is the
Boolean constraint propagation (BCP) [11] which is used to
detect implied assignments. Everytime a clause with n literals
contains n−1 literals being already assigned to false (a so-called
unit-clause), the remaining literal has to be true in order to retain
a chance to satisfy the formula. An implication queue is used for
keeping track of all variables which were assigned recently and
thus might have created new unit-clauses. BCP is applied until
either no unit-clauses are left or a conflicting clause (a clause
with all literals being false) was derived.

Decisions: If BCP finished without deriving a conflicting
clause, a decision is made. This is done by assigning a currently
unassigned variable with true or false. Every assignment to a
variable (either due to propagation or due to a decision) is stored
in the so-called implication graph.

Conflict resolution: In case a conflicting clause was derived,
it will be the starting point of the conflict analysis. The impli-
cation graph is traversed backwards according to the first unique
implication-point (1UIP) scheme in order to construct a conflict
clause which explains the current conflict. Furthermore, non-
chronological backtracking is performed until the created conflict
clause becomes unit. Adding this clause to the CNF prevents the
SAT-solver to visit this conflict again and thus prunes the search
space.

In bounded model checking (BMC) [12] a Boolean formula
F is used to encode a transition system along with a property
to be checked. F contains symbolic representations of the initial
state(s) I , the transition relation T and the negated property ¬P .
F is satisfiable if and only if the underlying state transition system
allows a finite sequence of transitions violating P . BMC is able
to prove the absence of such sequences up to a user-defined depth
k. In order to prove that P holds for all k, Craig interpolation
can be applied.

For propositional formulas A and B with A ⇒ B, a Craig
interpolant C is an overapproximation of A which still implies
B: A ⇒ C ∧ C ⇒ B. Furthermore, C only contains variables
which occur in A and B. Craig interpolants can be computed with
a SAT-solver by exploiting the resolution proof which is created
during solving the unsatisfiable formula A ∧ ¬B. In the context
of BMC, Craig interpolation is used to find a set of states S
being invariant regarding T and overapproximating the reachable
states [13].

B. The SMT-Solver iSAT3

SAT-modulo-theories (SMT) aims at solving Boolean combina-
tions of theory atoms, e. g.

(r1 + r2 + r3 < 7) ∧ ((r1 ≥ r2) ∨ (sin(r1) · r3 < 10))

In classical SMT a given formula is split into a set of theory atoms
and a Boolean skeleton which abstracts the truth-values of the
theory atoms with Boolean literals. Therefore, a SAT-solver and
a separate theory solver are employed during the solving process.
This scheme is also abbreviated as DPLL(T) or CDCL(T) – with
T being the theory used within the atoms.

In contrast to CDCL(T), there is no such separation between the
SAT and the theory part in the iSAT algorithm [5], [14] – instead
interval constraint propagation (ICP, see e. g. [4]) is tightly
integrated into the CDCL framework in order to reason about
the theory atoms directly, yielding a unified lattice-based view
now known as abstract conflict-driven clause learning (ACDCL)
[6].

In this paper we build on iSAT3 [15], [16] – which is the
third implementation of the iSAT algorithm. The iSAT algorithm
and all its implementations were originally developed for the
verification of hybrid systems. Therefore, they aim at solv-
ing SMT formulas containing Boolean, integer- and real-valued
variables. The theory atoms may contain linear and non-linear
arithmetic involving transcendental functions, e. g. (i1 + i2 = i3),
(|r1 − r2| < min(r1, r2)) or (3

√
r3 + sin r4 < er5).

The iSAT algorithm maps each integer- and real-valued variable
to an interval and expects for those variables initial intervals
as part of the given formula. In the context of hybrid systems,
variables usually encode physical quantities like temperature and
velocity and have therefore natural bounds. During the search
process these intervals will be narrowed with ICP in order to
find a solution. Since each interval bound is represented as a
floating-point number, outward rounding is applied in order to
get safe interval enclosures. This ensures that ICP only cuts off
definitive non-solutions. But the iSAT algorithm might not find a
conclusive answer in all situations – as equations like r1 = r2 ·r3
can only be satisfied by point intervals in general. For continuous
domains, ICP cannot guarantee to reach such point intervals.
Nonetheless, if the iSAT algorithm classifies an SMT formula
F as satisfiable (or unsatisfiable) then F is indeed satisfiable (or
unsatisfiable). In the remaining cases, the algorithm terminates
with a candidate solution. Because it relies on machine data types

178

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

with a finite precision, the iSAT algorithm always terminates. But
for performance reasons we omit newly deduced bounds if the
difference to the current bound is below the minimum progress.
Furthermore, interval splits are only performed if an interval has
a larger width than the minimal splitting width.

Before solving, a Tseitin-like transformation is applied to
the given SMT formula in order to obtain a conjunctive form
by introducing new auxiliary variables for sub-expressions. In
particular, each theory atom is decomposed into a simple bound
literal and a set of primitive constraints. Example 1©: the formula

(r1 + r2 + r3 < 7) ∧ (r1 ≥ r2)

would be rewritten as follows by introducing the new auxiliary
variables bh1 (for the Tseitin-encoding of the ∧-operator) and
rh1, rh2, rh3 (for the decomposed theory atoms):

(lr≺7h2 ∨ ¬bh1) ∧ (lr�0h3 ∨ ¬bh1) ∧
(¬lr≺7h2 ∨ ¬lr

�0
h3 ∨ bh1) ∧ (bh1) ∧

(rh1 = r1 + r2) ∧ (rh2 = rh1 + r3) ∧ (rh3 = r1 − r2)

Each simple bound literal imposes a lower or an upper bound
on the associated integer- or real-valued variable. Within simple
bound literals we denote the relational operators less-than, less-
equal, greater-equal and greater-than with ≺,�,� and �1. A
simple bound literal could be strict, (e. g. lr≺4) or non-strict,
(e. g. lr�4)2. As example 1© shows, sometimes it is necessary to
rewrite theory atoms in order to obtain a simple bound literal for
them (e. g. (r1 ≥ r2) was rewritten to (r1−r2 ≥ 0)). A primitive
constraint contains up to three variables besides a unary or binary
operator. Having a fixed set of primitive constraints makes it easier
to apply ICP later on.

The search process in iSAT3 is similar to CDCL: it consists of
alternating propagation and decision phases interspersed with the
resolution of conflicts – but additionally, the first two phases are
extended with ICP and interval splits.

Propagation: Similar to a SAT-solver, we use an implication
queue to keep track of changed variables. Besides Boolean
variables, this queue might also contain integer- or real-valued
variables. BCP handles all unit-clauses which contain changed
Boolean literals and simple bound literals. Additionally, every
unassigned simple bound literal will be evaluated during BCP
whether it is already implied by another simple bound literal
associated to the same integer- or real-valued variable. Exam-
ple 2©: if the simple bound literal lr�7 is already false and lr�5

is unassigned, the evaluation of lr�5 will result in the generation
of the implication clause (¬lr�5 ∨ lr�7) which is attached to
the implication graph. This clause is unit and will imply ¬lr�5
immediately.

Furthermore, ICP-contractors are applied to all those primi-
tive constraints which contain changed integer- or real-valued
variables. Each deduction performed by ICP generates a new
clause (consisting of simple bound literals) which contains the
reasons of the deduction as well as the newly deduced stronger
bound. These clauses are attached to the implication graph.
Example 3©: for the primitive constraint (rh1 = r1 + r2) with
rh1 ∈ [1, 9], r1 ∈ [1, 3] and r2 ∈ [4, 10] the new lower bound for

1While there is no semantic difference between (<,≤,≥, >) and (≺,�, �,
�) in the context of integer and real numbers, there will be a subtle difference
between the floating-point comparison operators and its relational operators for
simple bound literals regarding the signed zeros.

2In fact strict bounds are only needed for real-valued variables in order to
represent the negation of a simple bound literal properly: ¬lr�4 ⇔ lr�4. This
is not needed for integer-valued variables, because: ¬li�4 ⇔ li�5.

rh1 can be deduced because of the current lower bounds of r1
and r2: (¬lr�11 ∨ ¬lr

�4
2 ∨ lr�5h1).

We use ICP solely to deduce new bounds – in our imple-
mentation ICP does not check whether an empty interval was
derived. Instead, this check is performed on the Boolean level
by evaluating the newly created simple bound literal l which is
unassigned at the moment of its creation. If needed, an implication
clause is created in order to assign l. This might cause an ICP-
generated clause to become conflicting and triggering the conflict
resolution.

The propagation phase ends when either the implication queue
is empty or a conflicting clause was derived.

Decisions: If no conflicting clause was derived, a decision
is made. Besides deciding existing Boolean literals and simple
bound literals, an integer- or real-valued variable could be subject
of a decision as well. This is done by splitting its interval and
mapping the split-value to a new simple bound literal which is
then decided.

Conflict resolution: In case a conflicting clause was derived,
iSAT3 operates like a SAT-solver – because all clauses in the
implication graph only contain assigned literals. At this point
it does not matter whether they are Boolean or simple bound
literals. In contrast to classical SMT-solving which only learns
inconsistent combinations of theory atoms, iSAT3 introduces new
simple bound literals during the search process and therefore
refines the Boolean skeleton with interval boxes which do not
contain solutions.

In fact iSAT3 represents a given SMT formula completely as
a CNF with these three kinds of clauses:

1) the clauses in the Boolean skeleton: cl bs
2) the implication clauses: cl impl
3) the clauses generated by ICP-contractors: cl arith

Regarding example 1©, the Boolean skeleton cl bs is encoded in
the first four clauses. The truth-values of the decomposed theory
atoms are represented by the simple bound literals lr≺7h2 and lr�0h3 .
The three primitive constraints can be also seen as place-holders
for all the cl arith clauses which can be generated with the
according ICP-contractors.

While the clauses in cl bs are generated before the solving
process starts, the clauses in cl impl and cl arith are generated
lazily on-the-fly during solving. Therefore, iSAT3 performs Craig
interpolation as in the propositional case. The resolution proof
(used for creating the Craig interpolant) is build from these
clauses:

cl bsA ∧ cl implA ∧ cl arithA∧
cl bs¬B ∧ cl impl¬B ∧ cl arith¬B

III. EXTENDING ISAT3 WITH FP REASONING

In the following we will denote floating-point variables with f
and literals associated to f with lf . Furthermore, we denote the
floating-point comparisons less-than, less-equal, equal, greater-
equal and greater-than with <F ,≤F ,=F , ≥F and >F . Note
that for floating-point operands (f1 <F f2) is not equivalent to
¬(f1 ≥F f2) – if one of the operands is a NaN both comparisons
will be false (the same applies to (f1 ≤F f2) and ¬(f1 >F f2)).
Further note that there is no (f1 6=F f2) – this comparison is
interpreted as ¬(f1 =F f2). Additionally, we denote the relational
operators less-than, less-equal, greater-equal and greater-than for
simple bound literals with ≺F ,�F ,�F and �F

In this paper we focus on floating-point values (i. e. normal
and sub-normal numbers, -0, +0, not-a-number (NaN), -inf and
+inf) with radix 2 according to the IEEE-754 standard [17]. In

179

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

the following we describe the extensions added to iSAT3 in order
to support accurate floating-point reasoning (see Section III-A)
as well as ICP-based reasoning for bitwise integer operations
(see Section III-C). But besides adaptions specific for floating-
point variables, we also propose two techniques which mitigate
the problem of aliasing during ICP in general (i. e. one variable
occurs more than once in a theory atom causing coarser intervals
to be deduced by ICP, see Sections III-B and III-E).

Already having intervals whose endpoints are represented with
floating-point numbers, makes it look very organic to extend
iSAT3 in order to allow accurate reasoning over floating-point
arithmetic. As a design decision we wanted to keep the ICP-
contractors close to their current functionality. Therefore, we use a
separate encoding for the floating-point value NaN and introduce
a special NaN-literal for every floating-point variable. This allows
us to handle the NaN-related propagations completely with BCP
outside of the ICP-contractors (see Section III-A1).

There are further changes in iSAT3 regarding floating-point
variables: (1) an initial interval is no longer required, (2) we
use a deduction limit (see Section III-E) instead of the minimum
progress, and (3) we do not apply the minimum splitting width
in order to split always down to point intervals. As we only
have non-strict bounds in floating-point context, this ensures that
the solver terminates with a conclusive answer in all cases. The
authors of [7] also offer a decision procedure for floating-point
logic as an instance of abstract CDCL (ACDCL). Besides using
ICP, their approach has further similarities with the original iSAT
algorithm [5], [14], e. g. the reasoning over simple bounds.

A. Accurate Floating-Point Reasoning

1) Adapting the Boolean Encoding: Floating-point arithmetic
introduces some special values (e. g. -inf and +inf) in order
to accomodate the finite amount of representable numbers. We
represent all subnormal numbers, both infinities and the signed
zeros as simple bound literals – in contrast to the floating-point
comparisons, we distinguish the signed zeros with −0 ≺F +0
in the context of simple bound literals3. As mentioned, NaN
is handled separately. This requires an adaption in the Boolean
encoding: a floating-point variable could be either represented as
an interval (like it is already done with real arithmetic) – or it
could be NaN. For this reason we introduce a NaN-literal lfNaN

for every floating-point variable f . If lfNaN is true then f is
NaN – regardless of other assigned simple bound literals lf . If
lfNaN is false the simple bound literals lf become relevant.

In each clause in cl impl and cl arith we add lfNaN once
whenever a simple bound literal for f occurs. When considering
an implication clause similar to example 2© but now for a floating-
point variable f it would look like this:

(lfNaN ∨ ¬lf�F 5 ∨ lf�F 7)

In the same way, when considering a clause created by an ICP-
contractor similar to example 3© but now with the floating-point
variables fh1, f1 and f2, it would look like this:

(lfNaN
1 ∨ lfNaN

2 ∨ lfNaN
h1 ∨ ¬lf�F 1

1 ∨ ¬lf�F 4
2 ∨ lf�F 5

h1)

Obviously, these clauses are satisfied whenever a contained NaN-
literal is true – rendering the truth-values of the remaining literals
in the clause irrelevant.

3All simple bound literals are ordered according to the totalOrder predicate
from [17] – in contrast to totalOrder, we keep NaN out of our ordering and
treat it as unordered.

While we add the NaN-literals directly to the clauses in cl impl
and cl arith, we use a different approach for the Boolean skele-
ton cl bs. Here, we embed the NaN-literals before applying the
Tseitin-like transformation. Furthermore, we ensure that floating-
point comparisons with one of the signed zeros are properly
handled.

With a slight abuse of notation let fs1 and fs2 be arbitrary non-
constant floating-point sub-expressions not containing comparison
operators and let lfs1 and lfs2 be the literals associated to
the auxiliary variables representing fs1 and fs2. Additionally,
let ◦F̂ ∈ {<F̂ ,≤F̂ ,=F̂ ,≥F̂ , >F̂ } be floating-point comparison
operators which are semantically equivalent to ◦F ∈ {<F ,≤F

,=F ,≥F , >F }. The syntactic distinction is made, because we
will apply rewrite rules on the theory atoms and want to keep
track whether the NaN-cases are already handled for a comparison
operator. Let c be a floating-point value and let prev(c) be the
directly neighboring floating-point value which is smaller than c.
We apply the following rewrite rules to the theory atoms:

1) (c <F fs1) ; (fs1 >F c) and
(c ≤F fs1) ; (fs1 ≥F c) and
(c ≥F fs1) ; (fs1 ≤F c) and
(c >F fs1) ; (fs1 <F c) and
(c =F fs1) ; (fs1 =F c)

2) (fs1 ◦F c) ; ¬lfsNaN
1 ∧ (fs1 ◦F̂ c)

3) with •F ∈ {≤F ,=F ,≥F } :
(fs1 •F fs2) ; ¬lfsNaN

1 ∧ ¬lfsNaN
2 ∧

((fs1 − fs2 •F̂ +0)∨
(lfs�F−inf

1 ∧ lfs�F−inf
2)∨

(lfs�F+inf
1 ∧ lfs�F+inf

2))

4) with •F ∈ {<F , >F } :
(fs1 •F fs2) ; ¬lfsNaN

1 ∧ ¬lfsNaN
2 ∧

(fs1 − fs2 •F̂ +0) ∧
¬(lfs�F−inf

1 ∧ lfs�F−inf
2) ∧

¬(lfs�F+inf
1 ∧ lfs�F+inf

2)

5) (fs1 =F̂ c) ; (fs1 ≥F̂ c) ∧ (fs1 ≤F̂ c)
6) (fs1 ≥F̂ c) ; ¬(fs1 <F̂ c) and

(fs1 >F̂ c) ; ¬(fs1 ≤F̂ c)
7) (fs1 <F̂ +0) ; (fs1 ≤F̂ prev(−0))
8) (fs1 ≤F̂ −0) ; (fs1 ≤F̂ +0).
9) (fs1 <F̂ c) ; (fs1 ≤F̂ prev(c))

If c ∈ {−inf,NaN} the theory atom will be replaced with
the Boolean constant false.

We apply these rules until no further rewritings are possible.
If more than one rule could be applied at the same time, the
more specific rule is applied first (e. g. rule 7 instead of 9).
Note that after the rewriting all remaining theory atoms look like
this: (fs ≤F̂ c)4. This allows a direct translation into a simple
bound literal: lfs�F c. Afterwards the Tseitin-like transformation
is applied to the rewritten formula in order to obtain cl bs together
with the set of primitive constraints.

The rules 3 and 4 are needed in order to allow the creation
of simple bound literals which can be used within cl bs. While
the floating-point comparisons allow two infinities with the same
sign as its operands, the floating-point subtraction will return a
NaN. Therefore, these cases are handled explicitly outside of the
subtraction in both rules.

With these rewrite rules the theory atom (fs =F +0) would
be rewritten as follows:

4Simple bound literals for integer variables have no strict bounds, e. g.
¬li�4 ⇔ li�5. We apply the same idea to simple bound literals for floating-
point variables, e. g. ¬lf�Fprev(-0) ⇔ f�F-0.

180

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

; (rule 2) ¬lfsNaN ∧ (fs =F̂ +0)
; (rule 5) ¬lfsNaN ∧ (fs ≥F̂ +0) ∧ (fs ≤F̂ +0)
; (rule 6) ¬lfsNaN ∧ ¬(fs <F̂ +0) ∧ (fs ≤F̂ +0)
; (rule 7) ¬lfsNaN ∧ ¬(fs ≤F̂ prev(−0)) ∧ (fs ≤F̂ +0)

This means the floating-point comparison with +0 will be finally
translated to simple bound literals which enclose -0 and +0.

Furthermore, there is an additional operator which mimics the
semantics of an assignment in C. For this operator, it is required
to distinguish all possible floating-point values – signed zeros and
NaN as well. The rewriting rules for this operator have similarities
to the rules above – but due to lack of space we omit these rules
here.

We decided to encode NaN separately in order to perform
the NaN-propagation outside the ICP-contractors. Therefore, we
encode the propagation eagerly into clauses prior solving. E. g.
for the primitive constraint (fh1 = f1 + f2) we would generate
these clauses:
(¬lfNaN

1 ∨ lfNaN
h1) ∧ (¬lfNaN

2 ∨ lfNaN
h1) ∧

(lfNaN
1 ∨ lfNaN

2 ∨ ¬lf�F−inf
1 ∨ ¬lf�F+inf

2 ∨ lfNaN
h1) ∧

(lfNaN
1 ∨ lfNaN

2 ∨ ¬lf�F+inf
1 ∨ ¬lf�F−inf

2 ∨ lfNaN
h1) ∧

(lfNaN
1 ∨ lfNaN

2 ∨ lf�F−inf
1 ∨ lf�F+inf

1 ∨ ¬lfNaN
h1) ∧

(lfNaN
1 ∨ lfNaN

2 ∨ lf�F−inf
2 ∨ lf�F+inf

2 ∨ ¬lfNaN
h1) ∧

(lfNaN
1 ∨ lfNaN

2 ∨ lf�F−inf
1 ∨ lf�F−inf

2 ∨ ¬lfNaN
h1) ∧

(lfNaN
1 ∨ lfNaN

2 ∨ lf�F+inf
1 ∨ lf�F+inf

2 ∨ ¬lfNaN
h1)

The clauses encode the following propagations:
• fh1 is NaN when f1 or f2 is NaN
• fh1 is NaN when f1 and f2 are infinities with opposite signs
• fh1 is not NaN when f1 and f2 are not NaN and f1 is never

-inf or +inf
• fh1 is not NaN when f1 and f2 are not NaN and f2 is never

-inf or +inf
• fh1 is not NaN when f1 and f2 are not NaN and f1 and f2

are never -inf
• fh1 is not NaN when f1 and f2 are not NaN and f1 and f2

are never +inf
Similar clauses exist for the remaining primitive constraints.

2) ICP-Contractors for Floating-Point: The way of doing ICP
for floating-point arithmetic is very similar to doing floating-point
approximated ICP for real arithmetic – especially the forward
deduction only differs in how the floating-point rounding-mode
is set. E. g. when deducing for rh1 in the primitive constraint
(rh1 = r1 + r2), the floating-point addition of the interval
endpoints of r1 and r2 is executed with downward rounding
for the lower bound and upward rounding for the upper bound.
When looking at a similar primitive constraint with floating-point
variables (fh1 = f1 + f2), we calculate both bounds with the
floating-point rounding-mode which is relevant for the originating
theory atom – as all our benchmarks assume round-to-nearest
with tie-to-even, we use this rounding-mode as our default. The
backward deduction relies on ideas presented in [18].

B. Adapted Decision Heuristics
As mentioned above, floating-point ICP-contractors generate

clauses containing NaN-literals. These clauses are only unit when
the NaN-literals are false. Therefore, each floating-point ICP-
contractor is only called if all variables in the primitive constraint
under consideration have their NaN-literals assigned to false. For
this reason, we introduce a queue of literals containing preferred
decisions (prefdec). Everytime iSAT3 wants to make a decision,
it will first check whether there are still unassigned literals in the
prefdec-queue. If this is the case these literals are decided first.

We put all NaN-literals in the prefdec-queue and let the solver
assign them to false whenever possible.

Furthermore, we adapt the decision heuristics regarding interval
splits. Every k-th split we pick a random integer or floating-point
variable which is not an auxiliary variable and try to assign a point
interval to it. On the one hand this might result in weaker conflict
clauses (because in worst case only a point interval is excluded)
– but on the other hand it helps to reduce the detrimental aliasing
effect. We determined experimentally k = 4 to be a good trade-
off.

C. ICP-based Reasoning for Bitwise Integer Operations
One of our use-cases is dead-code detection in C programs.

These programs can contain a mix of floating-point arithmetic,
integer arithmetic and bitwise integer operations. Thus, adding
support for floating-point arithmetic is not enough – we have
to include support for bitwise integer operations as well. There-
fore, we add ICP-contractors for the following bitwise integer
operations: BW-NOT, BW-AND, BW-OR, BW-XOR, BW-LSHIFT
and BW-RSHIFT. Both BW-SHIFT-operations are more or less
special forms of integer multiplication and division. The first four
operations expect besides its operand(s) a bitwidth as additional
constant argument. Here, the basic idea for the according ICP-
contractors is to quickly get a safe overapproximation of the
interval which encloses all possible results. E. g. for a BW-AND
with positive operand intervals an overapproximation for the
resulting upper bound is the minimum of the upper bounds of
the two operands. Similarly, for a BW-OR with positive operand
intervals the resulting upper bound is not larger than the sum of
both upper bounds of the operands. These overapproximations
can be refined when both operand intervals have a common bit
prefix. A detailed overview is given in [19].

Furthermore, we add two ICP-contractors for integer casts:
SCAST (for casting the operand interval to a signed interval) and
UCAST (for casting the operand interval to an unsigned interval).
Both contractors are more or less modulo operations according to
a given constant bitwidth. With these cast-operators we are able
to mimic the semantic of C integer operations, e. g. assignments
between integers with different signedness or bitwidths. Addition-
ally, ICP-contractors for casts between floating-point and integer
variables are provided as well.

D. Relaxed Reasons for Multiplication and Division
When constructing the reasons of the performed ICP deductions

for a primitive constraint, there is sometimes some degree of
freedom. Up to now iSAT3 used a subset of the current bounds
of the variables occuring in the primitive constraint as reasons,
e. g. when calculating a new lower bound (ih1 � c1) in the
primitive constraint (ih1 = i1 + i2) then the lower bounds
(i1 � c2) and (i1 � c3) are the reason for this deduction.
For addition and subtraction, there is no choice, but this is not
the case for multiplication and division. E. g. assume the upper
bound (ih2 � 1000000) is calculated in the primitive constraint
(ih2 = i3 · i4) with i3 ∈ [−1000, 1000] and i4 ∈ [900, 1000]. Up
to now the following reasons were used: (i3 � 1000), (i4 � 900)
and (i4 � 1000). But instead of (i4 � 900) the simple bound
(i4 � 0) would be sufficient for this deduction. Such relaxations
of the reasons are now used. To some extent this is a local version
of the conflict generalization idea presented in [7].

E. Global-ICP
Up to now, ICP is applied to each primitive constraint individ-

ually. But sometimes a more global view is needed in order to

181

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

recognize conflicts – especially if some kind of aliasing occurs in
the set of primitive constraints. Lets explain the idea of global-ICP
with the help of an example:

. . . ∧ (b1 → (i1 = i2)) ∧ (i1 6= scast(ite(b2, i2, 0), 32))

If b1 and b2 are both true, the following constraint has to
be solved: (i2 6= scast(i2, 32)) – which is unsatisfiable if
i2 ∈ [−231, 231 − 1].

ICP is able to recognize this, but it would take millions of
deductions – because it starts to shrink the intervals of i1 and i2
only by the smallest possible bound improvement. This results
in a cyclic deduction chain which continously deduces slightly
better bounds for i1 and i2.

Such cyclic deduction chains are recognized in iSAT3 by
applying a limit to the number of deductions performed per
variable within one call of the deduction function. We set this
limit to 64. If a variable v exceeds this limit, no further deductions
are made for v within the current call. Furthermore, global-ICP
will analyze the implication graph. First, all primitive constraints
are collected which contributed to new bounds for v. Because the
deduction chain is cyclic, we expect to see the same primitive
constraints over and over again.

ITE
[0x20,0x7fffffdf]

leaf
true

1

leaf
[0x20,0x7fffffdf]

2

leaf
[0x0,0x0]

3

SCAST
[0x1f,0x7fffffdf]

1

leaf
[0x20,0x20]

2

SUB
[0x0,0x0]

1

leaf
[0x20,0x7fffffe0]

2

SUB
[0x1,0x7fffffc1]

21

Fig. 1. The primitive constraints from the example involved in the cyclic deduction
chain (before simplification).

Regarding the example, assume during the search process b1
and b2 were both set to true and decisions as well as propagations
lead to i1, i2 ⊆ [−231, 231 − 1]. This triggers a cyclic deduction
chain. In Figure 1 the involved primitive constraints and its
intervals are shown (the number on each edge represents the
argument order – note that the second edge of the ITE-node is in
fact its first operand).

There are some simplifications possible, e.g. the ITE-node is
obsolete, because the Boolean selector variable b2 is currently
true. We can remove the ITE-node if we keep b2 as a side-
condition for a possible conflicting clause. Furthermore, the
SUB-node with the interval [0, 0] could be removed – because
(i1 − i2 = 0) ⇔ (i1 = i2). We do this by replacing the
first argument of the SUB-node with its second argument5. The
remaining primitive constraints are shown in Figure 2.

Now it is checked whether both children of the remaining
SUB-node are syntactically equivalent. In this example this is the
case, because the SCAST-node is obsolete regarding the current

5For real and integer numbers this holds in all cases. For floating-point
arithmetic, there is a special case: the signed zeros. For all other floating-point
values f with (−inf <F f <F +inf)∧f /∈ {−0,+0, NaN} this replacement
is valid. Therefore, it is ensured that only floating-point intervals which do not
contain -0 or +0 are considered in such cases.

SCAST
[0x1f,0x7fffffdf]

leaf
[0x20,0x7fffffe0]

1

leaf
[0x20,0x20]

2

SUB
[0x1,0x7fffffc1]

2

1

Fig. 2. The primitive constraints from the example involved in the cyclic deduction
chain (after simplification).

interval of its first operand and the bitwidth contained in its
constant second argument. A SUB-node with two syntactically
equivalent children and an interval not containing 0 is conflicting.
Therefore, a conflicting clause is created which contains the side
conditions of the removed primitive constraints, the intervals of
the remaining non-constant leaf nodes and the negated literal
representing the lower bound of the SUB-node. This clause is
then used as the starting point of the conflict analysis in order to
obtain a conflict clause.(

¬b2 ∨ ¬li�0
h1
∨ ¬li�0

h1
∨ ¬li�0x201 ∨ ¬li�0x7fffffe01 ∨ ¬li�1

h2

)
In such situations global-ICP can help to considerably prune

the search space. It could be also applied in the context of Craig
interpolation – as long as all involved primitive constraints are
either completely from the A- or B-part of the formula. The idea
is similar to the idea of creating clauses with the ICP-contractors
for the primitive constraints. Every primitive constraint is marked
with A (or B) – the created clause is thus a consequence from an
A-fact (or B-fact). Therefore, it inherits the A-mark (or B-mark).
Because it is ensured that all primitive constraints in global-ICP
are either marked A (or B), the created conflicting clause is a
consequence from A-facts (or B-facts) and therefore inherits the
A-mark (or B-mark) as well. In our experiments, we observed
that only in few cases a cyclic deduction chain contains primitive
constraints coming from A and B, so global-ICP has been applied
in most of the cases.

Our current implementation only checks for constellations
similar to the example (including constellations with floating-
point variables and certain floating-point cast-operators). This
catches many cases, but certainly not all causes of a cyclic
deduction chain.

IV. EXPERIMENTAL RESULTS

We performed two groups of experiments and evaluated four
versions of iSAT3 in order to give an overview of the efficacy of
global-ICP (see Section III-E), intermediate point splits (psplits,
see Section III-B) and the bound relaxation (brelax, see Sec-
tion III-D). The four versions of iSAT3 are:

(1) without brelax, psplits and global-ICP
(2) with brelax, but without psplits and global-ICP
(3) with brelax and psplits, but without global-ICP
(4) with brelax, psplits and global-ICP

A. Experiment 1

For the first experiment, we converted the 213 benchmarks
provided in [7] into the iSAT3 input language. We did a com-
parison with FP-ACDCL [7] (using the best setting regarding

182

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

900s

600s

300s

0s
0 50 100 150 200

Number of solved benchmarks

Ti
m

e

FP-ACDCL
Mathsat 5.3.11
iSAT3 (4)

Solver S+U SAT UNSAT TO MO
FP-ACDCL 173 97 76 40 0
Mathsat 5.3.11 182 101 81 23 8
iSAT3 (1) 164 90 74 47 2
iSAT3 (2) 166 91 75 45 2
iSAT3 (3) 186 111 75 27 0
iSAT3 (4) 193 111 82 20 0

Fig. 3. Comparison between FP-ACDCL, Mathsat and iSAT3 over a set of 213
benchmarks from [7].

conflict generalization) and Mathsat5 5.3.116 [1] which relies on
bit-blasting. The experiments were performed on an Intel Core i7-
2600 with 3.4 GHz under Ubuntu 12.04 (32 bit). Per benchmark
a time limit of 900 seconds and a memory limit of 2 GB was
used. The results are shown in Figure 3. The diagram depicts the
number of solved benchmarks together with the run time needed
per benchmark. In the table, the columns SAT and UNSAT contain
the number of solved satisfiable and unsatisfiable instances (the
sum of both is shown in column S+U). The columns TO and MO
contain the number of benchmarks which could not be solved
within the given time limit (timeout) or within the given memory
limit (memout).

All proposed techniques help to improve the number of solved
benchmarks, e. g. brelax allows to solve two more satisfiable
instances. With psplits and global-ICP we have two approaches
mitigating the aliasing effect in ICP. While psplits helps to find
a solution faster and therefore increases the number of solved
satisfiable instances, global-ICP helps to prune the search space
and increases the number of unsatisfiable instances.

In total iSAT3 (4) solved 193 benchmarks – this is an im-
provement of 20 benchmarks compared to FP-ACDCL and 11
benchmarks compared to Mathsat5. The picture is similar when
comparing the number of solved satisfiable and unsatisfiable in-
stances separately. In both cases iSAT3 (4) shows the best results.
Furthermore, it can be observed that the ICP-based solvers FP-
ACDCL and iSAT3 have lower memory requirements compared
to Mathsat5. With its bit-blasting technique, Mathsat5 ran out of
memory in 8 cases.

The diagram in Figure 3 reveals that also regarding runtime
iSAT3 outperforms the other two solvers, e. g. when counting
the number of instances which were solved within 2 seconds per
instance, then Mathsat5 solved 36, FP-ACDCL 117 and iSAT3 (4)

6We used the Mathsat5 settings from [7], because they increase the number of
solved instances compared to the default settings. Please note that Mathsat 5.2.6
is able to solve the benchmarks from [7] directly, while Mathsat 5.3.11 does not
support the older syntax anymore. Therefore, we used the newer syntax provided
in http://www.cs.nyu.edu/∼barrett/smtlib/QF FP Hierarchy.zip. Nonetheless, the
results of Mathsat 5.2.6 and 5.3.11 are roughly the same.

148 instances.

60s

40s

20s

0s
0 2 100 4 200 6 300 8 400

Number of solved benchmarks

Ti
m

e

SMI-CBMC (1)
SMI-iSAT3 (4)

Solver S+U SAT U51 U∞ TO MO
SMI-CBMC (0) 8166 7557 609 0 612 0
SMI-iSAT3 (4)? 8439 7373 1066 0 339 0
SMI-CBMC (1) 8099 7424 44 631 679 0
SMI-iSAT3 (1) 7647 6671 153 823 1131 0
SMI-iSAT3 (2) 7650 6673 154 823 1128 0
SMI-iSAT3 (3) 8169 7192 156 821 609 0
SMI-iSAT3 (4) 8430 7427 172 831 348 0

Fig. 4. Comparison between SMI-CBMC and SMI-iSAT3 over a set of 8778 SMI
benchmarks. The table contains the results in two operational modes: BMC-only
(lines 1-2), with k-induction and Craig interpolation (lines 3-7).

B. Experiment 2
In the second experiment we relied on a set of benchmarks

which originate from TargetLink7-generated production C code
(compiled from Simulink-Stateflow models) containing floating-
point arithmetic and integer arithmetic as well as casts between
these two domains. Each single benchmark represents a goal
defined by a structural code coverage metrics like MC/DC.
Starting with the original C code (annotated with coverage goals),
the internal algorithms of the industrial-strength embedded test-
vector generation tool BTC EmbeddedTester R©8 preprocess and
translate fragments of the code into an intermediate language
called SMI (which is a C-like programming language). More
precisely, the annotated C code is first translated into SMI and
incrementally transformed into a simpler canonical form, e. g. by
data type flattening and loop unrolling. The final SMI contains a
global feedback loop where each loop execution corresponds to
an execution step of the function call under test.

In our experiments, we used the version of SMI-CBMC which
is part of BTC EmbeddedTester R© 3.4 (July 2014). SMI-CBMC
relies on the bit-blasting-based solver CBMC 4.89 as its backend
and supports incremental BMC, i. e. it incrementally unwinds and
solves the step function calls of the global feedback loop [20].
We used SMI-CBMC with two different settings:

(0) pure, incremental BMC for efficiently finding test vectors
for coverage goals.

(1) k-induction for detecting unreachable goals (dead-code).
Due to technical reasons the current version of SMI-CBMC
does not support incremental solving in this mode.

Similar to SMI-CBMC, SMI-iSAT3 reads a SMI file, translates
it into the iSAT3 input language and calls iSAT3 in order to solve

7http://www.dspace.com/en/pub/home/products/sw/pcgs/targetli.cfm
8http://www.btc-es.de/
9http://www.cprover.org/svn/cbmc/releases/cbmc-4.8-incremental/

183

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

the translated file. SMI-iSAT3 is a prototypical implementation
which uses a bunch of wrapper scripts and runs in a Cygwin
environment. Furthermore, every satisfying assignment found
by iSAT3 was successfully verified by a SMI-simulator. All
experiments were performed on an Intel Core i7-2600 with 3.4
GHz and 8 GB RAM under Windows 7 (64 bit). We set a time
limit of 60 seconds per benchmark. Setting a memory limit within
the Cygwin environment did not work properly. Therefore, we
omitted such a limit.

The benchmarks are handled as BMC problems. We limited
the number of BMC unwindings to 51. The results are shown in
Figure 4. The diagram depicts the number of solved benchmarks
together with the run time needed per benchmark. In the table, the
column SAT contains the number of solved satisfiable instances
while the columns U51 and U∞ show the number of unsatisfiable
instances (U51: unsatisfiable until depth 51, U∞: unsatisfiable
for all depths proved with k-induction or Craig interpolation).
The column S+U contains the accumulated number of solved
benchmarks (SAT + U51 + U∞) while TO and MO show the
number of aborted benchmarks due to timeout and memout.

The first two lines of the table in Figure 4 compare both
solvers in a BMC-only setting. SMI-CBMC (0) finds 184 more
satisfiable instances compared to SMI-iSAT3 (4)?. This number
indicates that there are some satisfiable benchmarks which are
still demanding for our ICP-based approach (e. g. due to syntactic
constellations in cyclic deduction chains which are currently
not recognized by global-ICP). Therefore, the number of solved
satisfiable instances is nearly the same for SMI-iSAT3 (4)? and
SMI-iSAT3 (4). On the other hand SMI-iSAT3 (4)? solves 457
more U51 instances compared to SMI-CBMC (0). This shows
that SMI-CBMC (0) suffers from its bit-blasting technique when
it is required to unwind the transition relation many times.

While CBMC uses k-induction in order to detect dead-code,
iSAT3 uses Craig interpolation. The last five lines of the table
in Figure 4 contain the results for this setting. Similar to the
results in Figure 3, all proposed techniques increase the number
of solved instances of SMI-iSAT3. For the SMI-benchmarks
global-ICP boosts the performance for satisfiable as well as
unsatisfiable instances. When counting the number of solved
satisfiable instances, SMI-iSAT3 (4) and SMI-CBMC (1) perform
equally well. In the context of dead-code detection the number of
solved U∞ instances is of special interest. Here, SMI-iSAT3 (4)
proves for 831 instances that the code fragment of interest is
unreachable – this is an improvement of 30% compared to the
631 instances found by SMI-CBMC (1). Also the number of
solved U51 instances is higher in SMI-iSAT3 (4): 172 compared
to 44. Regarding the accumulated number of solved instances
SMI-iSAT3 (4) solves 331 instances more than SMI-CBMC (1).

The diagram in Figure 4 shows that SMI-iSAT3 (4) has some
sort of initial runtime-offset. This is due to the prototypical
integration in the Cygwin environment. But even with this penalty
SMI-iSAT3 (4) outperforms SMI-CBMC (1) in terms of runtime,
e. g. when counting the number of instances which were solved
within 3 seconds per instance, then SMI-CBMC (1) solved 5305
instances while SMI-iSAT3 (4) finished 6960.

V. CONCLUSION AND FUTURE WORK

iSAT3 aims at solving Boolean combinations of theory atoms
containing linear and non-linear arithmetic as well as transcenden-
tal functions. In this paper we presented an elegant extension of
iSAT3 providing accurate reasoning for floating-point arithmetic.
Furthermore, in order to support the full range of basic C data

types and operations, we added ICP-contractors for bitwise integer
operations as well. With global-ICP and the presented adaptions
in the decision heuristics, we were able to mitigate the problem of
aliasing in ICP. The results confirm the efficacy of our proposed
techniques. Compared to solvers based on bit-blasting (Mathsat5
and SMI-CBMC) and compared to another ICP-based solver (FP-
ACDCL) iSAT3 solved the highest number of benchmarks.

Future Work: The set of primitive constraints collected by
global-ICP is small in many cases. Although we could extend the
current approach in order to check for other syntactic constel-
lations as well, this is unlikely to catch all cases. A symbiotic
combination with bit-blasting could be promising, i. e. applying
bit-blasting locally in the sense of an additional theory solver to
this small set of primitive constraints.

ACKNOWLEDGMENT

This work has been partially supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative
Research Center “Automatic Verification and Analysis of Com-
plex Systems” (DFG, SFB/TR 14 AVACS) and by the Cluster
of Excellence BrainLinks-BrainTools (DFG, grant number EXC
1086)

REFERENCES

[1] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani, “The MathSAT5
SMT solver,” in TACAS 2013.

[2] S. A. Wolfman and D. S. Weld, “Combining linear programming and
satisfiability solving for resource planning,” Knowledge Eng. Review, vol. 16,
no. 1, pp. 85–99, 2001.

[3] J. G. Cleary, “Logical arithmetic,” Future Computing Systems, vol. 2, no. 2,
pp. 125–149, 1987.

[4] F. Benhamou and L. Granvilliers, “Continuous and Interval Constraints,”
in Handbook of Constraint Programming, ser. Foundations of Artificial
Intelligence, 2006, pp. 571–603.

[5] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert, “Efficient solv-
ing of large non-linear arithmetic constraint systems with complex boolean
structure,” Journal on Satisfiability, Boolean Modeling, and Computation,
vol. 1, no. 3-4, pp. 209–236, 2007.

[6] M. Brain, V. D’Silva, L. Haller, A. Griggio, and D. Kroening, “An abstract
interpretation of DPLL(T),” in VMCAI 2013.

[7] M. Brain, V. D’Silva, A. Griggio, L. Haller, and D. Kroening, “Deciding
floating-point logic with abstract conflict driven clause learning,” Formal
Methods in System Design, vol. 45, no. 2, pp. 213–245, 2014.

[8] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of
Satisfiability, ser. Frontiers in Artificial Intelligence and Applications. IOS
Press, February 2009, vol. 185.

[9] G. S. Tseitin, “On the complexity of derivations in propositional calculus,” in
Studies in Constructive Mathematics and Mathematical Logics, A. Slisenko,
Ed., 1968.

[10] J. P. M. Silva and K. A. Sakallah, “Grasp - a new search algorithm for
satisfiability,” in ICCAD, 1996, pp. 220–227.

[11] M. Davis, G. Logemann, and D. Loveland, “A machine program for theorem
proving,” Communications of the ACM, vol. 5, pp. 394–397, 1962.

[12] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking
using satisfiability solving,” Formal Methods in System Design, vol. 19,
no. 1, pp. 7–34, 2001.

[13] K. L. McMillan, “Interpolation and sat-based model checking,” in CAV 2003.
[14] C. Herde, “Efficient solving of large arithmetic constraint systems with

complex boolean structure: proof engines for the analysis of hybrid discrete-
continuous systems,” Ph.D. dissertation, 2011.

[15] K. Scheibler, S. Kupferschmid, and B. Becker, “Recent improvements in the
SMT solver iSAT,” in MBMV 2013.

[16] K. Scheibler and B. Becker, “Using interval constraint propagation for
pseudo-boolean constraint solving,” in FMCAD 2014.

[17] M. Colishaw, “IEEE standard for floating-point arithmetic,” pp. 1132–1138,
2008.

[18] C. Michel, “Exact projection functions for floating point number constraints,”
in AI&M 2002.

[19] K. Scheibler, F. Neubauer, A. Mahdi, M. Fränzle, T. Teige, T. Bienmüller,
D. Fehrer, and B. Becker, “Extending iSAT3 with ICP-Contractors for
Bitwise Integer Operations,” SFB/TR 14 AVACS, Reports of SFB/TR 14
AVACS 116, 2016, iSSN: 1860-9821, http://www.avacs.org.

[20] P. Schrammel, D. Kroening, M. Brain, R. Martins, T. Teige, and T. Bi-
enmüller, “Successful use of incremental BMC in the automotive industry,”
in FMICS 2015.

184

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

SWAPPER: A Framework for Automatic Generation of Formula
Simplifiers based on Conditional Rewrite Rules

Rohit Singh and Armando Solar-Lezama
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139
Email: {rohitsingh,asolar}@csail.mit.edu

Abstract—This paper addresses the problem of creating sim-
plifiers for logic formulas based on conditional term rewriting.
In particular, the paper focuses on a program synthesis appli-
cation where formula simplifications have been shown to have a
significant impact. We show that by combining machine learning
techniques with constraint-based synthesis, it is possible to
synthesize a formula simplifier fully automatically from a corpus
of representative problems, making it possible to create formula
simplifiers tailored to specific problem domains. We demonstrate
the benefits of our approach for synthesis benchmarks from the
SyGuS competition and automated grading.

I. INTRODUCTION

Formula simplification plays a key role in SMT solvers and
solver-based tools. SMT solvers, for example, often use local
rewrite rules to reduce the size and complexity of the problem
before it is solved through some combination of abstraction
refinement and theory reasoning [1], [2]. Moreover, many
applications that rely on solvers often implement their own
formula simplification layer to rewrite formulas before passing
them to the solver [3], [4], [5].

One important motivation for tools to implement their own
simplification layer is that formulas generated by a particular
tool often exhibit patterns that can be exploited by a custom
formula simplifier but which would not be worthwhile to
exploit in a general solver. Unfortunately, writing a simplifier
by hand is challenging, not only because it is difficult to come
up with the simplifications and their efficient implementation,
but also because some simplifications can actually make a
problem harder to solve by the underlying solver. This means
that producing a simplifier that actually improves solver per-
formance often requires significant empirical analysis.

In this paper, we present SWAPPER, a framework for au-
tomatically generating a formula simplifier from a corpus of
benchmark problems. The input to SWAPPER is a corpus of
formulas from problems in a particular domain. Given this
corpus, SWAPPER generates a formula simplifier tailored to
the common recurring patterns in this corpus and empirically
tuned to ensure that it actually improves solver performance.

SWAPPER operates in four phases. In the first phase (1),
the system uses representative sampling to identify common
repeating sub-terms in the different formulas in the corpus.
In the second phase (2), these repeating sub-terms are passed
to the rule synthesizer which generates conditional simplifi-
cations that can be applied to these sub-terms when certain
local conditions are satisfied. These conditional simplifications
are the simplification rules which in the third phase (3)

must be compiled to actual C++ code that will implement
these simplifications. In the fourth phase (4), SWAPPER uses
auto-tuning to evaluate combinations of rules based on their
empirical performance on a subset of the corpus (Training set)
in an effort to identify a subset of the rules that maximizes
solver performance.

In this paper, we focus SWAPPER on formulas generated
by the SKETCH synthesis solver [6]. We choose SKETCH
solver because it is already very efficient, and it has been
shown to be faster than the most popular SMT solvers on the
formulas that arise from encoding synthesis problems [7]. A
major part of this performance comes from carefully tuned
formula rewriting, so improving the performance of this
solver is an ambitious target. The SKETCH synthesizer has
been applied to a number of distinct domains which include
storyboard programming [8], query extraction [9], automated
grading (Autograder) [10], sketching Java programs [11], Sy-
Gus competition benchmarks [12], synthesizing optimal CNF
encodings [13] and programming of line-rate switches [14].
Crucially for our purposes, we have available to us large
numbers of benchmark problems that are clearly identified as
coming from some of these different domains. For example,
SKETCH has over a thousand benchmarks for Autograder
problems obtained from student submissions to introductory
programming assignments on the edX platform. For this paper,
we will focus on two important domains: Autograder and
SyGus competition benchmarks and present a small case study
with the CNF (SAT) encodings benchmarks.

This paper makes the following key contributions:
1) We demonstrate how to automate the process of gener-

ating conditional rewrite rules specific to the common
recurring patterns in formulas from a given domain.

2) We demonstrate the use of autotuning to select an optimal
subset of rules and generate an efficient simplifier.

3) We evaluate our approach on multiple domains from
the SKETCH synthesizer and show that the generated
simplifiers reduce the synthesis times of SKETCH by
15%-60% relative to the existing SKETCH with its hand-
crafted simplifier.

II. OVERVIEW OF SWAPPER

SWAPPER takes as input a corpus of problems (formulas)
{P} ⊂ D that are assumed to be from the same domain D
and therefore share certain structural features—what it means
for problems to come from a given domain is left ambiguous,

185

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

but the assumption underlying our work is that problems that
come from the same domain will have similar structure and
will respond similarly to simplifications. Given {P}, the goal
of SWAPPER is to produce a formula rewriter such that for any
P ∈ D from the domain, it rewrites P to P ′ = rewrite(P),
where P ′ is logically equivalent to P but easier to solve.

The rewriters produced by SWAPPER are term rewriters that
work by making local substitutions when a known pattern
is encountered in a context satisfying certain constraints. For
example, the rewrite rule below indicates that when the guard
predicate (pred) b < d is satisfied, one can locally substitute
the pattern on the left hand side (LHS): or(lt(a, b), lt(a, d))
with the smaller pattern on the right hand side (RHS).

or(lt(a, b), lt(a, d))
b<d−−−−−−→ lt(a, d)

SWAPPER’s approach is to automatically generate large
collections of such rules and then compile them to an effi-
cient rewriter for the entire formula. Making this approach
work requires addressing four key challenges: (1) Choosing
promising LHS patterns (2) Finding the best rewrite rule for
a given LHS (3) Generating an efficient implementation that
applies these rules and (4) Making sure that the rules actually
improve the performance of the solver. In the rest of this
section, we outline how each of the components of SWAPPER
address these challenges.

A. Pattern Finding
The first phase of SWAPPER addresses the problem of

identifying promising LHS patterns for rewrite rules. In order
to do this, the pattern finder takes as input a corpus of formulas
{P} and uses a representative sampling scheme (explained in
Sec. III) to find frequently recurring patterns in the formulas
from the corpus. The idea is that rewrite rules that target
patterns that occur frequently in the corpus are more likely to
have a high impact in the complexity of the overall formula.

In addition to identifying high frequency patterns, this phase
also identifies properties that tend to hold when those patterns
occur. Specifically, we assume that the rewriter has access
to a function static(a) that for any sub-term a of a larger
formula P , can determine an over-approximation of the range
of values that a can take when the free variables in P are
assigned values from their respective ranges. In the rewriter
that is currently part of the SKETCH solver, for example, this
function is implemented by performing abstract interpretation
over the formula.

For a given pattern, the pattern finder keeps a set of contexts,
where each context corresponds to the information captured
by static on an occurrence of that pattern in the corpus. For
example, in the case of the rewrite rule above, this phase
may discover that the pattern or(lt(a, b), lt(a, d)) is very
common, so finding a simplification rule for this pattern would
be advantageous. Pattern finding may also discover that this
pattern often occurs in a context where a rewriter can prove
that static(b) = (−∞, 0] and static(d) = (0,∞). Using such
context information, SWAPPER can learn rules that make more
aggressive simplifications based on the strong assumptions.

Note that this problem is similar in essence to the Motif
discovery problem [15], famous for its application in DNA
fingerprinting [16]. However, existing techniques used for
solving Motif discovery problem are not directly usable in
SWAPPER because they lead to loss of information required for
the next phase in SWAPPER (See Sec. VIII for more details).

B. Rule Synthesis
Once SWAPPER identifies promising LHS patterns for rules,

together with properties of their free variables that can be
assumed to hold in the contexts where these LHS patterns
appear (e.g. b ≤ 0 and d > 0 in the example above), the next
challenge is to synthesize the rewrite rules.

A conditional rewrite rule has the form:

LHS(x)
pred(x)−−−−−−−−→ RHS(x),

where x is a vector of variables, LHS and RHS are expres-
sions that include variables in x as free variables and pred is a
guard predicate defined over the same free variables and drawn
from a restricted grammar. The triple must satisfy the follow-
ing constraint: ∀x. pred(x) =⇒ (LHS(x) = RHS(x))

The goal of rule synthesis is therefore twofold: (1) to
synthesize predicates pred(x) that can be expected to hold
on at least one context identified by pattern finding for the
LHS pattern, and (2) to synthesize for each of these candidate
predicates, an optimal RHS for which the constraint above
holds. At this stage, optimality is defined simply in terms of
the size of the RHS, since it is difficult to predict the effect that
a transformation will have on solution time. As we will see
later, optimality in terms of size does not guarantee optimality
in terms of solution time but at this stage in the process our
goal is simply to identify potentially good rewrite rules. We
formulate this as a Syntax-Guided Synthesis Problem [12] and
solve it using the SKETCH synthesis tool [6]. The details of
how the rules are synthesized are given in Sec. IV.

C. Code generation
The next challenge for SWAPPER is to generate efficient

C++ code for pattern matching and replacement. To achieve
this, SWAPPER builds upon the ideas of term rewrite systems
like Stratego/XT [17] and GrGEN.NET [18], and performs
some optimizations detailed in Sec. V. The role of this phase
is similar to what the Alive system [19] does when generating
peephole optimizers for LLVM.

One important optimization at this stage is rule generaliza-
tion. For example, pattern finding may have discovered that
the pattern or(lt(plus(x, y), b), lt(a, d)) was frequent, and the
rule synthesis phase may have discovered the rewrite rule:

or(lt(plus(x, y), b), lt(a, d))
b<d−−−−−−→ lt(plus(x, y), d)

Rule generalization, would identify that plus(x, y) is un-
changed by the rewrite rule, so the rule could be made more
general by replacing plus(x, y) in both patterns with a free
variable to arrive at the rule shown earlier. SWAPPER needs
to verify that the generalization preserves the correctness of
the rule in order to avoid generating incorrect transformations.
It is important to note that rule generalization doesn’t affect

186

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

predicates because those have already been minimized during
the Rule Synthesis step.

D. Autotuning
There are two motivations for autotuning the set of obtained

rewrite rules: (1) there is a trade-off between the strength
of the predicate and the reduction that can be achieved by
a rule: rules with weak predicates are easier to match than
rules with strong predicates, but rules with strong predicates
can offer more aggressive simplification, and (2) the rules that
give the most aggressive size reduction are not necessarily the
best ones; for example, a rule may replace a very large LHS
pattern with a small RHS but in doing so it may prevent other
rules from being applied, resulting in a formula that is larger
than the formula obtained without the rewriting.

For these reasons, writing optimal simplifiers based on
rewrite rules is a challenging task even for human experts,
which motivates our approach of using synthesis and em-
pirical autotuning methods to automatically discover optimal
sets of conditional rewrite rules. To this end SWAPPER uses
OpenTuner [20], a machine learning based off-the-shelf auto-
tuner and provides an optimization function that emits the
actual performance of the solver. This phase is comparable
to algorithm configuration [21], [22], which has been used for
tuning parameters for SAT solvers [23]. But, unlike algorithm
configuration, the optimization function in SWAPPER is based
on choices of subsets and permutations of rewrite rules, and
is provided to OpenTuner [20] as a black-box.

We now describe each of these phases in more detail.

III. PATTERN FINDING: SAMPLING BASED CLUSTERING

We first describe a few key features of the SKETCH synthe-
sis system [6] which will serve both as a component and as a
target for SWAPPER.

SKETCH synthesis system: SKETCH is an open source
system for synthesis from partial programs. A partial program
(also called a sketch) is a program with holes, where the
potential code to complete the holes is drawn from a finite
set of candidates, often defined as a set of expressions or a
grammar. Given a partial program with a set of assertions,
the SKETCH synthesizer finds a completion for the holes that
satisfies the assertions for all inputs from a given input space.
SKETCH uses symbolic execution to derive a predicate P (x, c)
that encodes the requirement that given a choice c for how to
complete the program, the program should be correct under
all inputs x i.e. ∃c∀xP (x, c).

SKETCH , like most solvers, represents formulas as Directed
Acyclic Graphs (DAGs) in order to exploit sharing of sub-
terms within a formula. The formulas in SKETCH involve
boolean combinations of formulas involving the Theory of Ar-
rays and Non-linear Integer Arithmetic. Because SKETCH has
to solve an exists-forall (∃∀) problem, the formulas distinguish
between existentially and universally quantified variables: in-
puts and controls respectively. The formula simplification pass
that is the subject of this paper is applied to this predicate
P (x, c) as it is constructed and before the predicate is solved

in an abstraction refinement loop based on counterexample
guided inductive synthesis (CEGIS) [6].

Probabilistic Pattern Sampling: A pattern in the context
of SWAPPER is an expression tree that has free variables as
leafs. Our goal for the pattern finding phase is to generate a
representative sample of patterns S from a corpus of DAGs
{P}. In order to formalize the notion of a representative
sample of patterns, we first need to define a few terms.

Consider a formula P represented as a DAG. We can define
a rooted sub-graph of P as a sub-graph of P such that all its
nodes can be reached from a selected root node in the sub-
graph. A rooted sub-graph can be mapped to a pattern, where
the edges at the boundary of the sub-graph correspond to the
free variables in the pattern. This relationship is illustrated
in Fig. 1, where we see a graph for a problem P where a
rooted sub-graph has been selected, and we see the pattern
that corresponds to that sub-graph. Note that a single formula
P may have many sub-graphs that all correspond to the same
pattern.

Fig. 1. Pattern from a rooted sub-graph Fig. 2. Example Tree Construction

Given a constant K, let the set SubK(P) be the set of all
rooted sub-graphs of size K of P . Given these definitions, we
are now ready to state the problem of representative sampling
patterns from a corpus.

Definition 1: Representative pattern sampling Given a
corpus of problems {Pi} and a size K, a pattern sampling
approach is said to be representative if it is equivalent to sam-
pling uniformly from the set

⋃
i SubK(Pi), and then mapping

each of the resulting sub-graphs to their corresponding pattern.
The key problem is then how to uniformly sample the space

of rooted sub-graphs in a collection of formulas. In order to
describe the algorithm for this, we first build the notion of a
Tree Construction. The formal definition is given below, but
intuitively, a Tree Construction (TC) is a recipe for generating
a tree.

Definition 2: A TC for a tree of size K ≥ 2 and arity
δ ≥ 1 is a list of K − 1 pairs [(si, ti)]

i=K−2
i=0 , where each

pair represents an edge that is being added to the tree. Each
edge is identified by its source node si (which should already
be in the tree) and by the index ti < δ of the edge that is
added to that source node. A TC cannot have repeated edges,
so each edge adds a new node to the tree. Therefore, if n0 is
the original root node in the tree, and ni is the node added
by the ith edge, then si ∈ {n0, n1, . . . , ni} for all i ≤ K − 2.

187

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

We use Tree (τ) to represent the tree constructed from a TC
τ in this manner.

For example, if we assume binary trees (δ = 2), the
following would be a valid tree construction of size 4: τ =
[(n0, 0), (n0, 1), (n2, 0)], and would construct the tree Tree (τ)
as shown in Fig. 2.

Assuming trees of degree δ, it is relatively easy to uniformly
sample the space of Tree Constructions for trees of size K.
The idea is to keep track of the boundary of the tree (all the
possible edges that have not been expanded) and to grow the
tree by sampling uniformly at random from this boundary. The
exact algorithm is shown below.

Algorithm 1: Uniform Sampling for Tree Constructions
input : K ≥ 2 : Size of the TC to be found

δ ≥ 1 : Bound on number of parents of any node
{n0, n1, ..., nK−1} : Set of K node symbols

output: τ : A Tree Construction of size K

1 τ ← List()
2 Λ← List() . maintains adjacent/boundary edges
3 foreach i ∈ [0, 1, . . . ,K − 2] do
4 foreach j ∈ [0, 1, . . . , δ − 1] do
5 Λ.append

(
(ni, j)

)
. adds δ edges to boundary

6 (s, t)← sample (Λ) . boundary |Λ| =
(
(i+ 1)δ

)
− i

7 τ.append
(

(s, t)
)

8 Λ.remove
(

(s, t)
)

. removes an edge from boundary

It is easy to see that any TC of size K will be sampled
by Algorithm 1 with a probability of Π0≤i<K−1

1
((i+1)δ)−i

because |Λ| =
(
(i + 1)δ

)
− i at the ith step and we sample

uniformly from Λ for each 0 ≤ i < K − 1. This probability
is independent of the TC being considered and hence, every
TC is equally likely to be sampled by Algorithm 1.

Now, we are going to define an algorithm for representative
pattern sampling that uses our ability to uniformly sample from
the space of TCs (denoted by TC). The strategy will be as
follows, given a corpus of formulas {Pi}, we are going to
define a subset of the product space

⋃
i nodes

(
Pi
)
×TC, which

we will call Canonical, we then define a mapping µ from
Canonical to

⋃
i SubK(Pi), and we are going to show that

mapping is one-to-one and onto. Finally, we will use rejection
sampling [24] to sample from Canonical uniformly and then
apply µ to in turn, sample uniformly from

⋃
i SubK(Pi). In the

rest of the section, we define the Canonical set, the function
µ and show that it is bijective.

Definition 3: Canonical set: Given a corpus of formulas
{Pi}, we define Canonical ⊂

⋃
i nodes

(
Pi
)
× TC as the set

of tuple-pairs
(
η, τ
)

with η ∈ nodes (Pi) for some i such that:

1) It is possible to follow the TC τ at node η and construct a
rooted sub-graph Q of Pi rooted at η i.e. there is a graph
homomorphism h : Tree (τ) 7→ Pi such that h(n0) = η
and Q is the rooted sub-graph of Pi formed by the nodes
corresponding to the image of h in Pi.

2) The ordering of nodes in TC τ is the same as the (unique)
Breadth First Search (BFS) ordering of nodes in Q.

For example, In Fig. 1, for (η, τ) = (W, [(n0, 1), (n1, 0)])
by following TC τ we obtain the homomorphism h that maps
h(n0) = W,h(n1) = Y, h(n2) = Z and the rooted sub-graph
Q corresponds to the enclosed region with nodes W,Y,Z.
Also, the ordering of nodes given by τ matches the BFS or-
dering of nodes induced by h in Q, hence, (η, τ) ∈ Canonical.
Note that (W, [(n0, 1), (n0, 0)]) /∈ Canonical because it in-
duces the ordering W,Y,Z which is not in the BFS order
W,X, Y .

Given the way we defined Canonical, constructing the
mapping µ : Canonical 7→

⋃
i SubK(Pi) is straightforward:

µ
(

(η, τ)
)

= Q where Q is the rooted subgraph obtained by
following TC τ starting at node η (Def. 3). To show that µ
is onto, we consider a rooted subgraph S of Pi for some i,
since any node of a rooted subgraph can be reached from the
root ηS , we can construct the BFS tree BFS(S) of S and
the corresponding TC τS that is the recipe for constructing
BFS(S) so that µ ((ηS , τS)) = S. To show that µ is one-to-
one, we observe that for two (η1, τ1), (η2, τ2) to map to the
same rooted subgraph S, the corresponding trees should be the
same (the BFS tree of S) and the ordering of nodes in τ1, τ2
should be the same as well (corresponding to BFS order of
S), which would mean τ1 = τ2 and η1 = η2.

Clustering patterns:While grouping patterns together into
clusters, SWAPPER considers the following: (1) Pattern Ex-
pression: SWAPPER builds a string of the expression repre-
sented by the pattern. The free variables in this pattern are
numbered in the BFS order and the operands for commutative
operations are ordered lexicographically to group together
patterns when they are equivalent because of commutativity.
(2) static function values from the benchmark formulas :
The range of values inferred by the solver (See II-A) for each
free variable in the pattern are collected and represented as a
mapping of names of the free variables to their ranges. Note
that the same pattern can occur with different static function
values, these values are appended to one Pattern Expression.

Stopping Criterion: SWAPPER samples until the total
number of patterns with probability of occurrence greater
than a threshold ε converges i.e. the next M samples do
not change the number of such patterns. Both ε and M
are inputs to SWAPPER. In our experiments, we started with
M = 10, 000 and ε = 0.05 and then increased M and
decreased ε gradually in steps of 10, 000 and 0.01 respectively,
and, sampled again until we didn’t find any new patterns
(M = 50, 000 and ε = 0.02). SWAPPER samples patterns of
sizes 2, 3, 4, ... and stops after sampling patterns of size 7.

IV. RULE SYNTHESIS: SYNTAX-GUIDED SYNTHESIS

In this phase, SWAPPER finds corresponding rewrite rules
for the set of patterns {Q} obtained from the Pattern Finding
phase. For each pattern Q(x), the Pattern Finding phase also
collects a set of static range values (II-A) that can be valid
for the free variables x in that pattern when it occurs as a
rooted subgraph in the benchmark DAGs. We use the notation
assume(x) to represent a predicate over the free variables x

188

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

that evaluates to true when each free variable is in the range
values given by static function.

A. Problem Formulation

SWAPPER needs to find correct rewrite rules (II-B) for a
given LHS pattern. Additionally, we want to avoid rules with
predicates that will never hold in practice, so we focus on rules
with predicates that are implied by the assumptions given by
static function obtained from the Pattern Finding Phase.

Problem 1: Given a pattern LHS(x), predicate assume(x)
discovered by the solver for a given occurrence of the LHS
pattern, and grammars for pred(x) and RHS(x), find suit-
able candidates for pred(x) and RHS(x) which satisfy the
following constraints:

1) ∀x : assume(x) =⇒ pred(x)
2) ∀x : if (pred(x)) then (LHS(x) == RHS(x))
3) size(RHS) < size(LHS), where size(Q) is the number

of nodes in the pattern Q
4) pred(x) is the weakest predicate (most permissive) in the

predicate grammar that satisfies previous constraints
The space of predicates: For pred SWAPPER employs

a simple Boolean expression generator that considers con-
junctions of equalities and inequalities among variables:
pred(x) → boolExpr(x) and boolExpr(x) | boolExpr(x),
boolExpr(x) → xi binop xj | unop xi where binop ∈ {<
,>,=, 6=,≤,≥}, unop ∈ {ε,¬}.

These predicates are inspired by existing predicates present
in the rules in the Sketch’s hand-crafted simplifier and are
easier to check statically than more complicated predicates.

Grammar for RHS: The template for RHS simulates the
computation of a function using temporary variables. This
computation can be naturally interpreted as a pattern. Essential
grammar for the generator for RHS is shown here:

RHS(x) ≡ let t1 = simpleOp(x);
. . .
tk = simpleOp(x, t1, ..., tk−1);

in tk

where simpleOp represents a single operation node (e.g.
AND, PLUS etc) with its operands being selected from the
arguments. For example, the expression (a + b) × c can be
represented as: let t1 = Plus(a, b); t2 = Times(t1, c); in t2.
We put a strict upper bound on k as the number of nodes in
the LHS for which the RHS is being searched for.

B. Correctness Constraint

Setting apart constraint 4), Problem 1 can be formulated as
a classic syntax-guided synthesis [25] problem:

∃cpcr ∀x
(
assume(x) =⇒ pred(x, cp)

)
∧ pred(x, cp) =⇒

(
LHS(x) = RHS(x, cr)

)
where cp and cr are the choices the solver needs to make to
get a concrete pred(x) and RHS(x). Specifically, these are
the choices of: (i) when to expand the grammar or when to
use a terminal, and (ii) which subset of inputs to choose for a
particular operation as operands. We will enforce the constraint
4) on top of solutions to the synthesis problem.

We explored two different techniques for synthesizing such
rewrite rules: (1) Symbolic SKETCH based synthesis of rules,
and (2) Enumerative search with heuristics. SWAPPER uses a
hybrid approach to get the best of the both aforementioned
techniques: scalability and exhaustiveness. We describe the
hybrid technique briefly.

C. Hybrid Enumerative/ SKETCH-based synthesis

SWAPPER breaks the synthesis problem into two parts:
(1) Constraints and optimizations on predicates: SWAP-

PER uses the enumerative approach, generates all possible can-
didate predicates from the specification grammar and checks
for their validity based on collected assumptions assume(x).
It prunes the space of predicates by handling symmetries and
avoiding extra work based on the result of the underlying syn-
thesis problem (explained below). For example, if x = (a, b),
assume(x) = (1 < a < 10) ∧ (b = 0) then some of the valid
predicates will be {a > b,¬b, a ≥ b, a 6= b}.

(2) Synthesis of RHS: SWAPPER hard-codes a predicate
and realizes the RHS synthesis problem in SKETCH using the
generator and minimize features ([26] [27]) of the SKETCH
language. In SKETCH, generators are used to define the
template for a grammar as a recursive program (e.g. RHS),
and minimize keyword is used to find the smallest possible
value of a computed variable in SKETCH language (e.g. size
of RHS(x) for a fixed pred(x)).

Optimization on the space of predicates: SWAPPER com-
putes the relationship between predicates based on whether
one implies the other or not for all values of the free variables
e.g. (a < b) implies a 6= b but doesn’t imply a > b. SWAPPER
iteratively finds RHS for the least applicable predicates at
any given stage. When there is no possible simplification rule
for a least applicable predicate then SWAPPER can prune out
all predicates implied by it because there cannot exist a rule
with a more applicable predicate. This helps SWAPPER reduce
overall time for the rule synthesis step.

This hybrid technique has the benefit of being able to
exhaustively search for rules of big sizes while making the
core synthesis problem faster (fewer constraints) and highly
parallelizable (multiple SKETCH instances with different pred-
icates are run in parallel). Note that SKETCH does synthesis
of rules guaranteeing their correctness for large but bounded
values of ∀ quantified variables (inputs), hence, we fully verify
the generated rules with z3 [1] as well by expressing them as
SMT constraints before using them for code generation.

V. EFFICIENT SIMPLIFIER CODE GENERATION

The code generation phase in SWAPPER implements two
important optimizations. The first is rule generalization. As
described earlier in II-C, the goal of rule generalization is to
make the rule more applicable by eliminating redundant nodes
from the LHS and RHS patterns. The second optimization is
to reduce the cost of pattern matching by identifying common
substructures in different patterns and avoiding redundant
checks for those patterns, similar to how a compiler for a
functional language would optimize pattern matching [28].

189

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Additionally, the code generator will ensure that the pattern
matching code can identify DAGs that are equivalent to a
given LHS because of commutativity. Overall, the generated
code is more efficient than the hand-written optimizer because
the automatic code generator can optimize pattern matching
without regard to the impact of optimization on the readability
of the generated code.

VI. AUTO-TUNING RULES

SWAPPER uses OpenTuner [20] to auto-tune the set of rules
according to a performance metric (based on time, memory,
size of DAGs etc). OpenTuner uses an ensemble of disparate
search techniques and quickly builds a model for the behavior
of the optimization function treating it as a black box.

Optimization Problem Setup: SWAPPER specifies the set
of all rules to the tuner and creates the following two config-
uration parameters: (1) A permutation parameter: for deciding
the order in which the rules will be checked. (2) Total number
of rules to be used.

The optimization function (fopt) takes as input a set of
rules and returns a real number. This number corresponds
to performance improvement of SKETCH on the benchmarks
after rewriting them using the generated simplifier (Sec. V).
The auto-tuner tries to maximize this reward by trying out
various subsets and orderings of rules provided to it as input
while learning a model of dependence of fopt on the rules.

VII. EXPERIMENTS

In order to test the effectiveness of our system, we focus
on three questions: (1) Can SWAPPER generate good simpli-
fiers in reasonable amounts of time and with low cost of
computational power? (2) How do the simplifiers generated
by SWAPPER affect SMT solving performance of SKETCH
relative to the hand written simplifier in SKETCH? (3) How
domain specific are the simplifiers generated by SWAPPER?

For evaluation of SWAPPER on SKETCH domains, we com-
pared the following three simplifiers:

1) Hand-crafted: This is the default simplifier in SKETCH
that has been built over a span of eight years. It com-
prises of simplifications based on (a) rewrite rules that
can be expressed in our framework (II-B) (b) constant
propagation (c) structure hashing [29] and (d) a few other
complex simplifications that cannot be expressed in our
framework

2) Baseline: This disables the rewrite rules that can be
expressed in our framework from the Hand-crafted sim-
plifier but applies the rest of the simplifications (b)-(d).

3) Auto-generated: This incorporates the SWAPPER’s auto-
generated rewrite rules on top of the Baseline simplifier.

Now, we elaborate on the details of the experiments.
A. Domains and Benchmarks:

Domain Benchmark DAGs Used Avg. Number of Terms
AutoGrader 45 23289
Sygus 22 68366

We investigated benchmarks from two domains of SKETCH
applications. Sygus corresponds to the SyGus competition

benchmarks translated from SyGus format to Sketch specifi-
cation [12] and AutoGrader ones are obtained from student’s
assignment submissions in the introduction to programming
online edX course [10]. For each of these domains we picked
suitable candidates for SWAPPER’s application by (1) elimi-
nating those benchmarks which did not have more than 5000
terms in the formula represented by their DAGs and those
which took less than 5 seconds to solve - so that there’s enough
patterns and opportunity for improvement (2) removing those
which took more than 5 minutes to solve - this was done to
keep SWAPPER’s running time reasonable because we need to
run each benchmark multiple times during auto-tuning phase.
Using these cutoffs, the total number of usable benchmarks
for AutoGrader domain were reduced from 2404 to 45 and
for Sygus from 309 to 22.

B. Synthesis Time and Costs are Realistic:
To generate a simplifier, SWAPPER employed a private

cluster running Openstack as the infrastructure for parallelized
computations with parallelisms of 20-40 on two virtual ma-
chines emulating 24 cores, 32GB RAM of processing power
each. A worst case estimate of the cost of computation done
by SWAPPER based on our experiments using the Amazon
Web Services [30] estimator is presented below. SWAPPER
can be used to automatically synthesize a simplifier for a very
reasonable cost (less than $50)

Domain Pattern
Finding

Rule
Synthesis

Auto-
Tuning

Total Time
(hours) Cost

AutoGrader 3 hours 1 hour ×5 0.08×150 20 $22
Sygus 2 hours 1 hour ×5 0.1× 150 22 $24

C. SWAPPER Performance
To test the performance of SWAPPER on SKETCH bench-

marks from a particular domain, we divided the corpus into
three disjoint sets randomly (SEARCH, TRAIN, TEST). The
SEARCH set was used to find patterns in the domain and
TRAIN set was used in the auto-tuning phase for evaluation.
And finally, TEST set was used to empirically confirm that
the generated simplifier is indeed optimal for the domain.
Moreover, we used 2-fold cross validation to ensure that
there was no over-fitting on TRAIN set. We achieved this
by exchanging TRAIN and TEST sets and auto-tuning with
the TEST set instead of the TRAIN set. We obtained similar
performing simplifiers as a result and verified that there was
no over-fitting.

We implemented the evaluation of benchmarks in SWAPPER
as a python script that takes a set of DAGs as input, runs
SKETCH on each of them multiple times (set to 5 in our
experiments) and obtain the quartile values(3 points that
cut data into 4 equal parts including the median) for time
taken. In the graphs presenting SKETCH solving times, we
show the upper and lower quartiles around the median with
dotted or shaded lines of the same color as the thick line
depicting the median time. Also, note that we will not consider
simplification time in these experiments because of it being
a one-time negligible (a fraction of a second) time-step as
compared to further SKETCH solving.

190

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Fig. 3. Change in sizes with different simplifiers

Fig. 4. Median running time percentiles with Quartile confidence intervals

We obtained 301 rules for AutoGrader domain and 105 rules
for Sygus domain. The optimal simplifier for AutoGrader used
135 of the rules and the one for Sygus used 65 rules.

Benefits over the existing simplifier in SKETCH: Auto-
generated simplifier reduced the size of the problem DAGs by
13.8% (AutoGrader) and 1.1%(Sygus) on average as compared
to the size of DAGs obtained after running Hand-crafted
simplifier (Figure 3). On DAGs obtained after using Auto-
generated simplifier on average, SKETCH solver performed
better than on those obtained by using Hand-crafted simplifier
(Figure 4): (1) Auto-generated simplifier made SKETCH run
faster on 80% of the AutoGrader benchmarks and 90% of the
Sygus benchmarks (2) The average times taken by SKETCH to
solve a benchmark simplified using Auto-generated simplifier
were 13s (AutoGrader) and 8s (Sygus) as compared to 20s
and 21s respectively for the Hand-crafted simplifier. Figures 3
and 4 show distribution of sizes and times for SKETCH
solving after applying all three simplifiers with percentiles
on the x-axis. It clearly shows the consistent improvement in
performance by applying the Auto-generated simplifier. Note
that Sygus benchmarks are written at a level of abstraction that
is very close to the DAGs in Sketch and hence there aren’t
many opportunities for size reduction for these problems.

We found that there are two reasons why the auto-generated
rules improved upon the hand-crafted rules: (1) The syn-
thesizer discovered rules with large LHS patterns that were
not present in the hand-crafted optimizer. (2) The autotuner
was able to discover that some rules caused a performance
degradation even when they reduced the formula size.

Benefits over the unoptimized version of SKETCH: Auto-
generated simplifier reduced the size of the problem DAGs by
38.6% (AutoGrader) and 1.6%(Sygus) on average (Figure 3).
Application of Auto-generated simplifier results into huge
improvements in running times for SKETCH solver on both
AutoGrader and Sygus benchmarks as compared to application
of Baseline: the average time of solving a benchmark was

Fig. 5. Domain specificity of Auto-generated simplifiers: Time distribution

Fig. 6. SAT-Encodings domain case study

reduced from 27.5s (AutoGrader) and 22s (Sygus) to 13s and
8s respectively (Figure 4).

Domain specificity: We took the Auto-generated simplifier
obtained from one domain and used it to simplify benchmarks
from the other domain and then ran SKETCH on the sim-
plified benchmarks. Application of Auto-generated simplifier
obtained from Sygus increased the SKETCH running times
drastically on a few AutoGrader benchmarks when compared
to the application of Baseline simplifier (Figure 5), and,
resulted into SKETCH running slower than after application of
Auto-generated simplifier obtained from AutoGrader domain.
Application of Auto-generated simplifier generated for Auto-
Grader domain reduced the running times of SKETCH solver
on average as compared to the Baseline on Sygus benchmarks
but the times were still far away from the performance gains
obtained by application of Auto-generated simplifier generated
for the Sygus domain (Figure 5). This validates our hypothesis
of these generated simplifiers to be very domain specific.

D. SAT Encodings Domain We performed an additional
case study using SWAPPER on problems generated during
synthesizing optimal CNF (SAT) encodings [13]. We used
a subset of 70 benchmarks with solution times between 30s
and 100s and divided it randomly into SEARCH, TRAIN, TEST
sets with 21, 22, 27 benchmarks respectively. We compare the
Hand-crafted simplifier against the Auto-generated simplifier
for this domain in Fig. 6. SWAPPER generated 117 rules and,
on average, the SKETCH solving time reduced from 58.8s to
51.1s, the DAG sizes were reduced by 11%.

VIII. RELATED WORK

A pre-processing step in constraint solvers and solver-based
tools (like Z3, Boolector [2], SKETCH etc) is an essential one
and term rewriting has been extensively used as a part this
pre-processing step [31], [4], [5], [3]. These pre-processing
steps are very important and can have a significant impact on
performance.

191

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Each part of our framework solves an independent problem
and is different from the state of the art, specialized for our
purposes. A recent paper introducing Alive [19], a domain spe-
cific language for specifying, verifying, and compiling peep-
hole optimizations in LLVM is the closest to our framework as
a whole. Their rewrite rules are guarded by a predicate, they
use static analyses to find the validity of those guards, they
verify the rules and then compile them to efficient C++ code
for rewriting LLVM code: all similar to our phases. However,
their system is targeted towards the compilers community and
relies upon the developers to discover and specify rewrite
rules. Our work is targeted towards the solver community and
automatically synthesizes the rewrite rules from benchmark
problems of a given domain.

In the context of Motif discovery problem [15] (finding
recurrent sub-graphs) recently we have seen some attempts to
use machine learning [32] and distributed algorithms [33] to
compute the Motifs as quickly as possible. Our DAGs, on the
other hand, have labeled nodes and our motifs have to account
for symmetries due to commutative nodes, which makes direct
translation to Motif discovery problem more difficult.

In the superoptimization community, people explore all
possible equivalent programs and find the most optimal one.
One could view SWAPPER as a superoptimizer for formula
simplifiers. Superoptimizing an individual formula will be
too expensive, but [34] came up with the idea of packaging
the superoptimization into multiple rewrite rules similar to
what we are doing here except in the context of programs.
Although it looks similar in spirit to our work, there are a
few differences. Most importantly, [34] uses enumeration of
potential candidates for optimized instruction sequences and
then checks if it is indeed most optimal. Whereas, we use
a hybrid approach that primarily relies on constraint based
synthesis for generating the rules, which offers a possibility
of specifying a structured grammar for the functions.

The third phase in SWAPPER automatically generates sim-
plifier’s code is similar to a term or graph rewrite system like
Stratego/XT [17] or GrGEN.NET [18]. They offer declarative
languages for graph modeling, pattern matching, and rewriting.
Both the tools generate efficient code for program/graph trans-
formation based on rule control logic provided by the user.
We build upon their ideas and develop our own compiler be-
cause we already had an existing framework for simplification
(SKETCHSimplifier). Our strategy is comparable with LALR
parser generation [35] where the next look-ahead symbol helps
decide which rule to use.

Acknowledgment: We thank the DARPA MUSE grant
FA8750-14-2-0242 for supporting this project.

REFERENCES

[1] L. De Moura and N. Bjørner, “Z3: an efficient smt solver,” ser.
TACAS’08/ETAPS’08. Springer-Verlag, 2008, pp. 337–340.

[2] R. Brummayer and A. Biere, “Boolector: An efficient smt solver for
bit-vectors and arrays,” ser. TACAS ’09, 2009, pp. 174–177.

[3] S. Chandra, S. J. Fink, and M. Sridharan, “Snugglebug: a powerful
approach to weakest preconditions,” in PLDI ’09, 2009, pp. 363–374.

[4] A. Cheung, A. Solar-Lezama, and S. Madden, “Partial replay of long-
running applications,” ser. ESEC/FSE ’11. ACM, 2011, pp. 135–145.

[5] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
USENIX Conference OSDI ’08.

[6] A. Solar-Lezama, “The sketching approach to program synthesis,” in
APLAS, 2009, pp. 4–13.

[7] J. P. Inala, X. Qiu, B. Lerner, and A. Solar-Lezama, “Type assisted
synthesis of recursive transformers on algebraic data types,” CoRR, vol.
abs/1507.05527, 2015.

[8] R. Singh and A. Solar-Lezama, “Synthesizing data structure manipula-
tions from storyboards,” 2011.

[9] A. Cheung, A. Solar-Lezama, and S. Madden, “Inferring sql queries
using program synthesis,” CoRR, vol. abs/1208.2013, 2012.

[10] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback
generation for introductory programming assignments,” SIGPLAN Not.,
vol. 48, no. 6, pp. 15–26, Jun. 2013.

[11] J. Jeon, X. Qiu, J. S. Foster, and A. Solar-Lezama, “Jsketch: sketching
for java,” E. D. Nitto, M. Harman, and P. Heymans, Eds. ACM, 2015.

[12] R. Alur, D. Fisman, R. Singh, and A. Solar-Lezama, “Results and
analysis of sygus-comp’15,” 2015, pp. 3–26.

[13] J. P. Inala, R. Singh, and A. Solar-Lezama, “Synthesis of domain specific
CNF encoders for bit-vector solvers,” in SAT 2016, 2016.

[14] A. Sivaraman, M. Budiu, A. Cheung, C. Kim, S. Licking, G. Varghese,
H. Balakrishnan, M. Alizadeh, and N. McKeown, “Packet transactions:
A programming model for data-plane algorithms at hardware speed,”
CoRR, vol. abs/1512.05023, 2015.

[15] G. K. K. Sandve and F. Drabløs, “A survey of motif discovery methods
in an integrated framework.” Biology direct, Apr. 2006.

[16] N. C. Jones and P. A. Pevzner, An Introduction to Bioinformatics
Algorithms (CMB). MIT Press, Aug. 2004.

[17] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser, “Stratego/XT
0.17. A language and toolset for program transformation,” Science of
Computer Programming, vol. 72, no. 1-2, pp. 52–70, 2008.

[18] R. Geiß, G. V. Batz, D. Grund, S. Hack, and A. M. Szalkowski, “GrGen:
A Fast SPO-Based Graph Rewriting Tool,” pp. 383 – 397, 2006.

[19] N. P. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr, “Provably
correct peephole optimizations with alive,” SIGPLAN Not., vol. 50, no. 6,
pp. 22–32, Jun. 2015.

[20] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U. O’Reilly, and S. P. Amarasinghe, “Opentuner: an extensible frame-
work for program autotuning,” in PACT ’14.

[21] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, “Paramils: An
automatic algorithm configuration framework,” J. Artif. Int. Res., 2009.

[22] C. Ansótegui, M. Sellmann, and K. Tierney, “A gender-based genetic
algorithm for the automatic configuration of algorithms,” in CP ’09.

[23] F. Hutter, M. T. Lindauer, A. Balint, S. Bayless, H. H. Hoos, and
K. Leyton-Brown, “The configurable SAT solver challenge (CSSC),”
CoRR, vol. abs/1505.01221, 2015.

[24] A. Leon-Garcia, Probability, Statistics, and Random Processes for
Electrical Engineering, 3rd ed. Pearson/Prentice Hall, 2008.

[25] R. Alur, R. Bodik, G. Juniwal, M. M. Martin, M. Raghothaman,
S. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, A. Udupa et al.,
“Syntax-guided synthesis.” IEEE, 2013, pp. 1–8.

[26] A. Solar-Lezama, “Program synthesis by sketching,” Ph.D. dissertation,
Berkeley, CA, USA, 2008, aAI3353225.

[27] R. Singh, R. Singh, Z. Xu, R. Krosnick, and A. Solar-Lezama, “Modular
synthesis of sketches using models,” in VMCAI 2014.

[28] M. Pettersson, “A term pattern-match compiler inspired by finite au-
tomata theory,” in CC’ 92. Springer-Verlag, 1992, pp. 258–270.

[29] A. Mishchenko, S. Chatterjee, and R. Brayton, “Dag-aware aig rewriting
a fresh look at combinational logic synthesis.” ACM, 2006.

[30] “Amazon Web Services,” Online. [Online]. Available: http://aws.
amazon.com/

[31] N. B. Leonardo de Moura, “Smt: Techniques, hurdles, applications,”
SAT/SMT Summer School, MIT, 2011. [Online]. Available: http:
//research.microsoft.com/en-us/um/people/leonardo/mit2011.pdf

[32] M. A. Kon, Y. Fan, D. Holloway, and C. DeLisi, “Svmotif: A machine
learning motif algorithm,” ser. ICMLA ’07, pp. 573–580.

[33] Y. Liu, B. Schmidt, and D. L. Maskell, “An ultrafast scalable many-core
motif discovery algorithm for multiple gpus,” ser. IPDPSW ’11.

[34] S. Bansal and A. Aiken, “Automatic generation of peephole superopti-
mizers,” ser. ASPLOS XII. ACM, 2006, pp. 394–403.

[35] R. N. Horspool, “Incremental generation of lr parsers,” Computer
languages, vol. 15, pp. 205–233, 1989.

192

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Lazy Sequentialization for TSO and PSO
via Shared Memory Abstractions

Ermenegildo Tomasco∗, Truc L. Nguyen∗, Omar Inverso†, Bernd Fischer‡, Salvatore La Torre§ and Gennaro Parlato∗
∗{et1m11,tnl2g10,gennaro}@ecs.soton.ac.uk, Electronics and Computer Science, University of Southampton, UK

†omar.inverso@gssi.infn.it, Gran Sasso Science Institute, L’Aquila, Italy
‡bfischer@cs.sun.ac.za, Division of Computer Science, Stellenbosch University, South Africa
§slatorre@unisa.it, Dipartimento di Informatica, Università degli Studi di Salerno, Italy

Abstract—Lazy sequentialization is one of the most effective
approaches for the bounded verification of concurrent programs.
Existing tools assume sequential consistency (SC), thus the
feasibility of lazy sequentializations for weak memory models
(WMMs) remains untested. Here, we describe the first lazy
sequentialization approach for the total store order (TSO) and
partial store order (PSO) memory models. We replace all
shared memory accesses with operations on a shared memory
abstraction (SMA), an abstract data type that encapsulates the
semantics of the underlying WMM and implements it under the
simpler SC model. We give efficient SMA implementations for
TSO and PSO that are based on temporal circular doubly-linked
lists, a new data structure that allows an efficient simulation of the
store buffers. We show experimentally, both on the SV-COMP
concurrency benchmarks and a real world instance, that this
approach works well in combination with lazy sequentialization
on top of bounded model checking.

I. INTRODUCTION

Testing remains the most widely used approach to find
program errors. It is useful when a high percentage of the
selected executions lead to a violation of the program speci-
fication [26]. However, testing-only approaches such as stress
testing remain highly ineffective for concurrency errors that
manifest themselves rarely and are difficult to reproduce and
repair [26]. Such “Heisenbugs” have become more prevalent
on modern hardware architectures that use weak memory
models (WMMs), because WMMs introduce additional non-
determinism that remains outside the control of the testing
environment. Consequently, testing needs to be complemented
by automated verification techniques that can handle concur-
rency (and the non-determinism it introduces) symbolically.

One of these techniques is SAT/SMT-based bounded model
checking (BMC), which has been used successfully to discover
subtle errors in sequential software, even at large scale [16],
[23]. Sequential BMC tools can be extended symbolically to
the concurrent case by conjoining the formula representing
the effect of each individual thread in isolation with a second
formula representing the possible interferences caused by
concurrent accesses to the shared memory [25], [4]. Since this
second formula effectively includes an axiomatization of the
underlying memory model, this approach can in principle work
for both sequential consistency (SC) and different WMMs.

Partially supported by EPSRC grant no. EP/M008991/1.

However, embodying a memory model at the formula level
requires extensive (and non-reusable) modifications of the
underlying sequential BMC tool, and can affect scalability
since the resulting expressions are large and complex.

An alternative approach is sequentialization, which trans-
lates concurrent programs into sequential programs with
data non-determinism that (under certain assumptions) behave
equivalently, so that the different interleavings do not need
to be treated explicitly during the analysis. This allows the
reuse of existing sequential BMC tools. Eager sequential-
izations [18], [27] guess the different values of the shared
memory before the verification and then simulate (under this
guess) each thread in turn. They can thus explore infeasible
computations that need to be pruned away afterwards. Lazy
sequentializations [17] instead guess the context switch points
and compute the memory. They thus only explore feasible
computations and can be used as basis of very effective
verification tools, such as Lazy-CSeq [14]. This is shown
by Lazy-CSeq’s top rankings in recent software verification
competitions but also borne out in practice: using Lazy-CSeq
we discovered in 30 minutes a bug in the safestack benchmark
[28], while all other approaches, including testing, failed [26].
However, to the best of our knowledge, lazy sequentializations
have been developed only for SC, and not for any of the
WMMs that are prevalent in modern computer architectures.

In this paper, as a first contribution, we therefore develop
the first lazy sequentialization for multi-threaded programs for
the total store order (TSO) [24] and partial store order (PSO)
memory models. More specifically, we replace all accesses to
shared memory items (i.e., reads from and writes to shared
memory locations, and synchronization primitives like lock
and unlock) by explicit calls to API operations over a shared
memory abstraction (SMA, see Section II). For example, if x
and y are two shared scalar variables then the statement x =
y+x+3 is translated into write(x, read(y)+read(x)+3).
The SMA can be seen as an abstract data type that encapsulates
the semantics of the underlying WMM and implements it
under the simpler SC model. This isolates the WMM from the
remaining concurrency aspects, and allows us to reuse existing
(lazy) sequentialization techniques and tools for SC. Our
approach bears some similarity to the axiomatic representation
of memory models [25], [4] but the fundamental difference is

193

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

that we work at the code level—in effect, we apply the very
idea of sequentialization to WMMs themselves.

The TSO and PSO implementations of the SMA we describe
here are the second contribution of the paper. They are
carefully designed to optimize some parameters that lead,
in combination with a lazy sequentialization targeting BMC
tools, to efficient SAT/SMT encodings. Sections III and IV
describe an efficient implementation of memory ADT for TSO,
while Section V extends this to PSO. Section VI describes a
first experimental evaluation of our approach. In particular,
we compare our prototype implementation to CBMC (which
implements TSO at the formula level) [4] and Niddhug [1]
(which combines stateless model checking and dynamic partial
order reduction). The experiments show that our approach
delivers a comparable performance on simple benchmarks, but
outperforms both CBMC and Nidhugg on the more complex
safestack problem. It also shows that the number of timestamps
(i.e., writes to the store buffers) required to expose TSO and
PSO bugs is generally small. This implementation constitutes
the third contribution of our paper.

II. SHARED MEMORY ABSTRACTIONS

We consider multi-threaded programs with C-like syntax
including pointer arithmetics, dynamic memory allocation,
and POSIX threads with dynamic thread creation, thread
join, and mutex locking and unlocking operations for thread
synchronization. We assume that all shared memory and syn-
chronization operations are performed through an abstract data
type that we call shared memory abstraction (SMA). This form
can be achieved through a source-to-source transformation,
if necessary. Introducing the SMA provides a separation of
concerns between the shared memory and the control-flow
related aspects of concurrent programs, such that the verifier
design can focus on each of these aspects in isolation.

SMA API: Let us assume that shared scalar variables and
threads are identified by unsigned integers. The full set of
SMA API routines is:
• init() initializes the internal data structures of the

SMA and the shared variables.
• read(v,t) and read_addr(a,t) return the value

of the read issued by thread t of the shared variable v
and the address a, respectively.

• write(v,val,t) and write_addr(a,val,t)
capture the write by thread t of the value val into the
shared variable v and the address a, respectively.

• addr(v) returns the address of the shared variable v.
• malloc(expr) dynamically allocates a number of

shared memory locations given by the value of the
expression expr and returns the base address.

• lock(m,t) and unlock(m,t) are the standard thread
synchronization operations to acquire and release, respec-
tively, a mutex m for thread t; if m is already acquired,
the lock operation is blocking for t, i.e., t is suspended
until m is released and then acquired.

• fence(t) flushes the store buffer of thread t and
updates the shared memory accordingly.

SMA implementations: The semantics of concurrent pro-
grams, and in particular the concurrency aspects, can vary
with the underlying memory model. For a program P , we
can capture such a semantics by plugging a corresponding
SMA implementation into P and thus interpreting the resulting
program according to the standard interleaving semantics that
assumes atomicity and sequential consistency of the memory
operations. An SMA implementation consists of variables and
data structures to capture the shared memory and functions that
manipulate them, as listed in the API. Thus, we can model it
as a transition system in the usual way.

III. DESIGNING A TSO SHARED MEMORY ABSTRACTION

Here, we recall the TSO memory model and introduce two
SMA implementations that capture it. We start with a reference
implementation called TSO-SMA that represents the standard
TSO semantics [24] directly but leads to complex formulas
when used in a BMC-based sequentialization tool chain. We
therefore introduce a new representation where the per thread
store buffers are replaced by per variable write lists. We show
how this, together with an indexing scheme, allows us to
perform the shared memory updates implicitly, and in fact even
to entirely remove any explicit representation of the shared
memory. This reduces the size of the formulas for two reasons.
First, BMC tools perform function inlining (i.e., replace each
function call with the actual function code), so removing the
updates, which can happen at any time and thus need to be
inlined at every visible operation [17], reduces the size of the
program and thus the formula. Second, because we remove the
memory we do not need (propositional) variables to represent
each memory write; we can instead reuse those used to
represent the variable write lists. We describe an efficient
shared memory abstraction eTSO-SMA that is based on this
representation and is equivalent to TSO-SMA. In this section
we give both SMA implementations at an abstract level; in
the next section, we give the details of eTSO-SMA including
concrete data structures and code for the API operations, and
argue the equivalence of eTSO-SMA and TSO-SMA.

Total Store Ordering: TSO is a relaxed-consistency
shared memory model where, different from SC, the ordering
of write and read operations performed by different threads
on the same variable can be altered. The behaviour of the
TSO memory model can be described with respect to the
architecture shown in Figure 1 [19].

Each thread t is equipped with a store buffer where the write
operations performed by t are temporarily cached according
to a FIFO policy. The effects of a cached write are visible
only to the thread that has performed it. A read by a thread
t of a variable y (resp. location at the address p) retrieves
the value from the shared memory unless there is a cached
write to y (resp. to the location at p) that is pending in its
store buffer; in that case, the value of the most recent write
in t’s store buffer is returned. When a write is moved out
of the store buffer the shared memory is updated accordingly.
Memory updates can occur nondeterministically at any time in
the computation provided that there are writes cached in some

194

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Fig. 1. TSO architecture.

store buffer. Memory fences simply flush the store buffer of
the thread executing them. A lock can be acquired only if the
store buffer of the acquiring thread is empty, i.e., does not
contain pending writes.

TSO-SMA: The reference implementation TSO-SMA di-
rectly simulates the behavior of the TSO memory model
according to the architecture shown in Figure 1. We use an
array-based queue of bounded size for each thread store buffer,
and a copy of the shared variables of the initial program to
store one configuration of the shared memory.

Here, the simulation of each write operation results in a
small formula: we just need to encode a single element write
into the queue. However, read operations lead to larger and
more complex formulas. The main source of complexity is in
the number of steps required to determine the most recently
performed write operation still cached in the queue. All these
steps need to be encoded in the formula. Similarly, a flush
operation involves every element of a store buffer which again
need to be encoded in the formula. The formula for simulating
shared memory updates is even bigger. In fact, even though
each single update requires only a constant number of steps (to
dequeue the write and then modify the content of a memory
location), memory updates can occur nondeterministically at
each step and in the limit the writes from all store buffers
can be passed into the shared memory. Therefore, memory
updates require a formula of size proportional to the sum of
the maximum number of elements that can be stored in each
(bounded) queue. Since these updates need to be simulated at
each shared memory access, this leads to a considerable blow-
up of the formula size for the whole sequentialized program,
rendering this direct implementation hopelessly inefficient.

Timestamping writes: The handling of memory updates
can be improved by performing the dequeueing operations
implicitly. For this, we keep track of the (discrete) time
in the executions with a global variable clock and add a
timestamp to each write that is enqueued in a store buffer.
These timestamps represent the future time at which a cached
write will be used to update the shared memory. Since
timestamps refer to future events and writes from different
buffers can occur in any order (because the memory updates
are nondeterministic), timestamps must be guessed. To ensure
consistency with the TSO semantics, we must enforce that
the timestamps of successive writes in the same store buffer

Fig. 2. T-CDLL example.

follow a non-decreasing order. Further, a timestamp must be
assigned a value that is at least the current clock value.

By adopting this time-stamping schema we can keep the
content of a store buffer up-to-date without actually dequeuing
the writes when a memory update occurs. In fact, we can
just increase the value of clock, and all writes that have an
expired timestamp (i.e., a timestamp that is less or equal to
the value of clock) can be treated as removed from their
respective store buffers.

eTSO-SMA: We now describe an efficient implementation
where each SMA operation can be encoded with a formula of
constant size and where there is no need to explicitly encode
memory updates. For ease of presentation, let us assume that
the original program uses only shared scalar variables and that
memory locations are never accessed using their addresses.
The two main ingredients of this implementation are: (1) the
combined use of timestamps and the variable clock as above
and (2) a re-arrangement of the writes of the store buffers
into lists per shared variables. We refer to each such list as a
variable write list (vw-list, for short). For each shared variable
x, we denote with Qx its associated vw-list. vw-lists contain
writes as pairs (val , ts) where val is the written value and ts
is the associated timestamp. A write is expired if its timestamp
is less than or equal to the current value of clock.

In addition to the writes of x that are currently cached in
store buffers, Qx also contains the last write of x that has
been used in a shared memory update. This gives the current
value of x in the shared memory, and is the only expired write
in Qx. Thus, as sketched above, we do not need additional
variables to track the shared memory. Further, we keep Qx

ordered by non-decreasing timestamps and in case of writes
with the same timestamp, in the order of insertion in the list.
Hence, the current valuation in the shared memory of each
variable is easy to retrieve from the front of the list.

Temporal Circular Doubly Linked List: To implement
the vw-lists efficiently, we introduce temporal circular doubly
linked lists (T-CDLL, for short), which are circular doubly
linked lists where:

1) nodes are of the form shown in Figure 2; fields prev and
next contain respectively the link to the predecessor and
the successor in the list as usual, and the fields value
and timestamp contain the write;

2) there is a unique sentinel node; it does not correspond
to an actual write and its timestamp is maximal;

3) the sequence of nodes from the successor of the sentinel
node through the sentinel node, via the next link, is
ordered by non-decreasing timestamps;

4) the head of the list is defined as the only node that
(i) contains an expired write and (ii) whose successor

195

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

contains a non-expired write; it is uniquely determined
by clock.

An example of T-CDLL is given in Figure 2. There the
sentinel node is (e), the head node is (b) for clock value 11
and would change to (c) as soon as clock reaches 23.

Note that the portion of T-CDLL from the head through the
sentinel node ensures the properties stated for the vw-lists,
and thus we can easily use this portion to store each such list.
Moreover, a T-CDLL also manages the list of available nodes
in the remaining part: when the value of clock is increased
so that the current head node expires, this becomes available
and its successor becomes the new head. However, the node
remains linked in the list; hence, all nodes between the sentinel
and the head constitute a “free list” for further writes. Caching
a write only requires checking that the successor of the sentinel
is expired (but not the head of the list), and if so, overwriting
the values and re-linking the node.

For example, in the T-CDLL of Figure 2, only node (a) is
available. By updating clock to 30, the head becomes (c)
and (b) becomes available but remains linked to the list of
available nodes that starts from (a). If we then try to cache a
write with timestamp 40 in the vw-list, we can take (a), unlink
it from the T-CDLL and then link it back between (d) and (e)
with value and timestamp updated according to the write.

The T-CDLL for a vw-list is initialized with a fixed number
of nodes that stay unchanged along the computation (i.e., the
size of lists we can encode is bounded). The initial value
for the timestamps is 0 except for the sentinel node, whose
timestamp is set to the maximum allowed timestamp. In the
next section we show how to implement T-CDLLs efficiently
by using four parallel arrays, one for each node field.

IV. IMPLEMENTATION OF ETSO-SMA

The code of eTSO-SMA comprises a module whose ab-
stract view is essentially the API given in Section II and whose
implementation view (i.e., the complete data type declaration
along with the actual code implementing the API operations)
will be discussed in this section.

Memory bounds: We assume that during the program
execution all threads can access the memory, which consists
of a finite sequence of locations of the same size. Each
location has its own memory address which corresponds to
its position in the memory. Shared variables are allocated
to distinct memory locations. However, eTSO-SMA does not
capture the entire memory explicitly but only tracks a bounded
number of memory locations.

We use several parameters to bound our analysis and in
particular the memory representation. T denotes the maximum
thread identifier used in the program, N the number of nodes in
each T-CDLL, V the maximum number of memory locations
tracked along any execution (including the locations of the
shared variables), and K the maximum timestamp.

We assume that each shared variable has an integer identifier
in the range [0, V − 1]. Further, we can have an additional
number of memory locations to track that can be accessed
only through their memory addresses.

Auxiliary Data Structures: We use the following global
auxiliary variables of type integer:
• clock keeps track of the number of writes performed

by all threads; it is initialized to 0 and bounded by K.
• address[v] contains the physical memory address of
v, for any v∈ [0,V− 1]; the init function initializes it
with distinct nondeterministic values; the values do not
change during the program simulation;

• value[v][node] and tstamp[v][node] store the
value and timestamp of each write associated with each
location.

• max_tstamp[t] stores for each thread the largest
timestamp of any executed write;

• prev[v][node] and next[v][node] store the link
to the previous and next node in the T-CDLL for each
location.

• last_value[v][t] and last_tstamp[v][t]
store the last value written and the timestamp of the last
write performed by each thread for each location.

The nodes of the T-CDLL corresponding to variable v
are kept in prev[v][i], value[v][i], tstamp[v][i]
and next[v][i] for i∈ [0, N− 1].

Malloc and init: During its execution a thread can require
a block of n consecutive locations by invoking malloc(n),
which returns the address of the first location of a newly
allocated heap block. Memory addresses can be used to access
this shared memory. Let p be a shared pointer variable and x
be a local variable. A location with address i is pointed to
by p if the value of p is i. Then, *p = x copies the value
of x into the location pointed to by p, and statement x =

*p copies the value of the location pointed to by p into x.
Note that we do not represent the heap memory explicitly as
we only track some of its locations. Concerning to malloc
we maintain a bounded sequence, say of fixed size m, where
each element represents a memory block. In particular, for
each block we store its base address, its size, and whether
it has been allocated. This sequence is implemented using
arrays. The init function initializes each of these blocks
with a nondeterministic base address and a nondeterministic
size, making sure that block do not overlap. These values do
not change during program executions.

Clock update: clock_update is a service routine that
updates the variable clock with a nondeterministic value
picked in the range from its current value to its allowed
maximum value K (see Figure 3, lines 11-15). As a con-
sequence of such an update, some of the writes in the T-
CDLLs may expire, thus modifying some of the head nodes
and therefore, the valuation of variables in the shared memory
and the configuration of the T-CDLLs.

We stress that this is a very convenient way to implement the
shared memory updates since we achieve this without altering
the underlying data structures. Moreover, it is correct w.r.t. the
TSO semantics since the writes flow into the shared memory
by increasing values of the timestamps, and by the ordering we
ensure on the timestamps, this enforces a correct simulation
of the TSO semantics on the memory updates.

196

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

1: static uint clock;
2: static uint address[V];
3: static int value[V][N];
4: static uint tstamp[V][N+1];
5: static uint prev[V][N+1];
6: static uint next[V][N+1];
7: static uint last_value[V][T];
8: static uint last_tstamp[V][T];
9: static uint max_last_tstamp[T];

10:
11: void clock_update(){
12: int tmp;
13: assume(tmp <= K && tmp >= clock);
14: clock = tmp;
15: }
16:
17: void write(uint v,int val,uint t){
18: clock_update();
19: // remove expired node from list
20: uint node = next[v][N];
21: assume(tstamp[v][next[v][node]]<= clock);
22: next[v][N] = next[v][node];
23: prev[v][next[v][N]] = N;
24: // select position in the list for insertion
25: uint succ = nondet();
26: assume(succ<=N && tstamp[v][succ]>clock);
27: uint pred = prev[v][succ];
28: // guess suitable timestamp
29: uint ts=nondet();
30: assume(ts >= clock
31: && ts >= max_last_tstamp[t]
32: && ts >= tstamp[v][pred]
33: && ts < tstamp[v][succ]);
34: // insert node at selected position
35: value[v][node] = val;
36: tstamp[v][t] = ts;
37: next[v][node] = succ;
38: prev[v][node] = pred;
39: next[v][pred] = node;
40: prev[v][succ] = node;
41: // update auxiliary data
42: max_last_tstamp[t] = ts;
43: last_tstamp[v][t] = ts;
44: last_value[v][t] = val;
45: }
46:
47: void write_to_address(uint a,int val,uint t){
48: // select identifier of the memory address
49: int v = nondet();
50: assume(v < V);
51: assume(address[v] == a);
52: write(v, val, t);
53: }
54:
55: int read(uint v, uint t) {
56: clock_update();
57: // retrieve the value from thread store-buffer
58: if (last_tstamp[v][t] > clock)
59: return last_value[v][t];
60: // retrieve the value from shared memory
61: int node = nondet();
62: assume(node < N &&
63: tstamp[v][node] <= clock &&
64: tstamp[v][next[v][node]]>clock);
65: return value[v][node];
66: }
67:
68: int read_from_address(uint a, uint t) {
69: // selecting the id for the memory address
70: int v = nondet();
71: assume(v < V);
72: assume(address[v] == a);
73: return(read(v,t));
74: }
75:
76: void fence(uint t){
77: clock_update();
78: // make all thread’s write expired
79: if (clock < max_tstamp[t])
80: clock = max_tstamp[t];
81: }

Fig. 3. Code stubs for eTSO-SMA.

Write operation: We recall that function write takes
as input a variable identifier v, a value val, and a thread
identifier t. write first updates the clock value by invoking
clock_update and then simulates the write operation by
changing the state of the memory representation by adding a
new write in the T-CDLL associated with v. The code for this
function is given in Figure 3 at lines 17-45.

Take an available node from the T-CDLL of the variable
identifier (lines 20-23). Variable node is set to a position
of the array encoding the T-CDLL for v that corresponds
to the successor of its sentinel node. From the property of
part 3 of the definition of T-CDLLs (that we maintain as an
invariant in our implementation), this is the node with the
smallest timestamp in the list. We are going to use this node
to cache the write. The assume statement at line 21 ensures
that the successor of node is also expired. Otherwise, node
would be the head node and thus there are no available nodes,
therefore the computation must be blocked. We then remove
the node from the list by appropriately setting the fields next
and prev of the successor and the predecessor of node,
respectively (lines 22-23).

Select position for insertion (lines 25-27). We nondeter-
ministically guess a node succ that is the candidate to be
the successor of node in the list (after insertion). We make
sure that succ encodes a non-expired write by checking that
its timestamp is greater than the current value of clock.
Note that, a node with this feature always exists in since the
timestamp of the sentinel node is K. We then set the local
variable pred to the predecessor of succ. Node pred will
be the predecessor of node after its reinsertion in the list.

Guess a suitable timestamp for the new write (lines 29-33).
First, we guess a value (line 29), then we check that it is not
smaller than the current clock value (line 30), and the last
timestamp used for the same thread (line 31). This last check
guarantees that the writes from the same thread update the
shared memory in the FIFO order. The last two constraints at
lines 32-33 guarantee the T-CDLL invariant that nodes must be
in a non-decreasing order (part 3 of T-CDLL definition). Note
that we allow the timestamp of the new write to be the same
as that of the previous write in the list (which corresponds
to a situation where they are passed to the shared memory in
the same update). However, the inequality is strict w.r.t. the
next write in the list (line 33). In this way we guarantee that a
write cannot overtake another write from the same thread that
is already cached in the store buffer with the same timestamp
(which would violate the TSO semantics).

Node insertion at selected position (lines 35-40). We can
now insert the new write into the T-DCLL. We first set its
value, then its selected timestamp, and finally we insert node
between prec and succ (lines 37-40). Clearly, the resulting
list is still a T-DCLL.

Update auxiliary data (lines 42-44). We update the auxiliary
variables to ensure that their invariants are maintained.

Write-to-address operation: The first step of function
write_to_address is to select the identifier correspond-
ing to address, if any, and then call write.

197

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Read operations: The function read takes as input a
variable identifier v and a thread identifier t, and returns the
value of v retrieved from the current state of the memory
system. The implementation of read is shown in Figure 3.
It first updates the clock. Then, it checks whether the last
performed write by t on v has not expired yet. This condition
ensures that if there is still a pending write in t’s store
buffer, then the value of the latest such write is returned,
as per the TSO semantics. Otherwise, it returns the value of
the latest expired write in the T-CDLL of v (lines 61-65),
which is always guaranteed to exist by the invariant property
of T-CDLLs, and as previously argued, it corresponds to the
valuation of v in the shared memory. When a read is performed
using a memory address (lines 68-74), we first retrieve the
location identifier, say v, corresponding to the memory address
a and then return the value returned by calling read on v.

Fence operation: To flush the store-buffer of a thread it
is sufficient to mark all its writes as expired. Thus, function
fence shown in Figure 3 at lines 76-81 first updates the clock
to the current time and then sets again the clock to the value
of the maximum ticket issued by thread t in case it results
greater than the current clock.

Correctness: We have already observed the main prop-
erties concerning the correctness of our implementation. A
formal proof of this can be given by showing that the transi-
tion system T that captures eTSO-SMA is equivalent to the
transition system TTSO that captures TSO-SMA (and thus the
semantics of the TSO memory model) in the sense that they
can simulate each other behaviors going through equivalent
configurations. The most complicated case of the proof is
for the write function; we sketch this one here. From the
observations in the write-operations section above, we have
that after the execution of write the corresponding T-CDLL
is correctly updated. Also the current write is added with a
timestamp that is not smaller than the timestamp of the last
previously cached write from the same thread (line 31), and
in case the two timestamps are equal and the two writes are
on the same variable, line 33 guarantees that we keep the
same order as in the store buffer. This implies that if we
start from equivalent configurations of T and TTSO, then the
configurations of T and TTSO resulting after the invocation of
write are also equivalent. Therefore, we get:

Theorem 1. eTSO-SMA and TSO-SMA are equivalent.

V. EXTENSION TO THE PSO MEMORY MODEL

We recall that the semantics of PSO is the same as for TSO
except that each thread is endowed with a store buffer for
each shared memory location. To handle PSO we just need to
modify the implementation of eTSO-SMA with the following
changes in the write function from Fig. 3. In the write of a
location v by a thread t we do the following:
• the guessed timestamp ts must be not lower than the

timestamp of the last write of t on v (according to
the PSO semantics, a write by a thread t of a variable
following a previous write by t can overtake it, but cannot

overtake a previous write of the same variable);
line 31 of Fig. 3 must be replaced with

&& ts >= last_tstamp[v][t]
• ts must be the last timestamp of t if it is greater than

the current one; line 42 of Fig. 3 must be replaced with
max_last_tstamp[t] =

(ts<=max_last_tstamp[t])?
max_last_tstamp[t]:ts;

Denoting with ePSO-SMA our prototype tool obtained from
eTSO-SMA by the above changes and with PSO-SMA the
reference implementation for PSO (obtained similarly to TSO-
SMA for TSO), we get:

Theorem 2. ePSO-SMA and PSO-SMA are equivalent.

VI. EXPERIMENTAL EVALUATION

Prototype implementation: We implemented our ap-
proach for C programs with POSIX threads in a prototype
tool called LazySMA.1 It is based on the open-source CSeq
framework [13], [11] which allows the development of sequen-
tializations following a modular approach: tools are built as
pipelines of source-to-source transformations where the result
of the last transformation is fed into a sequential analysis back-
end. For our prototype we implemented a new transformation
that replaces each memory access by the corresponding opera-
tion from the API. In order to combine this new transformation
with Lazy-CSeq [14], [15] we needed to “inject” the new
memory management layer into a few locations where memory
and concurrency handling overlap. For example, we changed
the original lock and unlock simulation procedures of
Lazy-CSeq to use the barriers for memory synchronization
required by the weaker memory model.

Experimental set-up: We have compared our prototype
implementation (with CBMC v5.3 as sequential verification
backend) against two tools with built-in support for analysis
under WMMs: CBMC [12], a mature bounded model checker
tool for C/C++ programs, and Nidhugg [1], a bug-finding tool
that combines stateless model checking with dynamic partial
order reduction on relaxed memory executions.

We ran the experiments on a dedicated machine with a Xeon
W3520 2.6GHz processor and 12GB of physical memory
running 64-bit linux 3.0.6. We set a 10GB memory limit
and a 600s timeout for the simple benchmarks and timeout
of 14,400s for the safestack example. For each tool and
benchmark, we set the parameters to the minimum value
needed to expose the error.

Standard benchmarks: We first evaluated our approach
over a set of benchmarks collected from the CBMC, Poet,
and Nidhugg tools, and the SV-COMP benchmark suite. The
results are summarized in Table I. The unwind parameter was
used by all the three tools considered in the comparison.
The sum of naddr and nmalloc gives the parameter V from
Section IV. The parameter bitwidth gives the size of integers
(in bits) used in the sequential analysis and the parameter
rounds is the number of rounds used by Lazy-CSeq.

1http://users.ecs.soton.ac.uk/gp4/cseq/fmcad16.zip

198

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

TABLE I
ANALYSIS RUNTIMES UNDER TSO AND PSO

parameters TSO runtime (s) PSO runtime (s)

bu
g?

un
w

in
d

qs
iz

e
(N

)
na

dd
r

nm
al

lo
c

bi
tw

id
th

ro
un

ds
m

ax
cl

oc
k

(K
)

L
az

yS
M

A

C
B

M
C

N
ID

H
U

G
G

L
az

yS
M

A

C
B

M
C

N
ID

H
U

G
G

dekker • 1 2 0 0 4 2 2 0.77 0.29 0.04 0.75 0.25 0.05
lamport • 1 2 0 0 4 2 2 0.88 0.31 0.05 0.88 0.29 0.05
peterson • 1 3 0 0 4 2 2 0.66 0.26 0.04 0.65 0.25 0.04
szymanski • 1 3 0 0 4 2 3 0.81 0.34 0.07 0.80 0.32 0.04
fib longer unsafe • 6 2 0 0 10 6 2 6.47 8.19 94.84 6.51 1.69 135.45
fib longer safe 6 2 0 0 10 6 2 9.78 22.5 t.o. 8.82 31.8 t.o.
parker • 1 2 0 0 4 2 3 1.68 0.31 0.05 2.19 0.28 0.05
stack unsafe • 2 2 1 2 5 2 2 1.50 0.41 0.05 1.49 0.35 0.05
litmus safe (avg) 5 2 0 0 10 2 20 1.26 0.17 2.35 1.22 0.15 6.65
litmus unsafe (avg) • 5 2 0 0 10 2 20 1.27 0.16 3.86 1.26 0.12 1.58

The first block contains results for the classical mu-
tual exclusions algorithms (dekker, lamport, peterson,
szymanski). These implementations are correct under SC
but not under TSO or PSO. All tools find the errors, but
because of their small size, Nidhugg outperforms both CBMC
and our prototype (which incurs a constant overhead for the
sequentialization process) on these programs.

The second block of the table contains variations of the
fibonacci-benchmark, in which two worker threads concur-
rently increase two shared counters, and a main thread checks
whether any the two counters can reach a defined value. A full
exploration of the thread interleavings is required to identify
the error (or show its absence) in this program. Techniques
such as partial-order reduction do not apply, and several tools
struggle to analyze it. We have included both the safe and
unsafe versions. Here, Nidhugg is generally slower than both
CBMC and our prototype tool, and fails to terminate on the
safe version. Our prototype beats CBMC on the safe cases,
but is slower on the unsafe ones.

The next two benchmarks originate from industrial code:
parker models a semaphore-like synchronization class that
breaks under TSO [1] (and thus also under PSO), and stack
which was taken from SV-COMP [7].

The last two lines show the average values for 5803 litmus
tests for WMMs; note that we ran these under TSO and under
PSO. For TSO, both our prototype and CBMC successfully
identified the 277 test cases containing a reachable error,
while Nidhugg failed to find one of them. For PSO, Nidhugg
and IMU-CSeq both find 968 unsafe instances, while CBMC
claims that there are 971 unsafe instances but this includes
three spurious counterexamples. The performance gap between
CBMC and our tool could be reduced with a more efficient
implementation, as our prototype transforms each file nearly
20 times, each time requiring parsing and unparsing.

Safestack: We have conducted further experiments on
a real world benchmark, Safestack [10], which is a lock-
free stack implementation designed for weak-memory models.
It contains a rare bug that is hard to find with automatic
bug-finding techniques already under SC (including random
testing, Nidhugg, CIVL [31], CBMC and other approaches
based on BMC) [26]. The only tool we are aware of that can

TABLE II
ANALYSIS RUNTIMES FOR SAFESTACK UNDER TSO AND PSO

parameters TSO analysis CEX check PSO analysis CEX check
(3 bits) (32 bits) (3 bits) (32 bits)

K N rounds Time Mem. Reach? CEX? Time Time Reach? CEX? Time
1 2 4 10m18s 0.8GB Yes Yes 23s 11m42s Yes Yes 4.82s
1 2 3 12m2s 0.6GB No - - 11m16s No - -
1 3 4 13m45s 1.2GB Yes Yes 30s 21m6s Yes Yes 6.40s
1 3 3 12m50s 0.9GB No - - 12m20s No - -
3 2 4 26m55s 1.4GB Yes Yes 24s 20m47s Yes Yes 4.33s
3 2 3 24m34s 1.0GB No - - 27m15s No - -
3 3 4 74m22s 3.4GB Yes Yes 31s 31m16s Yes Yes 5.47s
3 3 3 62m22s 1.0GB Yes Yes 30s 20m7s Yes Yes 2.84s
3 3 2 12m14s 0.6GB No - - 11m14s No - -
7 2 4 47m17s 2.4GB Yes Yes 27s 104m35s Yes Yes 6.05s
7 2 3 35m7s 1.3GB No - - 36m14s No - -

automatically find a genuine counter-example is Lazy-CSeq.
It requires a minimum of 4 threads, 3 loop unwindings, and
4 rounds of computation to expose a bug caused by two of
these threads simultaneously modifying the element at the first
position of the array implementing the queue. This shows that
the error is actually quite deep, which explains why other
approaches based on explicit handling of interleaving fail.

Safestack is written in C++. We manually translated it into
C, providing simulation functions for the C11 atomic functions
used in the test. We experimented with this C version, with
different bounds for the queue size of each memory address,
and the maximal timestamp along any bounded computation.
Table II summarises these experiments. Note that we only used
three bits to represent integers during the analysis. We then
checked whether counterexamples found also hold for full 32-
bits integers, by running Lazy-CSeq over the exact schedule
extracted from the counterexample. A “Yes” entry in the CEX?
column means that the counterxample holds, thus there are no
spurious counterexamples (due to overflow).

Because SC and TSO coincide if maxclock is set to 1, the
first four lines indirectly show the overhead paid for our TSO
encoding. Since the SC analysis using Lazy-CSeq (not shown
here) requires approximately 3 minutes, the TSO encoding
itself thus introduces an approximately 3x-4x overhead. The
last two lines show that we can still find the error under
“proper” TSO. It also shows that the weaker memory model
reduces to 3 (from 4) the number of rounds required to expose
this error; however, the analysis time grows noticeably, by
almost an order of magnitude. Finally, increasing maxclock
(for fixed values of qsize and rounds) shows that the analysis
explores more reorderings of reads over writes (witnessed by
the increased memory consumption).

VII. RELATED WORK

The transformation of concurrent programs under TSO into
equivalent programs under SC is intrinsic in the architecture
from Figure 1. However, the explicit modeling of the store
buffers in the resulting program introduces a substantial over-
head for standard SC verification tools.

In [5], the authors replace the store buffers with O(k) local
variables per thread, where k is the number of context-switches
for each thread that is allowed in the analysis. The main
intuition there is: when a write operation occurs, a future

199

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

context number is guessed with the meaning that the write will
be visible to the other threads at that context. This is similar to
our guess of a future timestamp in the sense that it implicitly
gives a total ordering of the shared memory updates, but in
our setting this is completely unrelated to the thread context
at which the memory update will occur.

In [29], the authors replace the store buffers by embedding
each of them symbolically in the thread locations. Their
translation goes through the construction of the corresponding
transitions systems that seems appropriate for a backend as
SPIN but in our experiments works poorly with BMC since it
introduces a lot of redundancy in the constructed formulas.

Another main difference of our approach with both [5] and
[29] is that we rearrange the contents of store buffers per
variable instead of per thread and entirely maintain them in T-
CDLLs of bounded size. This, along with the strong invariant
properties of T-CDLLs, results in smaller formula encodings
computed by the BMC backend tools (see Section III).

Other recent work concerning the verification of concurrent
programs under WMMs is [1], [2], [3], [4], [6], [8], [9], [30].
The most related to ours is [3] where the authors give a general
reduction technique to SC by augmenting the programs with
arrays to simulate the caching and buffering due to the WMMs
and use it in combination with CBMC. In [4], CBMC is
enhanced with a reduction based on partial orders.

We have designed our translation to target BMC backends
and used the tool Lazy-CSeq [14], [13] for our experiments.
Lazy-CSeq implements an efficient lazy sequentialization that
works exceptionally well with BMC backends and has won the
SV-COMP twice [7]. It performs a bounded context-switching
analysis [21] and has been recently extended to unbounded
programs [20]. The idea of sequentialization was originally
proposed in [22] but became popular with the first scheme for
an arbitrary but bounded number of context switches [18].

VIII. CONCLUSIONS

In this paper we have described a new approach to the
verification of concurrent programs under WMMs. We have
introduced an abstract data type that factors out the semantics
of the memory model, allowing us to reuse tools designed
for the analysis of concurrent programs under SC. We have
given an efficient implementation of the ADT that works well
in combination with Lazy-CSeq. We have demonstrated the
effectiveness of this approach for finding bugs under TSO
and PSO: our prototype tool is competitive with existing tools
on standard benchmarks used in the literature; it also works
for more complex benchmarks that are, to the best of our
knowledge, out of reach for existing bug-finding approaches.
We have developed our approach for TSO, and extended it to
PSO simply by organizing the cached writes per variable and
thread, and not just per variable. We believe that our approach
can be extended to further WMMs.

REFERENCES

[1] P. A. Abdulla, S. Aronis, M. F. Atig, B. Jonsson, C. Leonardsson, and
K. F. Sagonas. Stateless model checking for TSO and PSO. In TACAS,
pp. 353–367, 2015.

[2] T. Abe and T. Maeda. A general model checking framework for various
memory consistency models. In PDP, pp. 332–341, 2014.

[3] J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. Software
verification for weak memory via program transformation. In ESOP,
pp. 512–532, 2013.

[4] J. Alglave, D. Kroening, and M. Tautschnig. Partial orders for efficient
bounded model checking of concurrent software. In CAV, pp. 141–157,
2013.

[5] M. F. Atig, A. Bouajjani, and G. Parlato. Getting rid of store-buffers in
TSO analysis. In CAV, pp. 99–115, 2011.

[6] M. F. Atig, A. Bouajjani, and G. Parlato. Context-bounded analysis of
TSO systems. In FPS, pp. 21–38, 2014.

[7] D. Beyer. Software verification and verifiable witnesses - (report on
SV-COMP 2015). In TACAS, pp. 401–416, 2015.

[8] A. Bouajjani, G. Calin, E. Derevenetc, and R. Meyer. Lazy TSO
reachability. In FASE, pp. 267–282, 2015.

[9] S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfence: checking
consistency of concurrent data types on relaxed memory models. In
PDLI, pp. 12–21, 2007.

[10] G. Chen, H. Jin, D. Zou, B. B. Zhou, Z. Liang, W. Zheng, and
X. Shi. Safestack: Automatically patching stack-based buffer overflow
vulnerabilities. IEEE Trans. Dep. Sec. Comput., (6):368–379, 2013.

[11] B. Fischer, O. Inverso, and G. Parlato. CSeq: A Concurrency Pre-
processor for Sequential C Verification Tools. In ASE, pp. 710–713,
2013.

[12] A. Horn and D. Kroening. On partial order semantics for sat/smt-based
symbolic encodings of weak memory concurrency. In FORTE, pp. 19–
34, 2015.

[13] O. Inverso, T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato.
Lazy-cseq: A context-bounded model checking tool for multi-threaded
c-programs. In ASE, pp. 807–812, 2015.

[14] O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato. Bounded
model checking of multi-threaded C programs via lazy sequentialization.
In CAV, pp. 585–602, 2014.

[15] O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato. Lazy-
cseq: A lazy sequentialization tool for C - (competition contribution).
In TACAS, pp. 398–401, 2014.

[16] D. Kroening and M. Tautschnig. Automating software analysis at large
scale. In MEMICS, pp. 30–39, 2014.

[17] S. La Torre, P. Madhusudan, and G. Parlato. Reducing context-bounded
concurrent reachability to sequential reachability. In CAV, pp. 477–492,
2009.

[18] A. Lal and T. W. Reps. Reducing concurrent analysis under a context
bound to sequential analysis. Form. Meth. in Sys. Des., (1):73–97, 2009.

[19] A. Morrison and Y. Afek. Temporally bounding TSO for fence-free
asymmetric synchronization. In ASPLOS, pp. 45–58, 2015.

[20] T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato. Lazy sequential-
ization for the safety verification of unbounded concurrent programs. In
ATVA, 2016. To appear. http://eprints.soton.ac.uk/397033/.

[21] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent
software. In TACAS, pp. 93–107, 2005.

[22] S. Qadeer and D. Wu. KISS: keep it simple and sequential. In PLDI,
pp. 14–24, 2004.

[23] P. Schrammel, D. Kroening, M. Brain, R. Martins, T. Teige, and
T. Bienmüller. Successful use of incremental BMC in the automotive
industry. In FMICS, pp. 62–77, 2015.

[24] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen. x86-
tso: a rigorous and usable programmer’s model for x86 multiprocessors.
Commun. ACM, (7):89–97, 2010.

[25] N. Sinha and C. Wang. On interference abstractions. In POPL, pp.
423–434, 2011.

[26] P. Thomson, A. F. Donaldson, and A. Betts. Concurrency testing using
schedule bounding: an empirical study. In PPoPP, pp. 15–28, 2014.

[27] E. Tomasco, O. Inverso, B. Fischer, S. La Torre, and G. Parlato.
Verifying concurrent programs by memory unwinding. In TACAS, pp.
551–565, 2015.

[28] D. Vyukov. Bug with a context switch bound 5, 2010.
[29] H. Wehrheim and O. Travkin. TSO to SC via symbolic execution. In

HVC, pp. 104–119, 2015.
[30] N. Zhang, M. Kusano, and C. Wang. Dynamic partial order reduction

for relaxed memory models. In PLDI, pp. 250–259, 2015.
[31] M. Zheng, M. S. Rogers, Z. Luo, M. B. Dwyer, and S. F. Siegel. CIVL:

formal verification of parallel programs. In ASE, pp. 830–835, 2015.

200

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Combining Requirement Mining, Software Model
Checking and Simulation-Based Verification for

Industrial Automotive Systems
Tomoya Yamaguchi and Tomoyuki Kaga

TOYOTA MOTOR CORPORATION
{tomoya yamaguchi,tomoyuki kaga}@mail.toyota.co.jp

Alexandre Donzé and Sanjit A. Seshia
University of California, Berkeley
{donze,sseshia}@berkeley.edu

Abstract—The verification and validation of industrial closed-
loop automotive systems still remains a major challenge. The
overall goal is to verify properties of the closed-loop combi-
nation of control software and physical plant. While current
software model-checking techniques can be applied on a software
component of the system, the end result is not very useful
unless the interactions with the physical plant and other software
components are captured. To this end, we present an industrial
case study in which we combine requirement mining, software
model-checking, and simulation-based verification to find issues
in industrial automotive systems. Our methodology combines the
the scalability of simulation-based verification of hybrid systems
with the effectiveness of software model-checking at the unit level.
We presents two case studies: one on a publicly available Abstract
Fuel Control System benchmark and another on an actual
production SiLS (Software in the Loop Simulator) benchmark.
Together these case studies demonstrate the practicality of the
proposed methodology.

I. INTRODUCTION

In recent years, functional requirements for automotive
control systems have become far more sophisticated, leading to
the development of more complex and larger scale control soft-
ware. This in turn has increased the importance of verification
and validation (V&V) processes in the automotive industry
since software can affect the integrity of the automotive system
as a whole.

The industry authors of this paper have been part of a team
which, for more than a decade, has attempted to use verifi-
cation techniques such as a model checking [1] on produc-
tion automotive systems. The strong guarantees provided by
model checking make it attractive for the automotive industry.
Unfortunately, even with impressive tools, these attempts have
proved to be time-consuming, generally requiring considerable
person-hours and expertise to be applied, with little or no
conclusive results and many false alarms. A major factor is
that most tools can handle only small, unit-level components,
whereas to be truly useful, one needs to map an issue found
at the unit level to a system-level issue that an engineer can
confirm.

In order to apply model-checking at the software
component-level and deduce results at the system-level, one
has to make the right assumptions on the interfaces of modules
(pre- and post-conditions). To this end, this paper proposes
to leverage recently-developed simulation-based verification
techniques for cyber-physical systems (e.g. [2], [3]) that can be
used for falsifying temporal logic properties as well as to mine
specifications from simulation traces [4]. Such methods have

proven to scale well and able to provide useful information
about cyber-physical systems of industrial size and complexity.
We show how requirement mining, simulation-based verifica-
tion, and software model checking can be combined to (1)
obtain more precise pre-conditions for software modules in
order to reduce the number of false-positives from model
checkers, and (2) to guide the search for concretizing probable
issues at the system levels when they do exist. We present
results on a case study of an Abstract Fuel Control System
benchmark [5] as well as on an actual production powertrain
design in a SiLS (Software in the Loop Simulator) setting. We
show that the resulting V&V methodology is more scalable
than software verification and provides better guarantees than
simulation-based verification.

II. OVERVIEW OF OUR APPROACH

In order to address the V&V problem identified in the
preceding section, we identified two tasks which can help:
• Finding good pre-conditions for unit level software compo-

nents, which characterize the states they can reach in the
closed-loop system.
• Mapping counterexamples found at the unit level to

“system-level” counterexamples, i.e., concretizing the unit-
level counterexample on the closed-loop system.

Right now, the first item is performed manually. The second
item is also performed manually, but only incompletely —
the unit level counterexample is validated but typically not
extended to a system level counterexample. In our experience,
finding good pre-conditions takes up to 20% of total model
checking person-hours and validating a unit-level counterex-
ample takes 50% of total person-hours [6] [12].

We therefore propose a methodology that combines
simulation-based verification of the closed-loop system with
software model checking at the unit level. Software model
checking is exhaustive, and simulation-based verification is
scalable to the system level: therefore, their combination
allows us to find corner-case issues in the code that generate
counterexamples at the system level.

More specifically, this methodology combines requirement
mining, software model checking and simulation-based ver-
ification in a complementary fashion. The key steps in this
methodology are as follows (see flowchart in Fig. 1):
1. Pre-condition (range) mining: Using a system for mining

requirements of closed-loop cyber-physical systems [4], we
generate pre-conditions for a software component in terms

201

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Fig. 1. Composition of vehicle system & proposed method

of ranges of values that selected interface variables must
always lie in.
In general, the requirements are specified in signal temporal
logic [7] [12]. For the purpose of this step, the STL
specification is parametrized, and has the syntactic form
below:

x = (x1, . . . ,xn)

πmin = (πmin 1, . . . , πmin n)

πmax = (πmax 1, . . . , πmax n)

�

(
n
∧
i=1

((πmin i ≤ xi) ∧ (xi ≤ πmax i))

) (1)

where x are input variables of the target software compo-
nent, and πmin and πmax are parameters to be mined. (Our
technical report[12] shows how the tool operates.)

2. Software model-checking: Given the generated pre-
conditions, we run a software model checker to check
assertions or post-conditions for a unit-level software com-
ponent. If any unit-level counterexamples are found, then
we go to the next step. Otherwise, we can mark this
component as verified.
We use off-the-shelf software verifiers. For the case studies,
we used Simulink Design Verifier (SLDV, [8]) and the
C Bounded Model Checker (CBMC, [9]). (Our technical
report [12] includes background on these tools. If the
software verifier generates a counterexample, then we map
this counterexample back to an assignment to the input
variables, and denote this assignment by the vector x̂.

3. Simulation-based Falsification: Given a counterexample for
a unit-level software component, we try to extend it to a
system-level counterexample by the use of simulation-based
verification [2], [3]. The use of these tools requires the unit-
level counterexample to be encoded into a suitable property
expressed in signal temporal logic [7]. If the tool succeeds
in finding a system-level counterexample, then this is passed
on to engineers who then cross-check whether this issue
can indeed occur. Otherwise, we go back to the previous
step and try to find more unit-level counterexamples. (Our
technical report [12] describes the working of the falsifier
(Breach [2])). Briefly, we formulate an STL property that
states that the value of the input variables of the software
component x always remain at least an ε > 0 distance away
from the counterexample assignment x̂, as shown below:

ϕ(x) = �

√√√√ n∑
i=1

(xi(t)− x̂i)2 ≥ ε

 (2)

Algorithm 1 AF target decision
1: if 60.0 ≤ throttleAngle ≤ 62.0 and −2.0 ≤ waterTemp ≤ 2.0
2: and ((airF low[g/s]< 0.0) or (10.0 ≤ airF low ≤ 11.0)) then
3: airFuelRatioTarget← 12.5 . injected fault
4: else
5: airFuelRatioTarget← 14.7 . original code
6: end if

We refer to this property as Property Eq. 2. Breach uses
numerical optimization to search for a counterexample. If
it finds one, this is a system-level counterexample showing
how x̂ can be extended to the entire closed-loop system.

III. CASE STUDY 1: ABSTRACT FUEL CONTROL SYSTEM

In this section, we present an evaluation of our methodology
on an Abstract Fuel Control System (AFC) model [5]. This
model was proposed by Toyota researchers [5] as a synthetic
challenge problem representative of some of the key verifica-
tion challenges faced (see [12] for details).
Description. This fuel control model is a subsystem of gasoline
engine and implemented in Simulink [10]. The purpose of this
model is to control the engine air-fuel ratio so as to meet emis-
sions targets — an important control functionality in a gasoline
engine. The model contains the air-fuel controller and a mean
value model of the engine dynamics, such as the throttle and
intake manifold air dynamics. Inputs of this system model are
throttleAngle, engineSpeed and waterTemp. Outputs are
airFuelRatio, airFuelRatioTarget and controllerMode.
Injected fault: We revised this model to inject a rare case
malfunction into one of the software components. This soft-
ware component has 3 inputs: airF low, throttleAngle and
waterTemp and one output:airFuelRatioTarget. The in-
jected malfunction sets airFuelRatioTarget to 12.5 under a
rare condition (see Alg. 1). The post-condition for this model
is that airFuelRatioTarget ≥ 13.0.

The injected fault is highly representative of true issues
that come up during production. This model is a functional
approximation of a more complex A/F reference decision unit
that would include a latent malfunction. It is desirable to find
such issues early in the development cycle. However, such a
rare case malfunction is difficult to find using random testing
or simulation-based methods in general.
Experimental Results: The input variables x are airF low,
throttleAngle, and waterTemp. The result of range min-
ing provides airF low[g/s]= [2.6, 34.0], throttleAngle[deg]=
[0.0, 90.0] and waterTemp[°C]= [−30.0, 100.0]. Note that
airF low is the only intermediate variable whose range was
unknown before range mining. We applied SLDV with and

202

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

without the mined input ranges as a pre-condition. In both
cases, SLDV finds counterexamples that violate the post-
condition described above, but they are different. We show
the counterexamples in Table I. We indicate the pre-condition
ranges in the absence of range mining as no-condition, indi-
cating that there is no constraint on the value of that input
variable. The counterexample obtained without range mining
turns out to not be feasible due to the negative value for
airF low which is not possible when accounting for the
physical plant dynamics.

In our methodology, we take the counterexample obtained
with range mining, namely, x̂ = [10.0, 60.0,−2.0] and run
Breach to falsify Property Eq. 2. Breach finds a system-
level counterexample that violates the post-condition. (Our
technical report [12] shows this system-level counterexample.)

IV. CASE STUDY 2: PRODUCTION POWERTRAIN SYSTEM

Our second case study is a production powertrain system
which is one of the production models under development. It is
based on SMiL [11] which is an in-house SILS (Simulation-in-
the-Loop-Simulation) environment developed at Toyota [12].
Description: This power train model comprises engine and
transmission sub-systems as well as the entire controller
code in C. The model has 5 external inputs: pedalAngle,
brakeAngle, shift, waterTemp and airTemp. shift po-
sition is always fixed as ”D” (drive) in this evaluation.
Injected Fault: Motivated by an actual issue that occurred
during development, dealing with a malfunction triggered
under a very specific combination of conditions in the C code,
we injected a fault into this model. Alg. 2 shows the injected
fault in code that decides a control target in a closed loop and
has 8 input variables:
• waterTemp[°C]: Temperature of engine coolant.
• atmosphericPressure[hPa]: Atmospheric pressure.
• gear: Current gear position in transmission.
• gearHoldF lag: Status of lock-up.
• idlF lag: Status of engine idling.
• catalystTempHIGHflag: Turned ON when catalyst temperature be-

comes high.
• fuelCutF lag: Status of fuel cut, triggered when negative torque is

required e.g. braking.
• engRpm[rpm]: Rotational speed of engine.

The post-condition of this code is target < 150.0. We now
discuss how we attempt to find a system-level counterexample
that violates this post-condition.
Experimental Results: We applied the methodology of Sec. II
to this case study. Once again, Breach was used for the range
mining and falsification steps, while, in this case, CBMC [9]
was used as the software verification tool. As a reference, we
also applied software model checking without range mining.
Table II shows the counterexamples obtained at the unit level
with and without range mining.

The counterexample obtained without range mining is not
a true system-level counterexample, because, e.g., it assigns
atmosphericPressure to be greater than 2.0 hPa.

TABLE I
COUNTEREXAMPLES FROM SLDV WITH AND WITHOUT RANGE MINING.

“CE” INDICATES THE COUNTEREXAMPLE VALUES.
input with mining no mining

variable range ce range ce
airF low[g/s] [2.6, 34.0] 10.0 no-condition -0.5

throttleAngle[deg] [0.0, 90.0] 60.0 no-condition 60.0
waterTemp[°C] [-30.0, 100.0] -2.0 no-condition -2.0

Algorithm 2 Injected issue on power train model
1: if waterTemp > WARMINGUP
2: and atmosphericPressure > THRESHOLD
3: and ((4th ≤ Gear ≤ 6th) or (gearHoldF lag = OFF))
4: and idlF lag = OFF and fuelCutF lag = OFF
5: and catalystTempHIGHflag = ON then
6: if 2600.0 ≤ engRpm ≤ 2610.0
7: and 89.0 ≤ waterTemp ≤ 91.0 then
8: target← 150.0 . injected fault
9: else

10: target← orignalTarget . original code
11: end if
12: end if

However, when combined with range mining using Breach,
our methodology can be used to lift CBMC’s counterexample
to the system level. For this, we once again use Breach’s
falsification feature to find a violation of Property Eq. 2 where
x̂ = [90.0, 1.0, 6, 0, 0, 1, 2605.0].

The system-level counterexample is visualized in Fig. 2.
The triangles show that the post-condition is violated at around
21.0 sec. This violation occurs through a sequence of events
involving both continuous signals in the physical plant and
changes in discrete variables. We trace the sequence of events
backwards (see Fig. 2). For the post-condition to be violated,
engRpm must reach 2605.0 and catalystTempHIGHflag
must be set to True. The latter condition occurs when high
temperature of exhaust gas are present, which occurs in turn
when a high value of pedalAngle and heavy engine load
(engRpm) are kept on for a certain amount of time. Further,
to reach engRpm[rpm] = 2605.0, the system must start from
low rotation such as idle mode and start mode. In addition,
the gear must change in a specified pattern based on the
current gear, engRpm and the vehicle speed. Finding such a
complex sequence of events involving physical plant signals
and software variables requires an approach such as ours that
analyzes the closed-loop system.

To summarize, our methodology combines the unit-level ex-
haustiveness of software model checking with the system-level
scalability of simulation-driven requirement mining and falsi-
fication. The system-level counterexamples obtained greatly
enhance the productivity with which issues arising the devel-
opment process can be debugged and fixed. In our experience,
this approach significantly eliminates the manual effort in
finding good preconditions (20% of total person hours of
an engineer trained in formal methods) and validating a
counterexample (50% of total person hours).

V. DISCUSSION

We conducted another set of experiments to check whether
using simulation-driven falsification directly to violate the unit

TABLE II
COUNTEREXAMPLES FROM CBMC WITH AND WITHOUT RANGE MINING.

“CE” INDICATES THE COUNTEREXAMPLE VALUES.
input with mining no mining
variable range ce ce
waterTemp[°C] [-30.0, 100.0] 90.0 89.4
atmosphericPressure[hPa] [0.0, 1.0] 1.0 3.5
gear [0,6] 6 5
gearHoldF lag 0 0 0
idlF lag [0,1] 0 0
catalystTempHIGHflag [0,1] 1 1
fuelCutF lag [0,1] 0 0
engRpm[rpm] [0.0, 5310.9] 2605.0 2600.0

203

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Fig. 2. System-level counterexample (“false case”) on production powertrain system model (larger version in our technical report [12].)

Fig. 3. Comparison between direct falsification of post-condition (left plot)
and falsification guided using a counterexample and mined pre-conditions
(right) for the AFC model. Each circle is an input found during falsification.

level post-condition, without the use of model checking, can be
as effective as using software model checking first and then
simulation to falsify Property Eq. 2. Specifically, we re-ran
just the falsification step for 100 different trials on the AFC
model with different initial input values, varying the property
between one that tries to directly violate the post-condition
and Property Eq. 2. Note that simulation-based falsification
can be sensitive to the choice of initial input values, since it
performs numerical optimization from this initial valuation.

We found that the combined approach could find the fault
(and a system-level counterexample) 59.0% of the time, while
a pure simulation-based approach could only find the fault
17.0% of the time. Further, as seen in Fig. 3, we see the
visualization of one pair of trials for the different properties.
The red star denotes the initial input valuation and the green
box indicates the unit level counterexample to be hit. We can
see that if we directly try to violate the post-condition, the
optimizer gets stuck in a local minimum in the parameter space
away from the fault region; whereas Property Eq. 2 is effective
at guiding the search towards the unit level counterexample.

We also compared these options on the production power
train model, and found that, on average, using Property Eq. 2
can find the injected malfunction faster than just using post-
condition. The data is presented in our technical report [12].

In conclusion, in this paper we have shown that a com-
bination of simulation-driven requirement mining, software
model checking, and simulation-based falsification can be
significantly more effective than using just software model
checking or just simulation-based verification.

Going forward, we plan to expand the adoption of this

methodology and also consider more complex requirements
to be mined at the interface between the software components
and the physical plant.

ACKNOWLEDGMENTS

We thank the anonymous referees for their comments. We
are grateful to Jyotirmoy Deshmukh, Xiaoqing Jin, James
Kapinski, Hisahiro Ito, Arthur Wu and Ken Butts from Toyota
Motor Engineering & Manufacturing North America, Inc.
(TEMA) for their insightful comments and suggestions. We
thank James Kapinski for providing the Abstract Fuel Control
Model. We acknowledge the support on CBMC from Daniel
Kroening, Martin Brain and Peter Schrammel. The UC Berke-
ley authors were supported in part by Toyota through the
CHESS center.

REFERENCES

[1] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking.
MIT Press, 2000.

[2] Donzé, A. Breach, A Toolbox for Verification and Parameter Synthesis
of Hybrid Systems. CAV 2010: 167-170.

[3] ANNPUREDDY, Yashwanth, et al. S-taliro: A tool for temporal logic
falsification for hybrid systems. Springer Berlin Heidelberg, 2011.

[4] Jin, X., Donzé, A., Deshmukh, J. V., & Seshia, S. A. Mining requirements
from closed-loop control models. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 2015, 34.11: 1704-1717.

[5] JIN, Xiaoqing, et al. Powertrain control verification benchmark. In:
Proceedings of the 17th international conference on Hybrid systems:
computation and control. ACM, 2014. p. 253-262.

[6] Tomoya Yamaguchi, et al. A model checking application to software de-
velopment of automobile control systems. Embedded System Symposium
2012, 2012. p. 188-196. (Japanese)

[7] Maler, Oded; Nickovic, Dejan; Pnueli, Amir. Checking temporal proper-
ties of discrete, timed and continuous behaviors. In: Pillars of computer
science. Springer Berlin Heidelberg, 2008. p. 475-505.

[8] http://www.mathworks.com/products/sldesignverifier
[9] Kroening, Daniel and Tautschnig, Michael. CBMC bounded model

checker. In: Tools and Algorithms for the Construction and Analysis of
Systems. Springer Berlin Heidelberg, 2014. p. 389-391.

[10] http://www.mathworks.com/products/simulink
[11] Fukuoka Koji, et al. Development of CRAMAS-VF. In: Fujitsu Ten

technical report, 2014, 31.1: 15-20.
[12] Tomoya Yamaguchi, Tomoyuki Kaga, Alexandre Donzé and Sanjit A.

Seshia. Combining Requirement Mining, Software Model Checking, and
Simulation-Based Verification for Industrial Automotive Systems. EECS
Department, University of California, Berkeley, Technical Report No.
UCB/EECS-2016-124, June 30, 2016

204

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

	title0
	empty
	title1
	empty
	preface
	title2
	pc
	reviewers
	empty
	toc
	content-numbered
	invited-tutorials
	invited-tutorials
	i1 - song
	i2 - papadimitriou
	i3 - varghese
	t1 - pandey
	t2 - finkbeiner-rabe
	t3 - ashar
	t4 - cerny

	students

	papers
	paper_30
	paper_51
	paper_27
	paper_16
	paper_24
	paper_55
	paper_14
	paper_11
	paper_20
	paper_53
	paper_15
	paper_19
	paper_31
	paper_2

	roderick-fmcad.pdf
	Introduction
	Background and Related Work
	Preliminaries and Notation
	Synthesis of Adaptive Test Strategies
	Coverage Objective for Test Strategy Computation
	Test Strategy Computation
	Extensions and Variants

	Experimental Results
	AMBA Bus Arbiter Case Study
	Door with PIN

	Conclusion
	References

